
SIPPING J. Rosenberg
Internet-Draft Cisco Systems
Expires: April 25, 2007 October 22, 2006

Requirements for Management of Overload in the Session Initiation
Protocol

draft-rosenberg-sipping-overload-reqs-02

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 25, 2007.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 Overload occurs in Session Initiation Protocol (SIP) networks when
 proxies and user agents have insuffient resources to complete the
 processing of a request. SIP provides limited support for overload
 handling through its 503 response code, which tells an upstream
 element that it is overloaded. However, numerous problems have been
 identified with this mechanism. This draft summarizes the problems
 with the existing 503 mechanism, and provides some requirements for a
 solution.

Rosenberg Expires April 25, 2007 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Overload Requirements October 2006

Table of Contents

1. Introduction . 3
2. Causes of Overload . 3
3. Current SIP Mechanisms . 5
4. Problems with the Mechanism 5
4.1. Load Amplification . 5
4.2. Underutilization . 9
4.3. The Off/On Retry-After Problem 9
4.4. Ambiguous Usages . 10

5. Solution Requirements . 10
6. Simulation Model . 13
6.1. Modeling the Network 13
6.2. Modeling the User Agents 14
6.3. Modeling the Proxies 16
6.4. Model Parameter Values 17

7. Security Considerations 18
8. IANA Considerations . 18
9. Acknowledgements . 18
10. Informative References . 19

 Author's Address . 20
 Intellectual Property and Copyright Statements 21

Rosenberg Expires April 25, 2007 [Page 2]

Internet-Draft Overload Requirements October 2006

1. Introduction

 Overload occurs in Session Initiation Protocol (SIP) [1] networks
 when proxies and user agencies have insuffient resources to complete
 the processing of a request or a response. SIP provides limited
 support for overload handling through its 503 response code, which
 tells an upstream element that it is overloaded. However, numerous
 problems have been identified with this mechanism.

 This draft describes the general problem of SIP overload, and then
 reviews the current SIP mechanisms for dealing with overload. It
 then explains some of the problems with these mechanisms. Finally,
 the document provides a set of requirements for fixing these
 problems.

2. Causes of Overload

 Overload occurs when an element, such as a SIP user agent or proxy,
 has insufficient resources to keep up with the volume of traffic it
 is receiving. Resources include all of the capabilities of the
 element used to process a request, including CPU processing, memory,
 I/O, or disk resources. It can also include external resources, such
 as a database or DNS server. Overload can occur for many reasons,
 including:

 Poor Capacity Planning: SIP networks need to be designed with
 sufficient numbers of servers, hardware, disks, and so on, in
 order to meet the needs of the subscribers they are expected to
 serve. Capacity planning is the process of determining these
 needs. It is based on the number of expected subscribers and the
 types of flows they are expected to use. If this work is not done
 properly, the network may have insufficient capacity to handle
 predictable usages, including regular usages and predictably high
 ones (such as high voice calling volumes on Mothers Day).

 Dependency Failures: A SIP element can become overloaded because a
 resource on which it is dependent has failed, greatly reducing its
 actual capacity. As such, even minimal traffic might cause the
 server to go into overload. Examples of such dependency failures
 include DNS servers, databases, disks and network interfaces.

 Component Failures: A SIP element can become overloaded when it is a
 member of a cluster of servers which each share the load of
 traffic, and one or more of the other members in the cluster fail.
 In this case, the remaining elements take over the work of the
 failed elements. Normally, capacity planning takes such failures
 into account, and servers are typically run with enough spare

Rosenberg Expires April 25, 2007 [Page 3]

Internet-Draft Overload Requirements October 2006

 capacity to handle failure of another element. However, unusual
 failure conditions can cause many elements to fail at once. This
 is often the case with software failures, where a bad packet or
 bad database entry hits the same bug in a set of elements in a
 cluster.

 Avalanche Restart: One of the most troubling sources of overload is
 avalanche restart. This happens when a large number of clients
 all simultaneously attempt to connect to the network with a SIP
 registration. Avalanche restart can be caused by several events.
 One is the "Manhattan Reboots" scenario, where there is a power
 failure in a large metropolitan area, such as Manhattan. When
 power is restored, all of the SIP phones, whether in PCs or
 standalone devices, simultaneously power on and begin booting.
 They will all then connect to the network and register, causing a
 flood of SIP REGISTER messages. Another cause of avalanche
 restart is failure of a large network connection, for example, the
 access router for an enterprise. When it fails, SIP clients will
 detect the failure rapidly using the mechanisms in [4]. When
 connectivity is restored, this is detected, and clients re-
 REGISTER, all within a short time period. Another source of
 avalanche restart is failure of a proxy server. If clients had
 all connected to the server with TCP, its failure will be
 detected, followed by re-connection and re-registration to another
 server. Note that [4] does provide some remedies to this case.

