
Internet Engineering Task Force SIP WG
Internet Draft Jonathan Rosenberg
draft-rosenberg-sip-reconstitute-00.txt dynamicsoft
July 13, 2001
Expires: February 2002

Reconsituting Call State in SIP User Agents

STATUS OF THIS MEMO

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress".

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 To view the list Internet-Draft Shadow Directories, see
http://www.ietf.org/shadow.html.

Abstract

 In a SIP network, call and session state resides in the user agents
 at the edge of the network. These user agents can be elements such as
 gateways, conferencing servers, and media servers whose availability
 is important for service delivery. In order to achieve fault
 tolerance for these user agents, this state must somehow be
 replicated to backup servers. Traditionally, replication is done
 through direct memory copies between a primary and its backup.
 However, the soft-state nature of SIP re-INVITEs means that an
 alternate mechanism for call state replication is possible. This
 document proposes mechanisms for reconstituting call state in a UA
 through triggered re-INVITEs from a peer.

1 Introduction

Jonathan Rosenberg [Page 1]

https://datatracker.ietf.org/doc/html/draft-rosenberg-sip-reconstitute-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet Draft reconstitution July 13, 2001

 In SIP [1] networks, call state resides in the user agents which sit
 at the "edge" of the network. SIP proxies do not maintain call state.
 As a result of this, a failure of a SIP proxy mid-call has no effect
 on in-progress calls. The result is high availability of SIP-based
 proxy networks.

 SIP service providers do not just deploy proxies, however. They often
 need to deploy user agents as well. These include gateways,
 softswitches, conferencing servers, dialog servers, and application
 servers, amongst others. Many times, these user agents are also
 termination points for media. Unfortunately, failures of these types
 of user agents are more complex. Because the user agent contains call
 and session state, a backup cannot be used without some kind of
 transfer of that state. Traditionally, this state transfer is done
 through dedicated, direct connections between primaries and backups.
 As state changes in the primary, it is immediately transferred to the
 backup. This approach is expensive to implement, and provides only a
 single backup.

 Fortunately, the soft-state nature of SIP INVITE requests provides an
 alternative in some cases. SIP re-INVITE requests are "soft-state"
 because they contain complete information about the call and the
 session, rather than conveying deltas from the previous re-INVITE.
 This means that a UA can potentially reconstitute call and session
 state upon receipt of a re-INVITE. This concept is discussed briefly
 in the SIP bis draft [2] to facilitate "crash and restart" of user
 agents. The mechanism is far more useful for supporting transfer of
 state to backups, however. In either case, the specification does not
 provide sufficient guidance on how to provide this capability. This
 draft addresses that deficiency.

 Our approach is to allow for a UA to rapidly detect failure of its
 peer UA, and then send a re-INVITE to reconstitute state in a backup
 of its peer. DNS SRV procedures [3] can cause this re-INVITE to be
 routed to the backup, instead of the failed primary. The re-INVITE
 reconstitutes call state in the backup, allowing service to continue
 without interruption for the users.

 Our approach is backwards compatible. No new headers, methods,
 bodies, or response codes are defined. The approach requires
 additional localized processing, beyond rfc2543bis, amongst the
 servers that wish to back each other up. Unfortunately, the approach
 does depend on additional processing from user agents on the other
 side of the call from the servers that wish to reconstitute this
 state. We discuss these requirements in Section 4.

2 Applicability

Jonathan Rosenberg [Page 2]

Internet Draft reconstitution July 13, 2001

 The configuration under consideration is straightforward and
 presented in Figure 1.

 . . . +--------+ .
 . . . | | .
 . . . | UA2 | .
 . +--------+ +--------+ . . +--------+ | | .
 . | | | | . . | | | | .
 . | UA1 | | P1 | . . | P2 | +--------+ .
 . | | | | . . | | .
 . | | | | . . | | +--------+ .
 . +--------+ +--------+ . . +--------+ | | .
 . . . | UA3 | .
 . . . | | .
 . . . | | .
 . . . +--------+ .

