
SIPPING J. Rosenberg
Internet-Draft dynamicsoft
Expires: December 29, 2003 June 30, 2003

A Framework and Requirements for Application Interaction in the
Session Initiation Protocol (SIP)

draft-rosenberg-sipping-app-interaction-framework-01

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on December 29, 2003.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 This document describes a framework and requirements for the
 interaction between users and Session Initiation Protocol (SIP) based
 applications. By interacting with applications, users can guide the
 way in which they operate. The focus of this framework is stimulus
 signaling, which allows a user agent to interact with an application
 without knowledge of the semantics of that application. Stimulus
 signaling can occur to a user interface running locally with the
 client, or to a remote user interface, through media streams.
 Stimulus signaling encompasses a wide range of mechanisms, ranging
 from clicking on hyperlinks, to pressing buttons, to traditional Dual
 Tone Multi Frequency (DTMF) input. In all cases, stimulus signaling
 is supported through the use of markup languages, which play a key

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Rosenberg Expires December 29, 2003 [Page 1]

Internet-Draft App Interaction Framework June 2003

 role in this framework.

Table of Contents

1. Introduction . 3
2. Definitions . 4
3. A Model for Application Interaction 7
3.1 Function vs. Stimulus 8
3.2 Real-Time vs. Non-Real Time 9
3.3 Client-Local vs. Client-Remote 9
3.4 Interaction Scenarios on Telephones 10
3.4.1 Client Remote . 11
3.4.2 Client Local . 11
3.4.3 Flip-Flop . 11
4. Framework Overview . 13
5. Client Local Interfaces 15
5.1 Discovering Capabilities 15
5.2 Pushing an Initial Interface Component 15
5.3 Updating an Interface Component 17
5.4 Terminating an Interface Component 18
6. Client Remote Interfaces 19
6.1 Originating and Terminating Applications 19
6.2 Intermediary Applications 19
7. Inter-Application Feature Interaction 21
7.1 Client Local UI . 21
7.2 Client-Remote UI . 22
8. Intra Application Feature Interaction 23
9. Examples . 24
10. Security Considerations 25
11. Contributors . 26

 Informative References 27
 Author's Address . 28
 Intellectual Property and Copyright Statements 29

Rosenberg Expires December 29, 2003 [Page 2]

Internet-Draft App Interaction Framework June 2003

1. Introduction

 The Session Initiation Protocol (SIP) [1] provides the ability for
 users to initiate, manage, and terminate communications sessions.
 Frequently, these sessions will involve a SIP application. A SIP
 application is defined as a program running on a SIP-based element
 (such as a proxy or user agent) that provides some value-added
 function to a user or system administrator. Examples of SIP
 applications include pre-paid calling card calls, conferencing, and
 presence-based [3] call routing.

 In order for most applications to properly function, they need input
 from the user to guide their operation. As an example, a pre-paid
 calling card application requires the user to input their calling
 card number, their PIN code, and the destination number they wish to
 reach. The process by which a user provides input to an application
 is called "application interaction".

 Application interaction can be either functional or stimulus.
 Functional interaction requires the user agent to understand the
 semantics of the application, whereas stimulus interaction does not.
 Stimulus signaling allows for applications to be built without
 requiring modifications to the client. Stimulus interaction is the
 subject of this framework. The framework provides a model for how
 users interact with applications through user interfaces, and how
 user interfaces and applications can be distributed throughout a
 network. This model is then used to describe how applications can
 instantiate and manage user interfaces.

Rosenberg Expires December 29, 2003 [Page 3]

Internet-Draft App Interaction Framework June 2003

2. Definitions

 SIP Application: A SIP application is defined as a program running on
 a SIP-based element (such as a proxy or user agent) that provides
 some value-added function to a user or system administrator.
 Examples of SIP applications include pre-paid calling card calls,
 conferencing, and presence-based [3] call routing.

 Application Interaction: The process by which a user provides input
 to an application.

 Real-Time Application Interaction: Application interaction that takes
 place while an application instance is executing. For example,
 when a user enters their PIN number into a pre-paid calling card
 application, this is real-time application interaction.

 Non-Real Time Application Interaction: Application interaction that
 takes place asynchronously with the execution of the application.
 Generally, non-real time application interaction is accomplished
 through provisioning.

 Functional Application Interaction: Application interaction is
 functional when the user device has an understanding of the
 semantics of the application that the user is interacting with.

 Stimulus Application Interaction: Application interaction is
 considered to be stimulus when the user device has no
 understanding of the semantics of the application that the user is
 interacting with.

 User Interface (UI): The user interface provides the user with
 context in order to make decisions about what they want. The user
 enters information into the user interface. The user interface
 interprets the information, and passes it to the application.

 User Interface Component: A piece of user interface which operates
 independently of other pieces of the user interface. For example,
 a user might have two separate web interfaces to a pre-paid
 calling card application - one for hanging up and making another
 call, and another for entering the username and PIN.

 User Device: The software or hardware system that the user directly
 interacts with in order to communicate with the application. An
 example of a user device is a telephone. Another example is a PC
 with a web browser.

Rosenberg Expires December 29, 2003 [Page 4]

Internet-Draft App Interaction Framework June 2003

 User Input: The "raw" information passed from a user to a user
 interface. Examples of user input include a spoken word or a click
 on a hyperlink.