 Flash Crowds: A flash crowd occurs when an extremely large number of
 users all attempt to simultaneously make a call. One example of
 how this can happen is a television commercial that advertises a
 number to call to receive a free gift. If the gift is compelling
 and many people see the ad, many calls can be simultaneously made
 to the same number. This can send the system into overload.

 Unfortunately, the overload problem tends to compound itself. When a
 network goes into overload, this can frequently cause failures of the
 elements that are trying to process the traffic. This causes even
 more load on the remaining elements. Furthermore, during load, the
 overall capacity of functional elements goes down, since much of
 their resources are spent just rejecting or treating load that they
 cannot actually process. In addition, overload tends to cause SIP
 messages to delayed or be lost, which causes retransmissions to be
 sent, further increasing the amount of work in the network. This
 compounding factor can produce substantial multipliers on the load in
 the system. Indeed, with as many as 7 retransmits of an INVITE
 request prior to timeout, overload can multiply the already-heavy
 message volume by as much as seven!

Rosenberg Expires April 25, 2007 [Page 4]

Internet-Draft Overload Requirements October 2006

3. Current SIP Mechanisms

 SIP provides very basic support for overload. It defines the 503
 response code, which is sent by an element that is overloaded. RFC

3261 defines it thusly:

 The server is temporarily unable to process the request due to a
 temporary overloading or maintenance of the server. The server MAY
 indicate when the client should retry the request in a Retry-After
 header field. If no Retry-After is given, the client MUST act as if
 it had received a 500 (Server Internal Error) response.

 A client (proxy or UAC) receiving a 503 (Service Unavailable) SHOULD
 attempt to forward the request to an alternate server. It SHOULD NOT
 forward any other requests to that server for the duration specified
 in the Retry-After header field, if present.

 Servers MAY refuse the connection or drop the request instead of
 responding with 503 (Service Unavailable).

 The objective is to provide a mechanism to move the work of the
 overloaded server to another server, so that the request can be
 processed. The Retry-After header field, when present, is meant to
 allow a server to tell an upstream element to back off for a period
 of time, so that the overloaded server can work through its backlog
 of work.

RFC3261 also instructs proxies to not forward 503 responses upstream,
 at SHOULD NOT strength. This is to avoid the upstream server of
 mistakingly concluding that the proxy is overloaded, when in fact the
 problem was an element further downstream.

4. Problems with the Mechanism

 At the surface, the 503 mechanism seems workable. Unfortunately,
 this mechanism has had numerous problems in actual deployment. These
 problems are described here.

4.1. Load Amplification

 The principal problem with the 503 mechanism is that it tends to
 substantially amplify the load in the network when the network is
 overloaded, causing further escalation of the problem and introducing
 the very real possibility of congestive collapse. Consider the
 topology in Figure 2.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261

Rosenberg Expires April 25, 2007 [Page 5]

Internet-Draft Overload Requirements October 2006

 +------+
 > | |
 / | S1 |
 / | |
 / +------+
 /
 /
 /
 /
 +------+ / +------+
 --------> | |/ | |
 | P1 |---------> | S2 |
 --------> | |\ | |
 +------+ \ +------+
 \
 \
 \
 \
 \
 \ +------+
 \ | |
 > | S3 |
 | |
 +------+

 Figure 2

 Proxy P1 receives SIP requests from many sources, and acts solely as
 a load balancer, proxying the requests to servers S1, S2 and S3 for
 processing. The input load increases to the point where all three
 servers become overloaded. Server S1, when it receives its next
 request, generates a 503. However, because the server is loaded, it
 might take some time to generate the 503, causing request
 retransmissions which further increase the work on S1. When the 503
 is received by P1, it retries the request on S2. S2 is also
 overloaded, and eventually generates a 503, but in the interim is
 also hit with many retransmits. P1 once again tries another server,
 this time S3, which also eventually rejects it with a, but only after
 many retransmits of the request.

