
SIPPING                                                     J. Rosenberg
Internet-Draft                                             Cisco Systems
Expires: April 25, 2007                                 October 22, 2006

Requirements for Management of Overload in the Session Initiation
Protocol

draft-rosenberg-sipping-overload-reqs-02

Status of this Memo

   By submitting this Internet-Draft, each author represents that any
   applicable patent or other IPR claims of which he or she is aware
   have been or will be disclosed, and any of which he or she becomes
   aware will be disclosed, in accordance with Section 6 of BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

   The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

   This Internet-Draft will expire on April 25, 2007.

Copyright Notice

   Copyright (C) The Internet Society (2006).

Abstract

   Overload occurs in Session Initiation Protocol (SIP) networks when
   proxies and user agents have insuffient resources to complete the
   processing of a request.  SIP provides limited support for overload
   handling through its 503 response code, which tells an upstream
   element that it is overloaded.  However, numerous problems have been
   identified with this mechanism.  This draft summarizes the problems
   with the existing 503 mechanism, and provides some requirements for a
   solution.
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1.  Introduction

   Overload occurs in Session Initiation Protocol (SIP) [1] networks
   when proxies and user agencies have insuffient resources to complete
   the processing of a request or a response.  SIP provides limited
   support for overload handling through its 503 response code, which
   tells an upstream element that it is overloaded.  However, numerous
   problems have been identified with this mechanism.

   This draft describes the general problem of SIP overload, and then
   reviews the current SIP mechanisms for dealing with overload.  It
   then explains some of the problems with these mechanisms.  Finally,
   the document provides a set of requirements for fixing these
   problems.

2.  Causes of Overload

   Overload occurs when an element, such as a SIP user agent or proxy,
   has insufficient resources to keep up with the volume of traffic it
   is receiving.  Resources include all of the capabilities of the
   element used to process a request, including CPU processing, memory,
   I/O, or disk resources.  It can also include external resources, such
   as a database or DNS server.  Overload can occur for many reasons,
   including:

   Poor Capacity Planning: SIP networks need to be designed with
      sufficient numbers of servers, hardware, disks, and so on, in
      order to meet the needs of the subscribers they are expected to
      serve.  Capacity planning is the process of determining these
      needs.  It is based on the number of expected subscribers and the
      types of flows they are expected to use.  If this work is not done
      properly, the network may have insufficient capacity to handle
      predictable usages, including regular usages and predictably high
      ones (such as high voice calling volumes on Mothers Day).

   Dependency Failures: A SIP element can become overloaded because a
      resource on which it is dependent has failed, greatly reducing its
      actual capacity.  As such, even minimal traffic might cause the
      server to go into overload.  Examples of such dependency failures
      include DNS servers, databases, disks and network interfaces.

   Component Failures: A SIP element can become overloaded when it is a
      member of a cluster of servers which each share the load of
      traffic, and one or more of the other members in the cluster fail.
      In this case, the remaining elements take over the work of the
      failed elements.  Normally, capacity planning takes such failures
      into account, and servers are typically run with enough spare
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      capacity to handle failure of another element.  However, unusual
      failure conditions can cause many elements to fail at once.  This
      is often the case with software failures, where a bad packet or
      bad database entry hits the same bug in a set of elements in a
      cluster.

   Avalanche Restart: One of the most troubling sources of overload is
      avalanche restart.  This happens when a large number of clients
      all simultaneously attempt to connect to the network with a SIP
      registration.  Avalanche restart can be caused by several events.
      One is the "Manhattan Reboots" scenario, where there is a power
      failure in a large metropolitan area, such as Manhattan.  When
      power is restored, all of the SIP phones, whether in PCs or
      standalone devices, simultaneously power on and begin booting.
      They will all then connect to the network and register, causing a
      flood of SIP REGISTER messages.  Another cause of avalanche
      restart is failure of a large network connection, for example, the
      access router for an enterprise.  When it fails, SIP clients will
      detect the failure rapidly using the mechanisms in [4].  When
      connectivity is restored, this is detected, and clients re-
      REGISTER, all within a short time period.  Another source of
      avalanche restart is failure of a proxy server.  If clients had
      all connected to the server with TCP, its failure will be
      detected, followed by re-connection and re-registration to another
      server.  Note that [4] does provide some remedies to this case.