 Client-Local User Interface: A user interface which is co-resident
 with the user device.

 Client Remote User Interface: A user interface which executes
 remotely from the user device. In this case, a standardized
 interface is needed between them. Typically, this is done through
 media sessions - audio, video, or application sharing.

 Media Interaction: A means of separating a user and a user interface
 by connecting them with media streams.

 Interactive Voice Response (IVR): An IVR is a type of user interface
 that allows users to speak commands to the application, and hear
 responses to those commands prompting for more information.

 Prompt-and-Collect: The basic primitive of an IVR user interface. The
 user is presented with a voice option, and the user speaks their
 choice.

 Barge-In: In an IVR user interface, a user is prompted to enter some
 information. With some prompts, the user may enter the requested
 information before the prompt completes. In that case, the prompt
 ceases. The act of entering the information before completion of
 the prompt is referred to as barge-in.

 Focus: A user interface component has focus when user input is
 provided fed to it, as opposed to any other user interface
 components. This is not to be confused with the term focus within
 the SIP conferencing framework, which refers to the center user
 agent in a conference [4].

 Focus Determination: The process by which the user device determines
 which user interface component will receive the user input.

 Focusless User Interface: A user interface which has no ability to
 perform focus determination. An example of a focusless user
 interface is a keypad on a telephone.

 Feature Interaction: A class of problems which result when multiple
 applications or application components are trying to provide
 services to a user at the same time.

Rosenberg Expires December 29, 2003 [Page 5]

Internet-Draft App Interaction Framework June 2003

 Inter-Application Feature Interaction: Feature interactions that
 occur between applications.

 DTMF: Dual-Tone Multi-Frequency. DTMF refer to a class of tones
 generated by circuit switched telephony devices when the user
 presses a key on the keypad. As a result, DTMF and keypad input
 are often used synonymously, when in fact one of them (DTMF) is
 merely a means of conveying the other (the keypad input) to a
 client-remote user interface (the switch, for example).

 Application Instance: A single execution path of a SIP application.

 Originating Application: A SIP application which acts as a UAC,
 calling the user.

 Terminating Application: A SIP application which acts as a UAS,
 answering a call generated by a user. IVR applications are
 terminating applications.

 Intermediary Application: A SIP application which is neither the
 caller or callee, but rather, a third party involved in a call.

Rosenberg Expires December 29, 2003 [Page 6]

Internet-Draft App Interaction Framework June 2003

3. A Model for Application Interaction

 +---+ +---+ +---+ +---+
 | | | | | | | |
 | | | U | | U | | A |
 | | Input | s | Input | s | Results | p |
 | | ---------> | e | ---------> | e | ----------> | p |
 | U | | r | | r | | l |
 | s | | | | | | i |
 | e | | D | | I | | c |
 | r | Output | e | Output | f | Update | a |
 | | <--------- | v | <--------- | a | <.......... | t |
 | | | i | | c | | i |
 | | | c | | e | | o |
 | | | e | | | | n |
 | | | | | | | |
 +---+ +---+ +---+ +---+

 Figure 1: Model for Real-Time Interactions

 Figure 1 presents a general model for how users interact with
 applications. Generally, users interact with a user interface through
 a user device. A user device can be a telephone, or it can be a PC
 with a web browser. Its role is to pass the user input from the user,
 to the user interface. The user interface provides the user with
 context in order to make decisions about what they want. The user
 enters information into the user interface. The user interface
 interprets the information, and passes it to the application. The
 application may be able to modify the user interface based on this
 information. Whether or not this is possible depends on the type of
 user interface.

 User interfaces are fundamentally about rendering and interpretation.
 Rendering refers to the way in which the user is provided context.
 This can be through hyperlinks, images, sounds, videos, text, and so
 on. Interpretation refers to the way in which the user interface
 takes the "raw" data provided by the user, and returns the result to
 the application in a meaningful format, abstracted from the
 particulars of the user interface. As an example, consider a pre-paid
 calling card application. The user interface worries about details
 such as what prompt the user is provided, whether the voice is male
 or female, and so on. It is concerned with recognizing the speech
 that the user provides, in order to obtain the desired information.
 In this case, the desired information is the calling card number, the
 PIN code, and the destination number. The application needs that
 data, and it doesn't matter to the application whether it was
 collected using a male prompt or a female one.

Rosenberg Expires December 29, 2003 [Page 7]

Internet-Draft App Interaction Framework June 2003

 User interfaces generally have real-time requirements towards the
 user. That is, when a user interacts with the user interface, the
 user interface needs to react quickly, and that change needs to be
 propagated to the user right away. However, the interface between the
 user interface and the application need not be that fast. Faster is
 better, but the user interface itself can frequently compensate for
 long latencies there. In the case of a pre-paid calling card
 application, when the user is prompted to enter their PIN, the prompt
 should generally stop immediately once the first digit of the PIN is
 entered. This is referred to as barge-in. After the user-interface
 collects the rest of the PIN, it can tell the user to "please wait
 while processing". The PIN can then be gradually transmitted to the
 application. In this example, the user interface has compensated for
 a slow UI to application interface by asking the user to wait.

 The separation between user interface and application is absolutely
 fundamental to the entire framework provided in this document. Its
 importance cannot be overstated.