 Thus, the processing of this request, which ultimately failed,
 involved four SIP transactions, each of which involved many
 retransmissions - up to 7. Thus, under unloaded conditions, a single
 request from a client would generate one request (to S1, S2 or S3)
 and two responses. How, a single request from the client, before
 timing out, could generate as many as 18 requests and as many
 responses! Each server had to expend resources to process these
 message. Thus, more messages and more work were sent into the

Rosenberg Expires April 25, 2007 [Page 6]

Internet-Draft Overload Requirements October 2006

 network at the point at which the elements became overloaded. The
 503 mechanism works well when a single element is overloaded. But,
 when the problem is overall network load, the 503 mechanism actually
 generates more messages and more work for all servers, ultimately
 resulting in the rejection of the request anyway.

 The problem becomes amplified further if one considers proxies
 upstream from P1, as shown in Figure 3.

Rosenberg Expires April 25, 2007 [Page 7]

Internet-Draft Overload Requirements October 2006

 +------+
 > | | <
 / | S1 | \\
 / | | \\
 / +------+ \\
 / \
 / \\
 / \\
 / \
 +------+ / +------+ +------+
 | | / | | | |
 | P1 | ---------> | S2 |<----------| P2 |
 | | \ | | | |
 +------+ \ +------+ +------+
 ^ \ / ^
 \ \ // /
 \ \ // /
 \ \ // /
 \ \ / /
 \ \ +------+ // /
 \ \ | | // /
 \ > | S3 | < /
 \ | | /
 \ +------+ /
 \ /
 \ /
 \ /
 \ /
 \ /
 \ /
 \ /
 \ /
 +------+
 | |
 | PA |
 | |
 +------+
 ^ ^
 | |
 | |

 Figure 3

 Here, proxy PA receives requests, and sends these to proxies P1 or
 P2. P1 and P2 both load balance across S1 through S3. Assuming
 again S1 through S3 are all overloaded, a request arrives at PA,
 which tries P1 first. P1 tries S1, S2 and then S3, and each
 transaction resulting in many request retransmits. Since P1 is

Rosenberg Expires April 25, 2007 [Page 8]

Internet-Draft Overload Requirements October 2006

 unable to eventually process the request, it rejects it. However,
 since all of its downstream dependencies are busy, it decides to send
 a 503. This propagates to PA, which tries P2, which tries S1 through
 S3 again, resulting in a 503 once more. Thus, in this case, we have
 doubled the number of SIP transactions and overall work in the
 network compared to the previous case.

4.2. Underutilization

 Interestingly, there are also examples of deployments where the
 network capacity was greatly reduced as a consequence of the overload
 mechanism. Consider again Figure 2. Unfortunately, RFC 3261 is
 unclear on the scope of a 503. When it is received by P1, does the
 proxy cease sending requests to that IP address? To the hostname?
 To the URI? Some implementations have chosen the hostname as the
 scope. When the hostname for a URI points to an SRV record in the
 DNS, which, in turn, maps to a cluster of downstream servers (S1, S2
 and S3 in the example), a 503 response from a single one of them will
 make the proxy believe that the entire cluster is overloaded.
 Consequently, proxy P1 will cease sending any traffic to any element
 in the cluster, even though there are elements in the cluster that
 are underutilized.

4.3. The Off/On Retry-After Problem

 The Retry-After mechanism allows a server to tell an upstream element
 to stop sending traffic for a period of time. The work that would
 have otherwise been sent to that server is instead sent to another
 server. The mechanism is an all-or-nothing technique. A server can
 turn of all traffic towards it, or none of it. There is nothing in
 between. This tends to cause highly oscillatory behavior under even
 mild overload. Consider a proxy P1 which is balancing requests
 between two servers S1 and S2. The input load just reaches the point
 where both S1 and S2 are at 100% capacity. A request arrives at P1,
 and is sent to S1. S1 rejects this request with a 503 , and decides
 to use Retry-After to clear its backlog. P1 stops sending all
 traffic to S1. Now, S2 gets traffic, but it is seriously overloaded
 - at 200% capacity! It decides to reject a request with a 503 and a
 Retry-After, which now forces P1 to reject all traffic until S1's
 Retry-After timer expires. At that point, all load is shunted back
 to S1, which reaches overload, and the cycle repeats.