   Flash Crowds: A flash crowd occurs when an extremely large number of
      users all attempt to simultaneously make a call.  One example of
      how this can happen is a television commercial that advertises a
      number to call to receive a free gift.  If the gift is compelling
      and many people see the ad, many calls can be simultaneously made
      to the same number.  This can send the system into overload.

   Unfortunately, the overload problem tends to compound itself.  When a
   network goes into overload, this can frequently cause failures of the
   elements that are trying to process the traffic.  This causes even
   more load on the remaining elements.  Furthermore, during load, the
   overall capacity of functional elements goes down, since much of
   their resources are spent just rejecting or treating load that they
   cannot actually process.  In addition, overload tends to cause SIP
   messages to delayed or be lost, which causes retransmissions to be
   sent, further increasing the amount of work in the network.  This
   compounding factor can produce substantial multipliers on the load in
   the system.  Indeed, with as many as 7 retransmits of an INVITE
   request prior to timeout, overload can multiply the already-heavy
   message volume by as much as seven!
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3.  Current SIP Mechanisms

   SIP provides very basic support for overload.  It defines the 503
   response code, which is sent by an element that is overloaded.  RFC

3261 defines it thusly:

      The server is temporarily unable to process the request due to a
      temporary overloading or maintenance of the server.  The server MAY
      indicate when the client should retry the request in a Retry-After
      header field.  If no Retry-After is given, the client MUST act as if
      it had received a 500 (Server Internal Error) response.

      A client (proxy or UAC) receiving a 503 (Service Unavailable) SHOULD
      attempt to forward the request to an alternate server.  It SHOULD NOT
      forward any other requests to that server for the duration specified
      in the Retry-After header field, if present.

      Servers MAY refuse the connection or drop the request instead of
      responding with 503 (Service Unavailable).

   The objective is to provide a mechanism to move the work of the
   overloaded server to another server, so that the request can be
   processed.  The Retry-After header field, when present, is meant to
   allow a server to tell an upstream element to back off for a period
   of time, so that the overloaded server can work through its backlog
   of work.

RFC3261 also instructs proxies to not forward 503 responses upstream,
   at SHOULD NOT strength.  This is to avoid the upstream server of
   mistakingly concluding that the proxy is overloaded, when in fact the
   problem was an element further downstream.

4.  Problems with the Mechanism

   At the surface, the 503 mechanism seems workable.  Unfortunately,
   this mechanism has had numerous problems in actual deployment.  These
   problems are described here.

4.1.  Load Amplification

   The principal problem with the 503 mechanism is that it tends to
   substantially amplify the load in the network when the network is
   overloaded, causing further escalation of the problem and introducing
   the very real possibility of congestive collapse.  Consider the
   topology in Figure 2.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261
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                                         +------+
                                       > |      |
                                      /  |  S1  |
                                     /   |      |
                                    /    +------+
                                   /
                                  /
                                 /
                                /
                      +------+ /         +------+
            --------> |      |/          |      |
                      |  P1  |---------> |  S2  |
            --------> |      |\          |      |
                      +------+ \         +------+
                                \
                                 \
                                  \
                                   \
                                    \
                                     \   +------+
                                      \  |      |
                                       > |  S3  |
                                         |      |
                                         +------+

   Figure 2

   Proxy P1 receives SIP requests from many sources, and acts solely as
   a load balancer, proxying the requests to servers S1, S2 and S3 for
   processing.  The input load increases to the point where all three
   servers become overloaded.  Server S1, when it receives its next
   request, generates a 503.  However, because the server is loaded, it
   might take some time to generate the 503, causing request
   retransmissions which further increase the work on S1.  When the 503
   is received by P1, it retries the request on S2.  S2 is also
   overloaded, and eventually generates a 503, but in the interim is
   also hit with many retransmits.  P1 once again tries another server,
   this time S3, which also eventually rejects it with a, but only after
   many retransmits of the request.