 With this basic model, we can begin to taxonomize the types of
 systems that can be built.

3.1 Function vs. Stimulus

 The first way to taxonomize the system is to consider the interface
 between the UI and the application. There are two fundamentally
 different models for this interface. In a functional interface, the
 user interface has detailed knowledge about the application, and is,
 in fact, specific to the application. The interface between the two
 components is through a functional protocol, capable of representing
 the semantics which can be exposed through the user interface.
 Because the user interface has knowledge of the application, it can
 be optimally designed for that application. As a result, functional
 user interfaces are almost always the most user friendly, the
 fastest, the and the most responsive. However, in order to allow
 interoperability between user devices and applications, the details
 of the functional protocols need to be specified in standards. This
 slows down innovation and limits the scope of applications that can
 be built.

 An alternative is a stimulus interface. In a stimulus interface, the
 user interface is generic, totally ignorant of the details of the
 application. Indeed, the application may pass instructions to the
 user interface describing how it should operate. The user interface
 translates user input into "stimulus" - which are data understood
 only by the application, and not by the user interface. Because they
 are generic, and because they require communications with the
 application in order to change the way in which they render

Rosenberg Expires December 29, 2003 [Page 8]

Internet-Draft App Interaction Framework June 2003

 information to the user, stimulus user interfaces are usually slower,
 less user friendly, and less responsive than a functional
 counterpart. However, they allow for substantial innovation in
 applications, since no standardization activity is needed to built a
 new application, as long as it can interact with the user within the
 confines of the user interface mechanism.

 In SIP systems, functional interfaces are provided by extending the
 SIP protocol to provide the needed functionality. For example, the
 SIP caller preferences specification [5] provides a functional
 interface that allows a user to request applications to route the
 call to specific types of user agents. Functional interfaces are
 important, but are not the subject of this framework. The primary
 goal of this framework is to address the role of stimulus interfaces
 to SIP applications.

3.2 Real-Time vs. Non-Real Time

 Application interaction systems can also be real-time or
 non-real-time. Non-real interaction allows the user to enter
 information about application operation in asynchronously with its
 invocation. Frequently, this is done through provisioning systems. As
 an example, a user can set up the forwarding number for a
 call-forward on no-answer application using a web page. Real-time
 interaction requires the user to interact with the application at the
 time of its invocation.

3.3 Client-Local vs. Client-Remote

 Another axis in the taxonomization is whether the user interface is
 co-resident with the user device (which we refer to as a client-local
 user interface), or the user interface runs in a host separated from
 the client (which we refer to as a client-remote user interface). In
 a client-remote user interface, there exists some kind of protocol
 between the client device and the UI that allows the client to
 interact with the user interface over a network.

 The most important way to separate the UI and the client device is
 through media interaction. In media interaction, the interface
 between the user and the user interface is through media - audio,
 video, messaging, and so on. This is the classic mode of operation
 for VoiceXML [2], where the user interface (also referred to as the
 voice browser) runs on a platform in the network. Users communicate
 with the voice browser through the telephone network (or using a SIP
 session). The voice browser interacts with the application using HTTP
 to convey the information collected from the user.

 We refer to the second sub-case as a client-local user interface. In

Rosenberg Expires December 29, 2003 [Page 9]

Internet-Draft App Interaction Framework June 2003

 this case, the user interface runs co-located with the user. The
 interface between them is through the software that interprets the
 users input and passes them to the user interface. The classic
 example of this is the web. In the web, the user interface is a web
 browser, and the interface is defined by the HTML document that it's
 rendering. The user interacts directly with the user interface
 running in the browser. The results of that user interface are sent
 to the application (running on the web server) using HTTP.

 It is important to note that whether or not the user interface is
 local, or remote (in the case of media interaction), is not a
 property of the modality of the interface, but rather a property of
 the system. As an example, it is possible for a web-based user
 interface to be provided with a client-remote user interface. In such
 a scenario, video and application sharing media sessions can be used
 between the user and the user interface. The user interface, still
 guided by HTML, now runs "in the network", remote from the client.
 Similarly, a VoiceXML document can be interpreted locally by a client
 device, with no media streams at all. Indeed, the VoiceXML document
 can be rendered using text, rather than media, with no impact on the
 interface between the user interface and the application.

 It is also important to note that systems can be hybrid. In a hybrid
 user interface, some aspects of it (usually those associated with a
 particular modality) run locally, and others run remotely.

3.4 Interaction Scenarios on Telephones

 This same model can apply to a telephone. In a traditional telephone,
 the user interface consists of a 12-key keypad, a speaker, and a
 microphone. Indeed, from here forward, the term "telephone" is used
 to represent any device that meets, at a minimum, the characteristics
 described in the previous sentence. Circuit-switched telephony
 applications are almost universally client-remote user interfaces. In
 the Public Switched Telephone Network (PSTN), there is usually a
 circuit interface between the user and the user interface. The user
 input from the keypad is conveyed used Dual-Tone Multi-Frequency
 (DTMF), and the microphone input as PCM encoded voice.

 In an IP-based system, there is more variability in how the system
 can be instantiated. Both client-remote and client-local user
 interfaces to a telephone can be provided.