 Its important to observe that this problem is only observed for
 servers where there are a small number of upstream elements sending
 it traffic, as is the case in these examples. If a proxy was
 accessed by a large number of clients, each of which sends a small
 amount of traffic, the 503 mechanism with Retry-After is quite
 effective when utilized with a subset of the clients. This is

https://datatracker.ietf.org/doc/html/rfc3261

Rosenberg Expires April 25, 2007 [Page 9]

Internet-Draft Overload Requirements October 2006

 because spreading the 503 out amongst the clients has the effect of
 providing the proxy more fine-grained controls on the amount of work
 it receives.

4.4. Ambiguous Usages

 Unfortunately, the specific instances under which a server is to send
 a 503 are ambiguous. The result is that implementations generate 503
 for many reasons, only some of which are related to actual overload.
 For example, RFC 3398 [2], which specifies interworking from SIP to
 ISUP, defines the usage of 503 when the gateway receives certain ISUP
 cause codes from downstream switches. In these cases, the gateway
 has ample capacity; its just that this specific request could not be
 processed because of a downstream problem.

 This causes two problems. Firstly, during periods of overload, it
 exacerbates the problems above because it causes additional 503 to be
 fed into the system, causing further work to be generated in
 conditions of overload. The other problem is that it becomes hard
 for an upstream element to know whether to retry when a 503 is
 received. There are classes of failures where trying on another
 server won't help, since the reason for the failure was that a common
 downstream resource is unavailable. For example, if servers S1 and
 S2 share a database, and the database fails. A request sent to S1
 will result in a 503, but retrying on S2 won't help since the same
 database is unavailable.

5. Solution Requirements

 In this section, we propose requirements for an overload control
 mechanism for SIP which addresses these problems.

 REQ 1: The overload mechanism shall strive to maintain the overall
 useful throughput (taking into consideration the quality-of-
 service needs of the using applications) of a SIP at reasonable
 levels even when the incoming load on the network is far in excess
 of its capacity. The overall throughput under load is the
 ultimate measure of the value of an overload control mechanism.

 REQ 2: When a single network element fails, goes into overload, or
 suffers from reduced processing capacity (possibly due to
 unavailability of other resources, such as databases or DNS), the
 mechanism should strive to limit the impact of this on other
 elements in the network. This helps to prevent a small-scale
 failure from becoming a widespread outage.

https://datatracker.ietf.org/doc/html/rfc3398

Rosenberg Expires April 25, 2007 [Page 10]

Internet-Draft Overload Requirements October 2006

 REQ 3: The mechanism should seek to minimize the amount of
 configuration required in order to work. For example, it is
 better to avoid needing to configure a server with its SIP message
 throughput, as these kinds of quantities are hard to determine.

 REQ 4: The mechanism must be capable of dealing with elements which
 do not support it, so that a network can consist of a mix of ones
 which do and don't support it. In other words, the mechanism
 should not work only in environments where all elements support
 it. It is reasonable to assume that it works better in such
 environments, of course. Ideally, there should be incremental
 improvements in overall network throughput as increasing numbers
 of elements in the network support the mechanism.

 REQ 5: The mechanism should not assume that it will only be deployed
 in environments with completely trusted elements. It should seek
 to operate as effectively as possible in environments where other
 elements are malicious, including preventing malicious elements
 from obtaining more than a fair share of service.

 REQ 6: The mechanism shall provide a way to unambiguously inform an
 upstream element that it is overloaded. Any response codes,
 header fields, or other protocol machinery utilized for this
 purpose shall be used exclusively for overload handling, and not
 be used to indicate other failure conditions. This is meant to
 avoid some of the problems that have arisen from the reuse of the
 503 response code for multiple purposes.

 REQ 7: The mechanism shall provide a way for an element to throttle
 the amount of traffic it receives from an upstream element. This
 throttling shall be graded, so that it is not all or nothing as
 with the current 503 mechanism. This recognizes the fact that
 "overload" is not a binary state, and there are degrees of
 overload.

 REQ 8: The mechanism shall ensure that, when a request has been
 rejected from an overloaded element, it is not sent to another
 element suffering from greater levels of load. This requirement
 derives from REQ 1.

 REQ 9: That a request has been rejected from an overloaded element
 shall not unduly restrict the ability of that request to be
 submitted to and processed by an element that is less overloaded.
 This requirement derives from REQ 1.

Rosenberg Expires April 25, 2007 [Page 11]

Internet-Draft Overload Requirements October 2006

 REQ 10: The mechanism should support servers that receive requests
 from a large number of different upstream elements, where the set
 of upstream elements is not enumerable.