   Thus, the processing of this request, which ultimately failed,
   involved four SIP transactions, each of which involved many
   retransmissions - up to 7.  Thus, under unloaded conditions, a single
   request from a client would generate one request (to S1, S2 or S3)
   and two responses.  How, a single request from the client, before
   timing out, could generate as many as 18 requests and as many
   responses!  Each server had to expend resources to process these
   message.  Thus, more messages and more work were sent into the
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   network at the point at which the elements became overloaded.  The
   503 mechanism works well when a single element is overloaded.  But,
   when the problem is overall network load, the 503 mechanism actually
   generates more messages and more work for all servers, ultimately
   resulting in the rejection of the request anyway.

   The problem becomes amplified further if one considers proxies
   upstream from P1, as shown in Figure 3.
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                                +------+
                              > |      | <
                             /  |  S1  |  \\
                            /   |      |    \\
                           /    +------+      \\
                          /                     \
                         /                       \\
                        /                          \\
                       /                             \
            +------+  /         +------+           +------+
            |      | /          |      |           |      |
            |  P1  | ---------> |  S2  |<----------|  P2  |
            |      | \          |      |           |      |
            +------+  \         +------+           +------+
                ^      \                             / ^
                 \      \                          // /
                  \      \                       //  /
                   \      \                    //   /
                    \      \                  /    /
                     \      \   +------+    //    /
                      \      \  |      |  //     /
                       \      > |  S3  | <      /
                        \       |      |       /
                         \      +------+      /
                          \                  /
                           \                /
                            \              /
                             \            /
                              \          /
                               \        /
                                \      /
                                 \    /
                                +------+
                                |      |
                                |  PA  |
                                |      |
                                +------+
                                 ^   ^
                                 |   |
                                 |   |

   Figure 3

   Here, proxy PA receives requests, and sends these to proxies P1 or
   P2.  P1 and P2 both load balance across S1 through S3.  Assuming
   again S1 through S3 are all overloaded, a request arrives at PA,
   which tries P1 first.  P1 tries S1, S2 and then S3, and each
   transaction resulting in many request retransmits.  Since P1 is
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   unable to eventually process the request, it rejects it.  However,
   since all of its downstream dependencies are busy, it decides to send
   a 503.  This propagates to PA, which tries P2, which tries S1 through
   S3 again, resulting in a 503 once more.  Thus, in this case, we have
   doubled the number of SIP transactions and overall work in the
   network compared to the previous case.

4.2.  Underutilization

   Interestingly, there are also examples of deployments where the
   network capacity was greatly reduced as a consequence of the overload
   mechanism.  Consider again Figure 2.  Unfortunately, RFC 3261 is
   unclear on the scope of a 503.  When it is received by P1, does the
   proxy cease sending requests to that IP address?  To the hostname?
   To the URI?  Some implementations have chosen the hostname as the
   scope.  When the hostname for a URI points to an SRV record in the
   DNS, which, in turn, maps to a cluster of downstream servers (S1, S2
   and S3 in the example), a 503 response from a single one of them will
   make the proxy believe that the entire cluster is overloaded.
   Consequently, proxy P1 will cease sending any traffic to any element
   in the cluster, even though there are elements in the cluster that
   are underutilized.

4.3.  The Off/On Retry-After Problem

   The Retry-After mechanism allows a server to tell an upstream element
   to stop sending traffic for a period of time.  The work that would
   have otherwise been sent to that server is instead sent to another
   server.  The mechanism is an all-or-nothing technique.  A server can
   turn of all traffic towards it, or none of it.  There is nothing in
   between.  This tends to cause highly oscillatory behavior under even
   mild overload.  Consider a proxy P1 which is balancing requests
   between two servers S1 and S2.  The input load just reaches the point
   where both S1 and S2 are at 100% capacity.  A request arrives at P1,
   and is sent to S1.  S1 rejects this request with a 503 , and decides
   to use Retry-After to clear its backlog.  P1 stops sending all
   traffic to S1.  Now, S2 gets traffic, but it is seriously overloaded
   - at 200% capacity!  It decides to reject a request with a 503 and a
   Retry-After, which now forces P1 to reject all traffic until S1's
   Retry-After timer expires.  At that point, all load is shunted back
   to S1, which reaches overload, and the cycle repeats.