 In this framework, a PSTN gateway can be considered a "user proxy".
 It is a proxy for the user because it can provide, to a user
 interface on an IP network, input taken from a user on a circuit
 switched telephone. The gateway may be able to run a client-local
 user interface, just as an IP telephone might.

Rosenberg Expires December 29, 2003 [Page 10]

Internet-Draft App Interaction Framework June 2003

3.4.1 Client Remote

 The most obvious instantiation is the "classic" circuit-switched
 telephony model. In that model, the user interface runs remotely from
 the client. The interface between the user and the user interface is
 through media, set up by SIP and carried over the Real Time Transport
 Protocol (RTP) [6]. The microphone input can be carried using any
 suitable voice encoding algorithm. The keypad input can be conveyed
 in one of two ways. The first is to convert the keypad input to DTMF,
 and then convey that DTMF using a suitance encoding algorithm for it
 (such as PCMU). An alternative, and generally the preferred approach,
 is to transmit the keypad input using RFC 2833 [7], which provides an
 encoding mechanism for carrying keypad input within RTP.

 In this classic model, the user interface would run on a server in
 the IP network. It would perform speech recognition and DTMF
 recognition to derive the user intent, feed them through the user
 interface, and provide the result to an application.

3.4.2 Client Local

 An alternative model is for the entire user interface to reside on
 the telephone. The user interface can be a VoiceXML browser, running
 speech recognition on the microphone input, and feeding the keypad
 input directly into the script. As discussed above, the VoiceXML
 script could be rendered using text instead of voice, if the
 telephone had a textual display.

3.4.3 Flip-Flop

 A middle-ground approach is to flip back and forth between a
 client-local and client-remote user interface. Many voice
 applications are of the type which listen to the media stream and
 wait for some specific trigger that kicks off a more complex user
 interaction. The long pound in a pre-paid calling card application is
 one example. Another example is a conference recording application,
 where the user can press a key at some point in the call to begin
 recording. When the key is pressed, the user hears a whisper to
 inform them that recording has started.

 The ideal way to support such an application is to install a
 client-local user interface component that waits for the trigger to
 kick off the real interaction. Once the trigger is received, the
 application connects the user to a client-remote user interface that
 can play announements, collect more information, and so on.

 The benefit of flip-flopping between a client-local and client-remote
 user interface is cost. The client-local user interface will

https://datatracker.ietf.org/doc/html/rfc2833

Rosenberg Expires December 29, 2003 [Page 11]

Internet-Draft App Interaction Framework June 2003

 eliminate the need to send media streams into the network just to
 wait for the user to press the pound key on the keypad.

 The Keypad Markup Language (KPML) was designed to support exactly
 this kind of need [8]. It models the keypad on a phone, and allows an
 application to be informed when any sequence of keys have been
 pressed. However, KPML has no presentation component. Since user
 interfaces generally require a response to user input, the
 presentation will need to be done using a client-remote user
 interface that gets instantiated as a result of the trigger.

 It is tempting to use a hybrid model, where a prompt-and-collect
 application is implemented by using a client-remote user interface
 that plays the prompts, and a client-local user interface, described
 by KPML, that collects digits. However, this only complicates the
 application. Firstly, the keypad input will be sent to both the media
 stream and the KPML user interface. This requires the application to
 sort out which user inputs are duplicates, a process that is very
 complicated. Secondly, the primary benefit of KPML is to avoid having
 a media stream towards a user interface. However, there is already a
 media stream for the prompting, so there is no real savings.

Rosenberg Expires December 29, 2003 [Page 12]

Internet-Draft App Interaction Framework June 2003

4. Framework Overview

 In this framework, we use the term "SIP application" to refer to a
 broad set of functionality. A SIP application is a program running on
 a SIP-based element (such as a proxy or user agent) that provides
 some value-added function to a user or system administrator. SIP
 applications can execute on behalf of a caller, a called party, or a
 multitude of users at once.

 Each application has a number of instances that are executing at any
 given time. An instance represents a single execution path for an
 application. Each instance has a well defined lifecycle. It is
 established as a result of some event. That event can be a SIP event,
 such as the reception of a SIP INVITE request, or it can be a non-SIP
 event, such as a web form post or even a timer. Application instances
 also have a specific end time. Some instances have a lifetime that is
 coupled with a SIP transaction or dialog. For example, a proxy
 application might begin when an INVITE arrives, and terminate when
 the call is answered. Other applications have a lifetime that spans
 multiple dialogs or transactions. For example, a conferencing
 application instance may exist so long as there are any dialogs
 connected to it. When the last dialog terminates, the application
 instance terminates. Other applications have a liftime that is
 completely decoupled from SIP events.

 It is fundamental to the framework described here that multiple
 application instances may interact with a user during a single SIP
 transaction or dialog. Each instance may be for the same application,
 or different applications. Each of the applications may be completely
 independent, in that they may be owned by different providers, and
 may not be aware of each others existence. Similarly, there may be
 application instances interacting with the caller, and instances
 interacting with the callee, both within the same transaction or
 dialog.

 The first step in the interaction with the user is to instantiate one
 of more user interface components for the application instance. A
 user interface component is a single piece of the user interface that
 is defined by a logical flow that is not synchronously coupled with
 any other component. In other words, each component runs more or less
 independently.