 REQ 11: The mechanism should support servers that receive requests
 from a finite set of upstream elements, where the set of upstream
 elements is enumerable.

 REQ 12: The mechanism should work between servers in different
 domains.

 REQ 13: The mechanism must not dictate a specific algorithm for
 prioritizing the processing of work within a proxy during times of
 overload. It must permit a proxy to prioritize requests based on
 any local policy, so that certain ones (such as a call for
 emergency services or a call with a specific value of of the
 Resource-Priority header field [3]) are processed ahead of others.

 REQ 14: The mechanism should provide unambigous directions to clients
 on when they should retry a request, and when they should not.
 This especially applies to TCP connection establishment and SIP
 registrations, in order to mitigate against avalanche restart.

 REQ 15: In cases where a network element fails, is so overloaded that
 it cannot process messages, or cannot communicate due to a network
 failure or network partition, it will not be able to provide
 explicit indications of its levels of congestion. The mechanism
 should properly function in these cases.

 REQ 16: The mechanism should attempt to minimize the overhead of the
 overload control messaging.

 REQ 17: The overload mechanism must not provide an avenue for
 malicious attack.

 REQ 18: The overload mechanism should be unambiguous about whether a
 load indication applies to a specific IP address, host, or URI, so
 that an upstream element can determine the load of the entity to
 which a request is to be sent.

 REQ 19: The specification for the overload mechanism should give
 guidance on which message types might be desirable to process over
 others during times of overload, based on SIP-specific
 considerations. For example, it may be more beneficial to process
 a SUBSCRIBE refresh with Expires of zero than a SUBSCRIBE refresh
 with a non-zero expiration, since the former reduces the overall
 amount of load on the element, or to process re-INVITEs over new
 INVITEs.

Rosenberg Expires April 25, 2007 [Page 12]

Internet-Draft Overload Requirements October 2006

 REQ 20: In a mixed environment of elements that do and do not
 implement the overload mechanism, no disproportionate benefit
 shall accrue to the users or operators of the elements that do not
 implement the mechanism.

6. Simulation Model

 In order to analyze the problem and compare solutions, it is useful
 to have a baseline simulation model that can be used. This section
 defines such a model. It is broken up into a model of the network, a
 model of the user agents, a model of a proxy, and a set of ranges and
 proposed defaults for the simulation parameters.

6.1. Modeling the Network

 +-----------+ +-----------+
 | | | |
 | Home | | Home |
 | Proxy | | Proxy |
 | | | |
 +-----------+ +-----------+
 / \ / \
 / \ / \
 / \ / \
 +-----------+ +-----------+ +-----------+
 | | | | | |
 | Edge | | Edge | | Edge |
 | Proxy | | Proxy | | Proxy |
 | | | | | |
 +-----------+ +-----------+ +-----------+
 / / \ \
 / / \ \
 / / \ \
 / / \ \
 / / \ \
 +--------+ +--------+ +--------+ +--------+
 | | | | | | | |
 | UA | | UA | | UA | | UA |
 | | | | | | | |
 +--------+ +--------+ +--------+ +--------+

 Figure 4

 Figure 4 depicts a network diagram for the purposes of simulation.
 There are a large number of user agents in the system (Nua). There
 are a smaller number of edge proxies (Nep), which sit between the UA

Rosenberg Expires April 25, 2007 [Page 13]

Internet-Draft Overload Requirements October 2006

 and the rest of the SIP network. The user agents send SIP requests
 towards the edge proxies, which perform functions such as SIP
 compression and authentication, and then forward them towards the
 home proxies. There are fewer home proxies (Nhp). These proxies
 process the request, including functions such as authorization,
 accounting, and call routing. They then forward requests back
 towards one of the edge proxies, which in turn deliver the request to
 a UA.

 For purposes of simulation, it is assumed that each UA is associated
 with two of the edge proxies, randomly selected amongst the set of
 Nep edge proxies. The UA will send all of its requests towards one
 of the two unless that one has failed, in which case it sends its
 traffic to the other one. Each edge proxy forwards requests it
 receives from the UA to one of the Nhp home proxies. We assume the
 requests are distributed uniformly amongst the proxies. Similarly,
 messages sent from the home proxy to the edge proxies are distributed
 uniformly amongst them. For purposes of simulation, the edge proxy
 delivers a request received from an edge proxy to one of the user
 agents arbitrarily.