 . Domain foo . . Domain bar .

 .

 Figure 1: Scenario for reconstituting call state

 UA1 is in domain foo, and makes a call which terminates at UA2 in
 domain bar. This call traverses two proxies. At some point, UA2
 fails. We would like to have UA3, a backup, take its place and
 recover the call. We would like this recovery to be nearly
 instantaneous, without disruption to the user of UA1.

Jonathan Rosenberg [Page 3]

Internet Draft reconstitution July 13, 2001

 Recovery with SIP call state reconstitution is not always possible.
 Generally, this will be because there are additional resources,
 besides call state, which cannot be replicated, reconstituted, or
 discarded. For example, UA2 may hold physical resources, such as a
 PSTN circuit, which cannot be replicated to UA3. As a result,
 recovering to a backup PSTN gateway may not be possible. However, we
 have observed that for a large class of SIP user agents,
 reconstitution is feasible and practical:

 Instant Conference Servers: The instant conference servers
 described in the application component architecture [4] are
 user agents. They mix together all streams received for the
 same request URI. Since conferencing state is created
 dynamically when a call arrives, these servers are ideal
 candidates for availability through state reconstitution.
 Consider a conference with three participants connected to
 a single server. The server fails. Each of the three
 participants detects this, and sends a re-INVITE that
 arrives at a backup. As all three re-INVITEs have the same
 request-URI, this recreates a new conference at the backup
 server, with all three participants mixed together.

 Dialog Servers: Dialog servers interpret VoiceXML scripts, and
 interact with a caller to collect some kind of information.
 These servers are discussed in the application component
 architecture [4]. From a SIP perspective, they are user
 agents. The state of a dialog server includes the call
 state, the identity of the current VoiceXML script, and
 state associated with the VoiceXML interpreter. This latter
 state is a collection of variables and a pointer to the
 current point in the execution of the VoiceXML script. When
 the re-INVITE arrives at a backup, the call state is easily
 reconstituted. We have proposed that the VoiceXML script to
 interpret be specified as a URL in the request URI of an
 INVITE. Therefore, when the re-INVITE arrives, the VoiceXML
 script being executed can be determined. Unfortunately,
 unless the VoiceXML interpreter context is stored
 elsewhere, this state is lost. However, voice processing
 can restart from the top of the script. From the user's
 perspective, the failure manifests itself as a glitch. For
 example, they might hear, "Please enter your credit
 car..... Please enter your credit card now.". We believe
 this will frequently be acceptable.

 Its also important to note that a complex voice browsing
 application is usually series of VoiceXML scripts. Data
 collected from scripts prior to failure will have already
 been posted to the web server, where web Application

Jonathan Rosenberg [Page 4]

Internet Draft reconstitution July 13, 2001

 Servers (like Weblogic and Websphere) have mechanisms to
 reliably store and manage it. As a result, so long as the
 identity of the current VoiceXML script can be recovered,
 the voice browsing application can continue without loss of
 critical data.

 Text-to-speech Converters: These servers provide continuous
 text-to-speech converstion between an audio stream and a
 text RTP stream [4]. Besides call state, the only other
 state is the language of the stream being converted.
 Fortunately, this information is provided within the
 request-URI, and can be recovered at a backup server. As a
 result, complete recovery is possible for text-to-speech
 converters.

 Single-User UA: There are a class of single-user end devices
 where a failure can be recovered by rebooting or rapidly
 restarting the application. For example, one can imagine a
 wireless PDA that has instant-on capabilities. If, in the
 middle of a call, the VoIP application crashes, the OS can
 detect this and immediately restart the application. Or,
 the user might accidentally hit the power button, or unplug
 it, or change the batteries. In these cases, the VoIP
 application can crash and recover within a few seconds.
 Here, there is no backup, but rather the original UA itself
 loses its state and needs to recover it. Since the call
 state is the primary piece of state, recovery through
 reconstitution is possible.