   Its important to observe that this problem is only observed for
   servers where there are a small number of upstream elements sending
   it traffic, as is the case in these examples.  If a proxy was
   accessed by a large number of clients, each of which sends a small
   amount of traffic, the 503 mechanism with Retry-After is quite
   effective when utilized with a subset of the clients.  This is

https://datatracker.ietf.org/doc/html/rfc3261
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   because spreading the 503 out amongst the clients has the effect of
   providing the proxy more fine-grained controls on the amount of work
   it receives.

4.4.  Ambiguous Usages

   Unfortunately, the specific instances under which a server is to send
   a 503 are ambiguous.  The result is that implementations generate 503
   for many reasons, only some of which are related to actual overload.
   For example, RFC 3398 [2], which specifies interworking from SIP to
   ISUP, defines the usage of 503 when the gateway receives certain ISUP
   cause codes from downstream switches.  In these cases, the gateway
   has ample capacity; its just that this specific request could not be
   processed because of a downstream problem.

   This causes two problems.  Firstly, during periods of overload, it
   exacerbates the problems above because it causes additional 503 to be
   fed into the system, causing further work to be generated in
   conditions of overload.  The other problem is that it becomes hard
   for an upstream element to know whether to retry when a 503 is
   received.  There are classes of failures where trying on another
   server won't help, since the reason for the failure was that a common
   downstream resource is unavailable.  For example, if servers S1 and
   S2 share a database, and the database fails.  A request sent to S1
   will result in a 503, but retrying on S2 won't help since the same
   database is unavailable.

5.  Solution Requirements

   In this section, we propose requirements for an overload control
   mechanism for SIP which addresses these problems.

   REQ 1: The overload mechanism shall strive to maintain the overall
      useful throughput (taking into consideration the quality-of-
      service needs of the using applications) of a SIP at reasonable
      levels even when the incoming load on the network is far in excess
      of its capacity.  The overall throughput under load is the
      ultimate measure of the value of an overload control mechanism.

   REQ 2: When a single network element fails, goes into overload, or
      suffers from reduced processing capacity (possibly due to
      unavailability of other resources, such as databases or DNS), the
      mechanism should strive to limit the impact of this on other
      elements in the network.  This helps to prevent a small-scale
      failure from becoming a widespread outage.

https://datatracker.ietf.org/doc/html/rfc3398
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   REQ 3: The mechanism should seek to minimize the amount of
      configuration required in order to work.  For example, it is
      better to avoid needing to configure a server with its SIP message
      throughput, as these kinds of quantities are hard to determine.

   REQ 4: The mechanism must be capable of dealing with elements which
      do not support it, so that a network can consist of a mix of ones
      which do and don't support it.  In other words, the mechanism
      should not work only in environments where all elements support
      it.  It is reasonable to assume that it works better in such
      environments, of course.  Ideally, there should be incremental
      improvements in overall network throughput as increasing numbers
      of elements in the network support the mechanism.

   REQ 5: The mechanism should not assume that it will only be deployed
      in environments with completely trusted elements.  It should seek
      to operate as effectively as possible in environments where other
      elements are malicious, including preventing malicious elements
      from obtaining more than a fair share of service.

   REQ 6: The mechanism shall provide a way to unambiguously inform an
      upstream element that it is overloaded.  Any response codes,
      header fields, or other protocol machinery utilized for this
      purpose shall be used exclusively for overload handling, and not
      be used to indicate other failure conditions.  This is meant to
      avoid some of the problems that have arisen from the reuse of the
      503 response code for multiple purposes.

   REQ 7: The mechanism shall provide a way for an element to throttle
      the amount of traffic it receives from an upstream element.  This
      throttling shall be graded, so that it is not all or nothing as
      with the current 503 mechanism.  This recognizes the fact that
      "overload" is not a binary state, and there are degrees of
      overload.