 It is assumed that there is a single network between the UA and the
 edge proxies, and one between the edge proxies and the home proxy.
 Each network is modeled as a queue. When an element sends a request,
 it is enqueued, or dropped if the queue is full. The queue is
 serviced with at a fixed bandwidth. A packet is delivered to the
 recipient once the packet could have been completely sent, based on
 its size and the service rate. The service rate on the network
 between the UAs and edge proxies is serviced at a rate of Baccess
 bits per second, and between the edge proxies and home proxy, at
 Bcore bits per second. The size of the buffers are Saccess and Score
 for the UA to edge and edge to core networks, respectively.

 In addition, when a packet is enqueued in the access network, there
 is a Placcess probability that it is immediately discarded. In the
 core network, this probability is Plcore. This models packet loss
 due to other factors besides the presence of the SIP traffic being
 modeled with the queue.

 Though the network model is simple, and more complex models including
 different queueing and service disciplines is possible, the impact of
 the network on the system is a secondary phenomenon and thus a
 detailed model is not required.

6.2. Modeling the User Agents

 Each user agent initiates SIP transactions based on a poisson
 distribution with arrival rate Rnew. The model considers only the

Rosenberg Expires April 25, 2007 [Page 14]

Internet-Draft Overload Requirements October 2006

 "busy hour" and consequently a high value for Rnew (discussed below)
 is used. The transaction can either be an INVITE transaction or a
 non-INVITE transaction. Whether it is INVITE or non-INVITE is a
 boolean variability with probability of INVITE being equal to Pinv.
 Consequently the arrival rate of INVITE transactions from one client
 is Poisson with arrival rate Rnew*Pinv.

 When a transaction is initiated, the request is sent using UDP. This
 requires the client to retransmit the request and process responses
 based on the state machine in Section 17.1 of RFC 3261. Each UDP
 packet, whether request or response, is assumed to be Spkt bytes in
 size. It is assumed that each UA has infinite processing capacity,
 and can therefore instantly send a request when required by the state
 machine, or process a response instantly when one is received. The
 model does not try to capture overload of the end points themselves.

 The model does not try to more accurately capture network traffic
 loads through means of standardized call setup and hold times,
 registration times and so on. Though useful, the impact of this is
 also considered to be secondary on the overload processing, which is
 more strongly coupled to the mix of transaction types and overall
 load.

https://datatracker.ietf.org/doc/html/rfc3261#section-17.1

Rosenberg Expires April 25, 2007 [Page 15]

Internet-Draft Overload Requirements October 2006

6.3. Modeling the Proxies

 |
 |
 |
 +-----------------------|-------------------------+
 | | |
 | V |
 | | | |
 | |----| |
 | |----| |
 | |----| |
 | +----+ |
 | | |
 | V |
 | +-------------+ |
 | | | |
 | | | |
 | | Parse and | |
 | | PreProcess | |
 | | | |
 | | | |
 | +-------------+ |
 | | |
 | V |
 | | | | | | | |
 | |----| |----| |----| |
 | |----| |----| |----| |
 | |----| |----| |----| |
 | +----+ +----+ +----+ |
 | | |
 | V |
 | +-------------+ |
 | | | |
 | | | |
 | | Process | |
 | | | |
 | | | |
 | | | |
 | +-------------+ |
 | | |
 | | |
 +------------------------|------------------------+
 |
 |
 V

Rosenberg Expires April 25, 2007 [Page 16]

Internet-Draft Overload Requirements October 2006

 Figure 5

 A model for a proxy server is shown in Figure 5. Packets, whether
 they are requests or responses, arrive at the top and are enqueued.
 The queue is of depth Spin bits. If the queue is full the incoming
 packet is discarded. The queue is serviced by a component which
 performs pre-processing and parsing on the message. This pre-
 processing will determine the type of the message and determine a
 classification used for enqueueing in a second queue. This allows
 the model to accommodate prioritization algorithms which might prefer
 responses over requests, or high priority requests over normal ones.
 The proxy is modeled as having a fixed capacity of Ch units/s for the
 home proxy and Ce for the edge proxy. This cost models the overall
 CPU capacity which can be spread across the various tasks in the
 system. To choose a useful normalization for the value, the cost of
 processing an INVITE request is modeled as one unit. The pre-
 processing component can service requests at a cost of Cpreq units
 per request, and responses at a cost of Cpres units per response. It
 is also capable of rejecting requests in cases of overload, at a cost
 of Cprej units per request. A request will get rejected if the
 second level queue is full.