 In all of the cases above, a key requirement is that the failure of
 UA2 is detected rapidly by UA1. We discuss how this can be
 accomplished in the next section.

3 Failure Detection

 Rapid failure detection by the peer, UA1, is a key requirement for
 state reconstitution. The SIP session timer [5] provides the ability
 to detect failures. However, the frequency between refreshes would
 need to be very small (on the order of hundreds of milliseconds) in
 order to usefully recover call state. The session timer intervals
 cannot scale down this low without adversely affecting proxy
 capacities.

 Instead, we propose that failure detection occur end-to-end using the
 media stream. Ideally, the RTP or RTCP packets sent by UA1 should
 begin generating ICMP errors (either port unreachable or host
 unreachable) upon the failure of UA2. Software failures will
 generally result in port unreachable errors. Hardware failures can

Jonathan Rosenberg [Page 5]

Internet Draft reconstitution July 13, 2001

 result in host unreachable failures if the host was also running a
 routing process, advertising reachability to itself using a host
 route.

 TODO: Include router configuration details.

 If UA1 is sending media, the result is that failures can be detected
 within a single RTT. If UA2 is not sending media, it will require
 roughly 2.5 seconds on average (half the default RTCP interval). This
 may be too long. Fortunately, recent work in AVT allows for the RTCP
 bandwidth fraction to increase, resulting in a decrease in this
 interval [6]. Achieving detection times on the order of 100 ms is
 easily achievable.

4 Triggered re-INVITE

 Once UA1 has detected the failure of UA2, it sends a re-INVITE in
 order to reconstitute state at the peer. This re-INVITE MUST contain
 SDP, and SHOULD contain the same SDP that UA1 last provided to UA2.
 Using the SRV and/or proxy routing mechanisms described in Section 5,
 this INVITE will arrive at an alternate server, UA3. If UA3 is
 incapable of reconstituting state, the re-INVITE will result in a 481
 (UA3 can determine that this INVITE is for an old call by the
 presence of the tag in the To field). A 481 response will cause UA1
 to send a BYE, terminating the call. Otherwise, UA3 reconstitutes
 call and session state and then returns a 200 OK. If, for some
 reason, the media stream continues to generate errors, UA1 SHOULD try
 a total of three re-INVITEs, and then give up by sending a BYE.

 Even if UA1 cannot reconstitute state itself, it must perform this
 re-INVITE upon ICMP errors, in order to support state reconstitution
 in its peers. This is the only new standardized behavior that the
 mechanism described in this document requires. It is our
 recommendation that this behavior be incorporated into the bis
 specification directly.

5 Routing the re-INVITE

 To be useful, the re-INVITE request to reconstitute state must arrive
 at a backup, UA3, and not at failed UA2. Fortunately, this is easily
 accomplished using SRV records. The original INVITE from UA1 to UA2
 passes through some number of proxies (potentially zero), and arrives
 at UA2. When UA2 inserts a Contact header into the 2xx response, this
 Contact header does not contain an IP address. Rather, its a domain
 name that has an SRV record. This record has, as its highest priority
 entry, the IP address of that specific host UA2. It has lower
 priority entries for backups (UA3 in this case).

Jonathan Rosenberg [Page 6]

Internet Draft reconstitution July 13, 2001

 Assuming there were no record-routing proxies, when UA1 tries the
 re-INVITE, it attempts to send the request to the SIP URL in the
 Contact header of the 2xx response to the initial INVITE. UA1 will
 apply the SRV procedures of [3] to this URL. The highest priority
 entry is tried (this is the failed server, UA2). This generates an
 ICMP error, so UA2 tries the next-highest priority entry, which is
 one of the backups. This request succeeds.