 A user interface component can be instantiated in one of the user
 devices (for a client-local user interface), or within a network
 element (for a client-remote user interface). If a client-local user
 interface is to be used, the application needs to determine whether
 or not the user device is capable of supporting a client-local user
 interface, and in what format. In this framework, all client-local

Rosenberg Expires December 29, 2003 [Page 13]

Internet-Draft App Interaction Framework June 2003

 user interface components are described by a markup language. A
 markup language describes a logical flow of presentation of
 information to the user, collection of information from the user, and
 transmission of that information to an application. Examples of
 markup languages include HTML, WML, VoiceXML, the Keypad Markup
 Language (KPML) [8] and the Media Server Control Markup Language
 (MSCML) [9].

 The interface between the user interface component and the
 application is typically markup-language specific. For those markups
 which support rendering of information to a user, such as HTML, HTTP
 form POST operations are used. For those markups where no information
 is rendered to the user, the markup can play one of two roles. The
 first is called "one shot". In the one-shot role, the markup waits
 for a user to enter some information, and when they do, reports this
 event to the application. The application then does something, and
 the markup is no longer used. In the other modality, called
 "monitor", the markup stays permanently resident, and reports
 information back to an application continuously. However, the act of
 reporting information back to the application does not cause the
 installation of a new markup. In markups where one-shot or monitor
 modalities are used, a SIP MESSAGE request is used to report the
 status.

 To create a client-local user interface, the application passes the
 markup document (or a reference to it) in a SIP message to that
 client. The SIP message can be one explicitly generated by the
 application (in which case the application has to be a UA or B2BUA),
 or it can be placed in a SIP message that passes by (in which case
 the application can be running in a proxy).

 Client local user interface components are always associated with the
 dialog that the SIP message itself is associated with. Consequently,
 user interface components cannot be placed in messages that are not
 associated with a dialog.

 If a user interface component is to be instantiated in the network,
 there is no need to determine the capabilities of the device on which
 the user interface is instantiated. Presumably, it is on a device on
 which the application knows a UI can be created. However, the
 application does need to connect the user device to the user
 interface. This will require manipulation of media streams in order
 to establish that connection.

 Once a user interface component is created, the application needs to
 be able to change it, and to remove it. Finally, more advanced
 applications may require coupling between application components. The
 framework supports rudimentary capabilities there.

Rosenberg Expires December 29, 2003 [Page 14]

Internet-Draft App Interaction Framework June 2003

5. Client Local Interfaces

 One key component of this framework is support for client local user
 interfaces.

5.1 Discovering Capabilities

 A client local user interface can only be instantiated on a client if
 the user device has the capabilities needed to do so. Specifically,
 an application needs to know what markup languages, if any, are
 supported by the client. For example, does the client support HTML?
 VoiceXML? However, that information is not sufficient to determine if
 a client local user interface can be instantiated. In order to
 instantiate the user interface, the application needs to transfer the
 markup document to the client. There are two ways in which the markup
 document can be transferred. The application can send the client a
 URI which the client can use to fetch the markup, or the markup can
 be sent inline within the message. The application needs to know
 which of these modes are supported, and in the case of indirection,
 which URI schemes are supported to obtain the indirection.

 Many applications will need to know these capabilities at the time an
 application instance is first created. Since applications can be
 created through SIP requests or responses, SIP needs to provide a
 means to convey this information. This introduces several concrete
 requirements for SIP:

 REQ 1: A SIP request or response must be capable of conveying the set
 of markup languages supported by the UA that generated the request
 or response.

 REQ 2: A SIP request or response must be capable of indicating
 whether a UA can obtain markups inline, or through an indirection.
 In the case of indirection, the UA must be capable of indicating
 what URI schemes it supports.

5.2 Pushing an Initial Interface Component

 Once the application has determined that the UA is capable of
 supporting client local user interfaces, the next step is for the
 application to push an interface component to the user device.

 Generally, we anticipate that interface components will need to be
 created at various different points in a SIP session. Clearly, they
 will need to be pushed during an initial INVITE, in both responses
 (so as to place a component into the calling UA) and in the request
 (so as to place a component into the called UA). As an example, a

Rosenberg Expires December 29, 2003 [Page 15]

Internet-Draft App Interaction Framework June 2003

 conference recording application allows the users to record the media
 for the session at any time. The application would like to push an
 HTML user interface component to both the caller and callee at the
 time the call is setup, allowing either to record the session. The
 HTML component would have buttons to start and stop recording. To
 push the HTML component to the caller, it needs to be pushed in the
 200 OK (and possibly provisional response), and to push it to the
 callee, in the INVITE itself.

 To state the requirement more concretely:

 REQ 3: An application must be able to add a reference to, or an
 inline version of, a user interface component into any request or
 response that passes through or is emanated from that application.

 However, there will also be cases where the application needs to push
 a new interface component to a UA, but it is not as a result of any
 SIP message. As an example, a pre-paid calling card application will
 set a timer that determines how long the call can proceed, given the
 availability of funds in the user's account. When the timer fires,
 the application would like to push a new interface component to the
 calling UA, allowing them to click to add more funds.