   REQ 8: The mechanism shall ensure that, when a request has been
      rejected from an overloaded element, it is not sent to another
      element suffering from greater levels of load.  This requirement
      derives from REQ 1.

   REQ 9: That a request has been rejected from an overloaded element
      shall not unduly restrict the ability of that request to be
      submitted to and processed by an element that is less overloaded.
      This requirement derives from REQ 1.
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   REQ 10: The mechanism should support servers that receive requests
      from a large number of different upstream elements, where the set
      of upstream elements is not enumerable.

   REQ 11: The mechanism should support servers that receive requests
      from a finite set of upstream elements, where the set of upstream
      elements is enumerable.

   REQ 12: The mechanism should work between servers in different
      domains.

   REQ 13: The mechanism must not dictate a specific algorithm for
      prioritizing the processing of work within a proxy during times of
      overload.  It must permit a proxy to prioritize requests based on
      any local policy, so that certain ones (such as a call for
      emergency services or a call with a specific value of of the
      Resource-Priority header field [3]) are processed ahead of others.

   REQ 14: The mechanism should provide unambigous directions to clients
      on when they should retry a request, and when they should not.
      This especially applies to TCP connection establishment and SIP
      registrations, in order to mitigate against avalanche restart.

   REQ 15: In cases where a network element fails, is so overloaded that
      it cannot process messages, or cannot communicate due to a network
      failure or network partition, it will not be able to provide
      explicit indications of its levels of congestion.  The mechanism
      should properly function in these cases.

   REQ 16: The mechanism should attempt to minimize the overhead of the
      overload control messaging.

   REQ 17: The overload mechanism must not provide an avenue for
      malicious attack.

   REQ 18: The overload mechanism should be unambiguous about whether a
      load indication applies to a specific IP address, host, or URI, so
      that an upstream element can determine the load of the entity to
      which a request is to be sent.

   REQ 19: The specification for the overload mechanism should give
      guidance on which message types might be desirable to process over
      others during times of overload, based on SIP-specific
      considerations.  For example, it may be more beneficial to process
      a SUBSCRIBE refresh with Expires of zero than a SUBSCRIBE refresh
      with a non-zero expiration, since the former reduces the overall
      amount of load on the element, or to process re-INVITEs over new
      INVITEs.
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   REQ 20: In a mixed environment of elements that do and do not
      implement the overload mechanism, no disproportionate benefit
      shall accrue to the users or operators of the elements that do not
      implement the mechanism.

6.  Simulation Model

   In order to analyze the problem and compare solutions, it is useful
   to have a baseline simulation model that can be used.  This section
   defines such a model.  It is broken up into a model of the network, a
   model of the user agents, a model of a proxy, and a set of ranges and
   proposed defaults for the simulation parameters.

6.1.  Modeling the Network

                      +-----------+    +-----------+
                      |           |    |           |
                      |   Home    |    |   Home    |
                      |  Proxy    |    |  Proxy    |
                      |           |    |           |
                      +-----------+    +-----------+
                        /      \        /     \
                       /        \      /       \
                      /          \    /         \
              +-----------+   +-----------+   +-----------+
              |           |   |           |   |           |
              |   Edge    |   |   Edge    |   |   Edge    |
              |  Proxy    |   |  Proxy    |   |  Proxy    |
              |           |   |           |   |           |
              +-----------+   +-----------+   +-----------+
                    /            /   \             \
                   /            /     \             \
                  /            /       \             \
                 /            /         \             \
                /            /           \             \
          +--------+    +--------+    +--------+    +--------+
          |        |    |        |    |        |    |        |
          |   UA   |    |   UA   |    |   UA   |    |   UA   |
          |        |    |        |    |        |    |        |
          +--------+    +--------+    +--------+    +--------+

   Figure 4

   Figure 4 depicts a network diagram for the purposes of simulation.
   There are a large number of user agents in the system (Nua).  There
   are a smaller number of edge proxies (Nep), which sit between the UA
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   and the rest of the SIP network.  The user agents send SIP requests
   towards the edge proxies, which perform functions such as SIP
   compression and authentication, and then forward them towards the
   home proxies.  There are fewer home proxies (Nhp).  These proxies
   process the request, including functions such as authorization,
   accounting, and call routing.  They then forward requests back
   towards one of the edge proxies, which in turn deliver the request to
   a UA.