 In the case of a record-routing proxy, say P2, P2 will simply apply
 the same SRV procedures that UA1 applied in the paragraph above.

6 UA Requirements

 In order for a UA to recover its call state and session state, it
 must perform additional processing beyond what is specified in

RFC2543.

 Call state is contained in several places:

 Remote CSeq: The highest CSeq seen from the peer.

 Local CSeq: The highest CSeq sent by the UA.

 Call Leg ID: The ID for this call leg, which is the combination
 of the To, From, and Call-ID in an INVITE.

 Route set: The set of Route headers used to forward requests to
 the peer.

 Session state is contained in several places:

 Streams, codec, and parameters: The set of streams with the peer
 (audio, video, text), and for each, the set of codecs and
 any associated codec parameters.

 Local port/IP address: The IP address and port where the media
 is being received.

 Remote port/IP address: The IP address and port where the media
 is being sent to.

 Incoming SN/TS: The most recent RTP timestamp and sequence
 number for incoming media.

 Outgoing SN/TS: The most recent outgoing RTP timestamp and
 sequence number for media.

 Remote SSRC/CNAME: The SSRC and CNAME for the incoming stream.

https://datatracker.ietf.org/doc/html/rfc2543

Jonathan Rosenberg [Page 7]

Internet Draft reconstitution July 13, 2001

 Local SSRC/CNAME: The SSRC and CNAME used by the host to send
 media.

 In order to properly recover, all of these parameters need to be
 reset or reconstituted.

 The first task for the backup is to detect that an incoming re-INVITE
 is for a call that is to be recovered, as opposed to a new call or
 misrouted call. This detection is done by examining the tag in the To
 field. A request without a tag in the To field is a new call. If the
 tag is present, but the server has no call state for the call leg,
 the INVITE may be for a call to be recovered, or it could be a call
 for a different UA (and thus might be misrouted).

 To distinguish these two cases, we propose a specialized algorithm
 for computation of the tag in the To field. The tag is composed of a
 concatenation of two values, separated by a period. The first value
 is a globally unique ID, across space and time. The second value is a
 server group ID. This ID is the same for all instances of servers
 that can potentially act as backups for each other. Generally, the
 server group ID would be configured by the administrator.

 By using a concatenation of these two values, we retain two
 properties. First, the tag is always globally unique across space and
 time. This is an important property for proper operation of forking
 and certain billing applications. Second, a server in a server group
 can determine whether or not an incoming call was meant for a server
 in the server group, or for some other server not in the group. If a
 new incoming call for server A in group 1 has a tag in the To field,
 and the server group ID in the tag indicates group 1, the call and
 session state are to be reconstituted.

 Once its determined that the INVITE is for a call to be
 reconstituted, the call state is recovered in the following manner:

 Remote CSeq: The remote CSeq is set to the CSeq of the incoming
 INVITE.

 Local CSeq: In order for the peer to accept requests from UA3,
 the local CSeq must be larger than the local CSeq used by
 UA2. In order to accomplish this, the servers in a server
 group need to have synchronized clocks, within 100 ms
 granularity. Each server computes the initial CSeq for a
 call by taking the current time, expressed as a 32 bit
 value representing the number of 100 ms intervals since a
 configured recent epoch (for example, January 1, 2000). The
 uppermost 31 bits of this clock are taken, and then shifted
 right by 1. The result is the initial CSeq. This value is

Jonathan Rosenberg [Page 8]

Internet Draft reconstitution July 13, 2001

 guaranteed not to wrap for a very long time. It also has
 the desired property that when reconstituted at UA3, it is
 larger than the value used at UA2.

 Call Leg ID: The Call Leg ID is copied from the incoming INVITE.

 Route set: In order to recover the route set, the re-INVITE
 needs to convey the same Record-Route headers present in
 the initial INVITE, along with a Contact. Unfortunately,

rfc2543 did not mandate that re-INVITEs were record-routed
 by proxies, nor does it mandate Contact in INVITE. However,
 rfc2543bis does mandate both Contact in INVITE, and
 record-routing of re-INVITEs. As a result, the route set
 can be partially reconstructed, depending on the fraction
 of proxies which are bis compliant.