 In this case, there is no message already in transit that can be used
 as a vehicle for pushing a user interface component. This requires
 that applications can generate their own messages to push a new
 component to a UA:

 REQ 4: A UA application must be able to send a SIP message to the UA
 at the other end of the dialog, asking it to create a new
 interface component.

 In all cases, the information passed from the application to the UA
 must include more than just the interface component itself (or a
 reference to it). The user must be able to decide whether or not it
 wants to proceed with this application. To make that determination,
 the user must have information about the application. Specifically,
 it will need the name of the application, and an identifier of the
 owner or administrator for the application. As an example, a typical
 name would be "Prepaid Calling Card" and the owner could be
 "voiceprovider.com".

 REQ 5: Any user interface component passed to a client (either inline
 or through a reference) must also include markup meta-data,
 including a human readable name of the application, and an
 identifier of the owner of the application.

 Clearly, there are security implications. The user will need to

Rosenberg Expires December 29, 2003 [Page 16]

Internet-Draft App Interaction Framework June 2003

 verify the identity of the application owner, and be sure that the
 user interface component is not being replayed, that is, it actually
 belongs with this specific SIP message.

 REQ 6: It must be possible for the client to validate the
 authenticity and integrity of the markup document (or its
 reference) and its associated meta-data. It must be possible for
 the client to verify that the information has not been replayed
 from a previous SIP message.

 If the user decides not to execute the user interface component, it
 simply discards it. There is no explicit requirement for the user to
 be able to inform the application that the component was discarded.
 Effectively, the application will think that the component was
 executed, but that the user never entered any information.

5.3 Updating an Interface Component

 Once a user interface component has been created on a client, it can
 be updated in two ways. The first way is the "normal" path inherent
 to that component. The client enters some data, the user interface
 transfers the information to the application (typically through
 HTTP), and the result of that transfer brings a new markup document
 describing an updated interface. This is referred to as a synchronous
 update, since it is synchronized with user interaction.

 However, synchronous updates are not sufficient for many
 applications. Frequently, the interface will need to be updated
 asynchronously by the application, without an explicit user action. A
 good example of this is, once again, the pre-paid calling card
 application. The application might like to update the user interface
 when the timer runs out on the call. This introduces several
 requirements:

 REQ 7: It must be possible for an application to asynchronously push
 an update to an existing user interface component, either in a
 message that was already in transit, or by generating a new
 message.

 REQ 8: It must be possible for the client to associate the new
 interface component with the one that it is supposed to replace,
 so that the old one can be removed.

 Unfortunately, pushing of application components introduces a race
 condition. What if the user enters data into the old component,
 causing an HTTP request to the application, while an update of that
 component is in progress? The client will get an interface component
 in the HTTP response, and also get the new one in the SIP message.

Rosenberg Expires December 29, 2003 [Page 17]

Internet-Draft App Interaction Framework June 2003

 Which one does the client use? There needs to be a way in which to
 properly order the components:

 REQ 9: It must be possible for the client to relatively order user
 interface updates it receives as the result of synchronous and
 asynchronous messaging.

5.4 Terminating an Interface Component

 User interface components have a well defined lifetime. They are
 created when the component is first pushed to the client. User
 interface components are always associated with the SIP dialog on
 which they were pushed. As such, their lifetime is bound by the
 lifetime of the dialog. When the dialog ends, so does the interface
 component.

 This rule applies to early dialogs as well. If a user interface
 component is passed in a provisional response to INVITE, and a
 separate branch eventually answers the call, the component terminates
 with the arrival of the 2xx. That's because the early dialog itself
 terminates with the arrival of the 2xx.

 However, there are some cases where the application would like to
 terminate the user interface component before its natural termination
 point. To do this, the application pushes a "null" update to the
 client. This is an update that replaces the existing user interface
 component with nothing.

 REQ 10: It must be possible for an application to terminate a user
 interface component before its natural expiration.

 The user can also terminate the user interface component. However,
 there is no explicit signaling required in this case. The component
 is simply dismissed. To the application, it appears as if the user
 has simply ceased entering data.

Rosenberg Expires December 29, 2003 [Page 18]

Internet-Draft App Interaction Framework June 2003

6. Client Remote Interfaces

 As an alternative to, or in conjunction with client local user
 interfaces, an application can make use of client remote user
 interfaces. These user interfaces can execute co-resident with the
 application itself (in which case no standardized interfaces between
 the UI and the application need to be used), or it can run
 separately. This framework assumes that the user interface runs on a
 host that has a sufficient trust relationship with the application.
 As such, the means for instantiating the user interface is not
 considered here.

 The primary issue is to connect the user device to the remote user
 interface. Doing so requires the manipulation of media streams
 between the client and the user interface. Such manipulation can only
 be done by user agents. There are two types of user agent
 applications within this framework - originating/terminating
 applications, and intermediary applications.

6.1 Originating and Terminating Applications

 Originating and terminating applications are applications which are
 themselves the originator or the final recipient of a SIP invitation.
 They are "pure" user agent applications - not back-to-back user
 agents. The classic example of such an application is an interactive
 voice response (IVR) application, which is typically a terminating
 application. Its a terminating application because the user
 explicitly calls it; i.e., it is the actual called party. An example
 of an originating application is a wakeup call application, which
 calls a user at a specified time in order to wake them up.