   For purposes of simulation, it is assumed that each UA is associated
   with two of the edge proxies, randomly selected amongst the set of
   Nep edge proxies.  The UA will send all of its requests towards one
   of the two unless that one has failed, in which case it sends its
   traffic to the other one.  Each edge proxy forwards requests it
   receives from the UA to one of the Nhp home proxies.  We assume the
   requests are distributed uniformly amongst the proxies.  Similarly,
   messages sent from the home proxy to the edge proxies are distributed
   uniformly amongst them.  For purposes of simulation, the edge proxy
   delivers a request received from an edge proxy to one of the user
   agents arbitrarily.

   It is assumed that there is a single network between the UA and the
   edge proxies, and one between the edge proxies and the home proxy.
   Each network is modeled as a queue.  When an element sends a request,
   it is enqueued, or dropped if the queue is full.  The queue is
   serviced with at a fixed bandwidth.  A packet is delivered to the
   recipient once the packet could have been completely sent, based on
   its size and the service rate.  The service rate on the network
   between the UAs and edge proxies is serviced at a rate of Baccess
   bits per second, and between the edge proxies and home proxy, at
   Bcore bits per second.  The size of the buffers are Saccess and Score
   for the UA to edge and edge to core networks, respectively.

   In addition, when a packet is enqueued in the access network, there
   is a Placcess probability that it is immediately discarded.  In the
   core network, this probability is Plcore.  This models packet loss
   due to other factors besides the presence of the SIP traffic being
   modeled with the queue.

   Though the network model is simple, and more complex models including
   different queueing and service disciplines is possible, the impact of
   the network on the system is a secondary phenomenon and thus a
   detailed model is not required.

6.2.  Modeling the User Agents

   Each user agent initiates SIP transactions based on a poisson
   distribution with arrival rate Rnew.  The model considers only the
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   "busy hour" and consequently a high value for Rnew (discussed below)
   is used.  The transaction can either be an INVITE transaction or a
   non-INVITE transaction.  Whether it is INVITE or non-INVITE is a
   boolean variability with probability of INVITE being equal to Pinv.
   Consequently the arrival rate of INVITE transactions from one client
   is Poisson with arrival rate Rnew*Pinv.

   When a transaction is initiated, the request is sent using UDP.  This
   requires the client to retransmit the request and process responses
   based on the state machine in Section 17.1 of RFC 3261.  Each UDP
   packet, whether request or response, is assumed to be Spkt bytes in
   size.  It is assumed that each UA has infinite processing capacity,
   and can therefore instantly send a request when required by the state
   machine, or process a response instantly when one is received.  The
   model does not try to capture overload of the end points themselves.

   The model does not try to more accurately capture network traffic
   loads through means of standardized call setup and hold times,
   registration times and so on.  Though useful, the impact of this is
   also considered to be secondary on the overload processing, which is
   more strongly coupled to the mix of transaction types and overall
   load.

https://datatracker.ietf.org/doc/html/rfc3261#section-17.1


Rosenberg                Expires April 25, 2007                [Page 15]



Internet-Draft            Overload Requirements             October 2006

6.3.  Modeling the Proxies

                                    |
                                    |
                                    |
            +-----------------------|-------------------------+
            |                       |                         |
            |                       V                         |
            |                     |    |                      |
            |                     |----|                      |
            |                     |----|                      |
            |                     |----|                      |
            |                     +----+                      |
            |                        |                        |
            |                        V                        |
            |                 +-------------+                 |
            |                 |             |                 |
            |                 |             |                 |
            |                 |  Parse and  |                 |
            |                 |  PreProcess |                 |
            |                 |             |                 |
            |                 |             |                 |
            |                 +-------------+                 |
            |                        |                        |
            |                        V                        |
            |              |    |  |    |  |    |             |
            |              |----|  |----|  |----|             |
            |              |----|  |----|  |----|             |
            |              |----|  |----|  |----|             |
            |              +----+  +----+  +----+             |
            |                        |                        |
            |                        V                        |
            |                 +-------------+                 |
            |                 |             |                 |
            |                 |             |                 |
            |                 |   Process   |                 |
            |                 |             |                 |
            |                 |             |                 |
            |                 |             |                 |
            |                 +-------------+                 |
            |                        |                        |
            |                        |                        |
            +------------------------|------------------------+
                                     |
                                     |
                                     V
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   Figure 5