 Recovery of the session state is accomplished in the following
 manner:

 Streams, codec, and parameters: The re-INVITE contains the
 complete set of streams, codecs, and codec parameters.
 Therefore, these are reset based on the incoming re-INVITE.

 Local port/IP address: The local port and IP address are
 rechosen The new values are returned in the 200 OK,
 updating them with the peer.

 Remote port/IP address: The remote IP address and port are
 conveyed in the re-INVITE.

 Incoming SN/TS: The incoming SN and TS will be reset by the
 arrival of the first media packet from the peer.

 Outgoing SN/TS: Unfortunately, the outgoing TS and SN cannot be
 recovered. However, these values are not relevant if UA3
 uses a different SSRC and CNAME than UA2. In that case, the
 peer will see UA3 as a new RTP participant, and establish a
 new SN and TS context for it. Eventually, UA2 times out as
 an RTP participant. This does require that UA's properly
 implement RFC1889 [7] handling of RTP sessions with
 multiple participants.

 Remote SSRC/CNAME: The SSRC and CNAME for the incoming stream
 are reset by the arrival of the first RTP and RTCP packets.

 Local SSRC/CNAME: The local SSRC and CNAME are rechosen by UA3,
 and will not match those used by UA2. This is beneficial,
 in fact, as we discuss above.

https://datatracker.ietf.org/doc/html/rfc2543
https://datatracker.ietf.org/doc/html/rfc1889

Jonathan Rosenberg [Page 9]

Internet Draft reconstitution July 13, 2001

7 Special Case: Separate Media and Signaling

 Because of the separation of media from signaling, it is possible
 that different devices terminate the media and the signaling. As a
 result, the device terminating the media might fail, while the device
 handling the signaling (UA2) remains functional. In such a
 configuration, a re-INVITE from UA1 must cause UA2 to attempt to
 recover or refresh the media state. Without this requirement, state
 reconstitution will not function.

 A common case for this separation is third party call control. [8].
 Figure 2 shows the scenario. The controller sets up a call between
 user A and conference server B (messages 1-6). RTP flows between A
 and B. B fails. This causes RTP and RTCP packets from A to generate
 ICMP errors back to A. This causes A to send a re-INVITE (7). Even
 though this re-INVITE does not change the media at all (the same SDP
 as before, SDP A, is sent), the controller has to forward this re-
 INVITE to the other party in order to restablish call state. So, it
 tries to send the re-INVITE. Using SRV procedures, its first attempt
 to contact server B fails immediately with an ICMP error, so it tries
 server C. This re-INVITE succeeds, and reconstitutes the call and
 conference state in server C. Media then flows between A and C.

8 Reconstituting application state

 The procedures above allow a UA to reconstitute the call and session
 state from an incoming re-INVITE. As we pointed out in Section 2, the
 application may have other state. In some cases, this state can be
 stored in the peer. This can be accomplished with re-INVITEs.

 Consider an application running on UA2 which requires some
 application state. This state is small, and changes infrequently (for
 example, the URL of the currently executing voiceXML script). When
 the state changes, UA2 sends a re-INVITE to UA1. This re-INVITE
 contains a new Contact header. This Contact header has, encapsulated
 in the URI, a representation of the state. In this case, the HTTP URL
 for the VoiceXML script is URL encoded and placed in the user portion
 of the Contact URI.

 This re-INVITE causes UA1 to update its route set, replacing the
 existing Contact with the new one. If UA2 fails, the re-INVITE from
 UA1 will arrive with this Contact URI in the request-URI. UA2 can use
 this to recover application state.

 Effectively, UA2 is able to distribute its state to its peers. The
 state is transferred to the backup by the peer when recovery is about
 to take place.