 There can be one or more second level queues, each for a different
 type of message which is to be handled separately. In the simplest
 case there is only one such queue. The depth of each queue is Srin.
 All of these queues are serviced by a processing component. When
 processing a request, this component implements the server
 transaction described in Section 17.2 of RFC 3261, followed by the
 client side transaction in Section 17.1 of RFC 3261. When processing
 a response, this component implements the client transaction in

Section 17.1 of RFC 3261 followed by the server transaction in
Section 17.2 of RFC 3261. This model assumes there is no forking; a

 request is delivered to a single next-hop destination as described
 above.

 The processing component can process requests at a cost of Ris units
 per INVITE request, Rnis units per non-INVITE request, Rirs units per
 INVITE response, and Rnirs units per non-INVITE response.

6.4. Model Parameter Values

 The table below enumerates the parameters of the model, gives typical
 ranges, and suggests a default value.

https://datatracker.ietf.org/doc/html/rfc3261#section-17.2
https://datatracker.ietf.org/doc/html/rfc3261#section-17.1
https://datatracker.ietf.org/doc/html/rfc3261#section-17.1
https://datatracker.ietf.org/doc/html/rfc3261#section-17.2

Rosenberg Expires April 25, 2007 [Page 17]

Internet-Draft Overload Requirements October 2006

 Parameter Name Unit Range Default
 --
 Nua none 10e3-50e6 100e3
 Nep none 1-100 4
 Nhp none 1-50 2
 Baccess bits/s 100e6-100e9 100e6
 Bcore bits/s 100e6-100e9 1e9
 Saccess bits 1e3 - 1e6 2e3
 Score bits 1e3 - 1e6 2e3
 Placcess none 0-1 .02
 Plcore none 0-1 0
 Pinv none 0-1 .4
 Spkit bytes 1e2-10e3 8e2
 Rnew 1/hour .1 - 10 4
 Spin bits 1e3-1e6 2e3
 Ch units 10-10e3 500
 Ce unites 10-10e3 500
 Cpreq units 1e-3 - 1 1e-2
 Cpres units 1e-3 - 1 1e-2
 Cprej units 1e-3 - 1 8e-2
 Srin bits 1e3-1e6 2e3
 Ris units 1 1
 Rnis units 1e-2 to 1e1 1e-1
 Rirs units 1e-4 to 1 1e-2
 Rnirs units 1e-4 to 1 1e-2

 Figure 6

7. Security Considerations

 Like all protocol mechanisms, a solution for overload handling must
 prevent against malicious inside and outside attacks. This document
 includes requirements for such security functions.

8. IANA Considerations

 None.

9. Acknowledgements

 The author would like to thank Steve Mayer, Mouli Chandramouli,
 Robert Whent, Mark Perkins, Joe Stone, Vijay Gurbani, Steve Norreys,
 and Dale Worley for their contributions to this document.

Rosenberg Expires April 25, 2007 [Page 18]

Internet-Draft Overload Requirements October 2006

10. Informative References

 [1] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [2] Camarillo, G., Roach, A., Peterson, J., and L. Ong, "Integrated
 Services Digital Network (ISDN) User Part (ISUP) to Session
 Initiation Protocol (SIP) Mapping", RFC 3398, December 2002.

 [3] Schulzrinne, H. and J. Polk, "Communications Resource Priority
 for the Session Initiation Protocol (SIP)", RFC 4412,
 February 2006.

 [4] Jennings, C. and R. Mahy, "Managing Client Initiated Connections
 in the Session Initiation Protocol (SIP)",

draft-ietf-sip-outbound-04 (work in progress), June 2006.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3398
https://datatracker.ietf.org/doc/html/rfc4412
https://datatracker.ietf.org/doc/html/draft-ietf-sip-outbound-04

Rosenberg Expires April 25, 2007 [Page 19]

Internet-Draft Overload Requirements October 2006

Author's Address

 Jonathan Rosenberg
 Cisco Systems
 600 Lanidex Plaza
 Parsippany, NJ 07054
 US

 Phone: +1 973 952-5000
 Email: jdrosen@cisco.com
 URI: http://www.jdrosen.net

Rosenberg Expires April 25, 2007 [Page 20]

http://www.jdrosen.net

Internet-Draft Overload Requirements October 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Rosenberg Expires April 25, 2007 [Page 21]