   A model for a proxy server is shown in Figure 5.  Packets, whether
   they are requests or responses, arrive at the top and are enqueued.
   The queue is of depth Spin bits.  If the queue is full the incoming
   packet is discarded.  The queue is serviced by a component which
   performs pre-processing and parsing on the message.  This pre-
   processing will determine the type of the message and determine a
   classification used for enqueueing in a second queue.  This allows
   the model to accommodate prioritization algorithms which might prefer
   responses over requests, or high priority requests over normal ones.
   The proxy is modeled as having a fixed capacity of Ch units/s for the
   home proxy and Ce for the edge proxy.  This cost models the overall
   CPU capacity which can be spread across the various tasks in the
   system.  To choose a useful normalization for the value, the cost of
   processing an INVITE request is modeled as one unit.  The pre-
   processing component can service requests at a cost of Cpreq units
   per request, and responses at a cost of Cpres units per response.  It
   is also capable of rejecting requests in cases of overload, at a cost
   of Cprej units per request.  A request will get rejected if the
   second level queue is full.

   There can be one or more second level queues, each for a different
   type of message which is to be handled separately.  In the simplest
   case there is only one such queue.  The depth of each queue is Srin.
   All of these queues are serviced by a processing component.  When
   processing a request, this component implements the server
   transaction described in Section 17.2 of RFC 3261, followed by the
   client side transaction in Section 17.1 of RFC 3261.  When processing
   a response, this component implements the client transaction in

Section 17.1 of RFC 3261 followed by the server transaction in
Section 17.2 of RFC 3261.  This model assumes there is no forking; a

   request is delivered to a single next-hop destination as described
   above.

   The processing component can process requests at a cost of Ris units
   per INVITE request, Rnis units per non-INVITE request, Rirs units per
   INVITE response, and Rnirs units per non-INVITE response.

6.4.  Model Parameter Values

   The table below enumerates the parameters of the model, gives typical
   ranges, and suggests a default value.

https://datatracker.ietf.org/doc/html/rfc3261#section-17.2
https://datatracker.ietf.org/doc/html/rfc3261#section-17.1
https://datatracker.ietf.org/doc/html/rfc3261#section-17.1
https://datatracker.ietf.org/doc/html/rfc3261#section-17.2
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   Parameter Name   Unit    Range               Default
   --------------------------------------------------------------------
   Nua             none     10e3-50e6           100e3
   Nep             none     1-100               4
   Nhp             none     1-50                2
   Baccess         bits/s   100e6-100e9         100e6
   Bcore           bits/s   100e6-100e9         1e9
   Saccess         bits     1e3 - 1e6           2e3
   Score           bits     1e3 - 1e6           2e3
   Placcess        none     0-1                 .02
   Plcore          none     0-1                 0
   Pinv            none     0-1                 .4
   Spkit           bytes    1e2-10e3            8e2
   Rnew            1/hour   .1 - 10             4
   Spin            bits     1e3-1e6             2e3
   Ch              units    10-10e3             500
   Ce              unites   10-10e3             500
   Cpreq           units    1e-3 - 1            1e-2
   Cpres           units    1e-3 - 1            1e-2
   Cprej           units    1e-3 - 1            8e-2
   Srin            bits     1e3-1e6             2e3
   Ris             units    1                   1
   Rnis            units    1e-2 to 1e1         1e-1
   Rirs            units    1e-4 to 1           1e-2
   Rnirs           units    1e-4 to 1           1e-2

   Figure 6

7.  Security Considerations

   Like all protocol mechanisms, a solution for overload handling must
   prevent against malicious inside and outside attacks.  This document
   includes requirements for such security functions.

8.  IANA Considerations

   None.
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