Jonathan Rosenberg [Page 10]

Internet Draft reconstitution July 13, 2001

 |(1) INV no SDP | | |
 |<----------------| | |
 |(2) 200 OK SDP A | | |
 |---------------->|(3) INV SDP A | |
 | |---------------->| |
 | |(4) 200 OK SDP B | |
 | |<----------------| |
 | |(5) ACK | |
 |(6) ACK SDP B |---------------->| |
 |<----------------| | |
 | RTP | | |
 |...................................| |
 | ICMP error | | |
 |<..................................Xfailure |
 | | X |
 |(7) INV SDP A | X |
 |---------------->|(8) INV SDP A X |
 | |----------------------------------->|
 | |(9) 200 OK SDP C X |
 |(10) 200 OK SDP C|<-----------------------------------|
 |<----------------|(11) ACK X |
 |(12) ACK |----------------------------------->|
 |---------------->| X |
 | RTP | X |
 |..|
 | | X |
 | | X |

 User Controller Conference Conference
 A Server Server
 B C

 Figure 2: Recovery in 3pcc cases

 This mechanism is very similar to the State header specification [9],
 but does not require an extension to SIP.

 This approach is not appropriate for storing any kind of application
 state. Because it imposes a burden on the peer and on the SIP
 network, and because it occupies space in the SIP message, it can
 only be used when the state is below a few hundred bytes, and when it
 needs to be updated only every few seconds at the most.

Jonathan Rosenberg [Page 11]

Internet Draft reconstitution July 13, 2001

9 Conclusions

 The proposed mechanism allows for highly available, fault tolerant
 SIP networks to be constructed. Rather than relying on expensive
 state replication techniques, we distribute call state, session
 state, and limited amounts of application state amongst peers at the
 edge of the network. Recovery of state then becomes an end-to-end
 operation at the application layer. This is nothing more than an
 expression of the end-to-end principle.

10 Authors Addresses

 Jonathan Rosenberg
 dynamicsoft
 72 Eagle Rock Avenue
 First Floor
 East Hanover, NJ 07936
 email: jdrosen@dynamicsoft.com

11 Bibliography

 [1] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, "SIP:
 session initiation protocol," Request for Comments 2543, Internet
 Engineering Task Force, Mar. 1999.

 [2] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, "SIP:
 Session initiation protocol," Internet Draft, Internet Engineering
 Task Force, Nov. 2000. Work in progress.

 [3] H. Schulzrinne and J. Rosenberg, "SIP: Session initiation
 protocol -- locating SIP servers," Internet Draft, Internet
 Engineering Task Force, Mar. 2001. Work in progress.

 [4] J. Rosenberg, P. Mataga, and H. Schulzrinne, "An application
 server component architecture for SIP," Internet Draft, Internet
 Engineering Task Force, Mar. 2001. Work in progress.

 [5] S. Donovan and J. Rosenberg, "SIP session timer," Internet Draft,
 Internet Engineering Task Force, Nov. 2000. Work in progress.

 [6] S. Casner, "SDP bandwidth modifiers for RTCP bandwidth," Internet
 Draft, Internet Engineering Task Force, Mar. 2001. Work in progress.

 [7] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, "RTP: a

Jonathan Rosenberg [Page 12]

Internet Draft reconstitution July 13, 2001

 transport protocol for real-time applications," Request for Comments
 1889, Internet Engineering Task Force, Jan. 1996.

 [8] J. Rosenberg, J. Peterson, H. Schulzrinne, and G. Camarillo,
 "Third party call control in SIP," Internet Draft, Internet
 Engineering Task Force, Mar. 2001. Work in progress.

 [9] B. Marshall et al. , "SIP extensions for supporting distributed
 call state," Internet Draft, Internet Engineering Task Force, Mar.
 2001. Work in progress.

Jonathan Rosenberg [Page 13]