 Because originating and terminating applications are a natural
 termination point of the dialog, manipulation of the media session by
 the application is trivial. Traditional SIP techniques for adding and
 removing media streams, modifying codecs, and changing the address of
 the recipient of the media streams, can be applied. Similarly, the
 application can direclty authenticate itself to the user through S/
 MIME, since it is the peer UA in the dialog.

6.2 Intermediary Applications

 Intermediary application are, at the same time, more common than
 originating/terminating applications, and more complex. Intermediary
 applications are applications that are neither the actual caller or
 called party. Rather, they represent a "third party" that wishes to
 interact with the user. The classic example is the ubiquitous
 pre-paid calling card application.

Rosenberg Expires December 29, 2003 [Page 19]

Internet-Draft App Interaction Framework June 2003

 In order for the intermediary application to add a client remote user
 interface, it needs to manipulate the media streams of the user agent
 to terminate on that user interface. This also introduces a
 fundamental feature interaction issue. Since the intermediary
 application is not an actual participant in the call, how does the
 user interact with the intermediary application, and its actual peer
 in the dialog, at the same time? This is discussed in more detail in

Section 7.

Rosenberg Expires December 29, 2003 [Page 20]

Internet-Draft App Interaction Framework June 2003

7. Inter-Application Feature Interaction

 The inter-application feature interaction problem is inherent to
 stimulus signaling. Whenever there are multiple applications, there
 are multiple user interfaces. When the user provides an input, to
 which user interface is the input destined? That question is the
 essence of the inter-application feature interaction problem.

 Inter-application feature interaction is not an easy problem to
 resolve. For now, we consider separately the issues for client-local
 and client-remote user interface components.

7.1 Client Local UI

 When the user interface itself resides locally on the client device,
 the feature interaction problem is actually much simpler. The end
 device knows explicitly about each application, and therefore can
 present the user with each one separately. When the user provides
 input, the client device can determine to which user interface the
 input is destined. The user interface to which input is destined is
 referred to as the application in focus, and the means by which the
 focused application is selected is called focus determination.

 Generally speaking, focus determination is purely a local operation.
 In the PC universe, focus determination is provided by window
 managers. Each application does not know about focus, it merely
 receives the user input that has been targeted to it when its in
 focus. This basic concept applies to SIP-based applications as well.

 Focus determination will frequently be trivial, depending on the user
 interface type. Consider a user that makes a call from a PC. The call
 passes through a pre-paid calling card application, and a call
 recording application. Both of these wish to interact with the user.
 Both push an HTML-based user interface to the user. On the PC, each
 user interface would appear as a separate window. The user interacts
 with the call recording application by selecting its window, and with
 the pre-paid calling card application by selecting its window. Focus
 determination is literally provided by the PC window manager. It is
 clear to which application the user input is targeted.

 As another example, consider the same two applications, but on a
 "smart phone" that has a set of buttons, and next to each button, an
 LCD display that can provide the user with an option. This user
 interface can be represented using the Wireless Markup Language
 (WML).

 The phone would allocate some number of buttons to each application.
 The prepaid calling card would get one button for its "hangup"

Rosenberg Expires December 29, 2003 [Page 21]

Internet-Draft App Interaction Framework June 2003

 command, and the recording application would get one for its "start/
 stop" command. The user can easily determine which application to
 interact with by pressing the appropriate button. Pressing a button
 determines focus and provides user input, both at the same time.

 Unfortunately, not all devices will have these advanced displays. A
 PSTN gateway, or a basic IP telephone, may only have a 12-key keypad.
 The user interfaces for these devices are provided through the Keypad
 Markup Language (KPML). Considering once again the feature
 interaction case above, the pre-paid calling card application and the
 call recording application would both pass a KPML document to the
 device. When the user presses a button on the keypad, to which
 document does the input apply? The user interface does not allow the
 user to select. A user interface where the user cannot provide focus
 is called a focusless user interface. This is quite a hard problem to
 solve. This framework does not make any explicit normative
 recommendation, but concludes that the best option is to send the
 input to both user interfaces unless the markup in one interface has
 indicated that it should be suppressed from others. This is a
 sensible choice by analogy - its exactly what the existing circuit
 switched telephone network will do. It is an explicit non-goal to
 provide a better mechanism for feature interaction resolution than
 the PSTN on devices which have the same user interface as they do on
 the PSTN. Devices with better displays, such as PCs or screen phones,
 can benefit from the capabilities of this framework, allowing the
 user to determine which application they are interacting with.

 Indeed, when a user provides input on a focusless device, the input
 must be passed to all client local user interfaces, AND all client
 remote user interfaces, unless the markup tells the UI to suppress
 the media. In the case of KPML, key events are passed to remote user
 interfaces by encoding them in RFC 2833 [7]. Of course, since a
 client cannot determine if a media stream terminates in a remote user
 interface or not, these key events are passed in all audio media
 streams unless the "Q" digit is used to suppress.

7.2 Client-Remote UI

 When the user interfaces run remotely, the determination of focus can
 be much, much harder. There are many architectures that can be
 deployed to handle the interaction. None are ideal. However, all are
 beyond the scope of this specification.

https://datatracker.ietf.org/doc/html/rfc2833

Rosenberg Expires December 29, 2003 [Page 22]

Internet-Draft App Interaction Framework June 2003

8. Intra Application Feature Interaction

 An application can instantiate a multiplicity of user interface
 components. For example, a single application can instantiate two
 separate HTML components and one WML component. Furthermore, an
 application can instantiate both client local and client remote user
 interfaces.

 The feature interaction issues between these components within the
 same application are less severe. If an application has multiple
 client user interface components, their interaction is resolved
 identically to the inter-application case - through focus
 determination. However, the problems in focusless user interfaces
 (such as a keypad) generally won't exist, since the application can
 generate user interfaces which do not overlap in their usage of an
 input.

 The real issue is that the optimal user experience frequently
 requires some kind of coupling between the differing user interface
 components. This is a classic problem in multi-modal user interfaces,
 such as those described by Speech Application Language Tags (SALT).
 As an example, consider a user interface where a user can either
 press a labeled button to make a selection, or listen to a prompt,
 and speak the desired selection. Ideally, when the user presses the
 button, the prompt should cease immediately, since both of them were
 targeted at collecting the same information in parallel. Such
 interactions are best handled by markups which natively support such
 interactions, such as SALT, and thus require no explicit support from
 this framework.

Rosenberg Expires December 29, 2003 [Page 23]

Internet-Draft App Interaction Framework June 2003

9. Examples

 TODO.

Rosenberg Expires December 29, 2003 [Page 24]

Internet-Draft App Interaction Framework June 2003

10. Security Considerations

 There are many security considerations associated with this
 framework. It allows applications in the network to instantiate user
 interface components on a client device. Such instantiations need to
 be from authenticated applications, and also need to be authorized to
 place a UI into the client. Indeed, the stronger requirement is
 authorization. It is not so important to know that name of the
 provider of the application, but rather, that the provider is
 authorized to instantiate components.

 Generally, an application should be considered authorized if it was
 an application that was legitimately part of the call setup path.
 With this definition, authorization can be enforced using the sips
 URI scheme when the call is initiated.

Rosenberg Expires December 29, 2003 [Page 25]

Internet-Draft App Interaction Framework June 2003

11. Contributors

 This document was produced as a result of discussions amongst the
 application interaction design team. All members of this team
 contributed significantly to the ideas embodied in this document. The
 members of this team were:

 Eric Burger
 Cullen Jennings
 Robert Fairlie-Cuninghame

Rosenberg Expires December 29, 2003 [Page 26]

Internet-Draft App Interaction Framework June 2003

Informative References

 [1] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M. and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [2] McGlashan, S., Lucas, B., Porter, B., Rehor, K., Burnett, D.,
 Carter, J., Ferrans, J. and A. Hunt, "Voice Extensible Markup
 Language (VoiceXML) Version 2.0", W3C CR CR-voicexml20-20030220,
 February 2003.

 [3] Day, M., Rosenberg, J. and H. Sugano, "A Model for Presence and
 Instant Messaging", RFC 2778, February 2000.

 [4] Rosenberg, J., "A Framework for Conferencing with the Session
 Initiation Protocol",

draft-ietf-sipping-conferencing-framework-00 (work in progress),
 May 2003.

 [5] Rosenberg, J., Schulzrinne, H. and P. Kyzivat, "Caller
 Preferences and Callee Capabilities for the Session Initiation
 Protocol (SIP)", draft-ietf-sip-callerprefs-08 (work in
 progress), March 2003.

 [6] Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson,
 "RTP: A Transport Protocol for Real-Time Applications", RFC

1889, January 1996.

 [7] Schulzrinne, H. and S. Petrack, "RTP Payload for DTMF Digits,
 Telephony Tones and Telephony Signals", RFC 2833, May 2000.

 [8] Burger, E., "Keypad Markup Language (KPML)",
draft-burger-sipping-kpml-02 (work in progress), July 2003.

 [9] Dyke, J., Burger, E. and A. Spitzer, "Media Server Control
 Markup Language (MSCML) and Protocol", draft-vandyke-mscml-02
 (work in progress), July 2003.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc2778
https://datatracker.ietf.org/doc/html/draft-ietf-sipping-conferencing-framework-00
https://datatracker.ietf.org/doc/html/draft-ietf-sip-callerprefs-08
https://datatracker.ietf.org/doc/html/rfc1889
https://datatracker.ietf.org/doc/html/rfc1889
https://datatracker.ietf.org/doc/html/rfc2833
https://datatracker.ietf.org/doc/html/draft-burger-sipping-kpml-02
https://datatracker.ietf.org/doc/html/draft-vandyke-mscml-02

Rosenberg Expires December 29, 2003 [Page 27]

Internet-Draft App Interaction Framework June 2003

Author's Address

 Jonathan Rosenberg
 dynamicsoft
 600 Lanidex Plaza
 Parsippany, NJ 07054
 US

 Phone: +1 973 952-5000
 EMail: jdrosen@dynamicsoft.com
 URI: http://www.jdrosen.net

Rosenberg Expires December 29, 2003 [Page 28]

http://www.jdrosen.net

Internet-Draft App Interaction Framework June 2003

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

https://datatracker.ietf.org/doc/html/bcp11

Rosenberg Expires December 29, 2003 [Page 29]

Internet-Draft App Interaction Framework June 2003

 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Rosenberg Expires December 29, 2003 [Page 30]

