
SIPPING J. Rosenberg
Internet-Draft Cisco
Intended status: Best Current March 5, 2007
Practice
Expires: September 6, 2007

Identification of Communications Services in the Session Initiation
Protocol (SIP)

draft-rosenberg-sipping-service-identification-01

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on September 6, 2007.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 This document considers the problem of how SIP endpoints can support
 a multiplicity of distinct SIP services within the context of a
 single user agent. The principle problem to be addressed is that of
 dispatching of incoming requests to the right services, and how
 service contexts are matched up between calling and called parties.
 This document proposes the usage of service URN and service URI to

Rosenberg Expires September 6, 2007 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Service ID March 2007

 solve the problem.

Table of Contents

1. Introduction . 3
2. Terminology . 3
3. Problem Statement . 3
4. Concepts and Terminology 4
5. Requirements . 7
6. Overview of Operation . 8
7. UA Behavior . 9
7.1. Registration . 9
7.2. Publication . 10
7.3. Session Initiation . 10
7.4. Receipt of a Request 11

8. Proxy Behavior . 12
8.1. Request Targeting . 12
8.2. Application Invocation 12

9. Guidelines for Using Service URN 13
10. Guidelines on Namespace Structure 14
11. Security Considerations 14
12. IANA Considerations . 14
13. Example . 15
14. Acknowledgements . 17
15. References . 17
15.1. Normative References 17
15.2. Informational References 18

 Author's Address . 19
 Intellectual Property and Copyright Statements 20

Rosenberg Expires September 6, 2007 [Page 2]

Internet-Draft Service ID March 2007

1. Introduction

 The Session Initiation Protocol (SIP) [2] defines mechanisms for
 initiating and managing communications sessions between agents.
 These agents can be entities such as hardphones, softphones, or
 gateways to other networks, such as the PSTN. These agents are
 addressed by SIP URI, and in particular, a SIP Address-of-Record or
 AOR.

 However, in practice, the entities participating in a call can be
 more complicated. An agent might be inside of a cell phone,
 supporting traditional telephony, Push-To-Talk, and voice and data
 content as part of an interactive game. Furthermore, the servers
 within the network itself might provide additional functions, such as
 call screening or call recording. These functions are often referred
 to as 'services', 'features' or 'applications'. Their usage raises
 questions on how users invoke them, how they are identified, and how
 interoperability between them is provided.

Section 3 defines the problem in more detail. Section 4 defines
 concepts and terminology. Section 5 introduces requirements for the
 solution. Section 6 overviews the solution, and Section 7 defines
 detailed procedures for user agents, while Section 8 defines
 procedures for proxies.

2. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119
 [1] and indicate requirement levels for compliant STUN
 implementations.

3. Problem Statement

 Consider a device that allows the user to select two applications.
 One of these applications is a traditional telephony application,
 which lets the user make and receive phone calls using telephone
 numbers. The second application is a two-player chess game that
 utilizes voice commands to move pieces. When one player says "Queen
 to D7", the software on their phone recognizes this and moves the
 piece. At the same time, the user's voice is sent to the other
 player, where it is both rendered to the user, and interpreted
 locally in order to move the piece.

 If the user should make a call using the telephony application, the

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Rosenberg Expires September 6, 2007 [Page 3]

Internet-Draft Service ID March 2007

 result would be a SIP INVITE for a single voice media stream.
 Interestingly, if the user launches the game application, the same is
 true - the result would be a SIP INVITE for a single voice media
 stream. However, depending on which application the caller selected,
 the appropriate application at the called party must also be
 selected. It would be nonsensical for the user to invoke the
 telephony application and be connected to the gaming application on
 another user's device. The user interface for the gaming application
 would not function properly, and the overall experience would be
 poor. What is needed is some kind of way to differentiate these two
 applications.

 A similar problem arises in the invocation of outbound applications
 that reside in the network. Consider once more our user with the
 telephony and gaming application. The user wishes to make a
 telephony call, but wants the call to be recorded. The recording
 option is available on a call-by-call basis. The recording
 application itself resides on a server in the domain of the caller,
 and acts as a back-to-back user agent (B2BUA) in order to perform the
 call recording (there are alternative models involving the
 application interaction framework [9] and conferencing [12], but the
 specific mechanism is not relevant to the discussion here). When the
 user initiates the call, how do they signal to their outbound proxy
 that the call needs to pass through the recording application?

 In both cases, the problem at hand is the identification and
 invocation of applications which reside either on the endpoint (in
 the first example) or in the network (in the second example).

4. Concepts and Terminology

 The problem of identifying and invoking services within SIP is not a
 new one. The problem has been considered extensively in the context
 of presence. In particular, the presence data model for SIP [14]
 defines the concept of a service as one of the core notions that
 presence describes. Services are described in Section 3.3 of RFC

4479, which has this to say on the topic:

 3.3. Service

 Each presentity has access to a number of services. Each of these
 represents a point of reachability for communications that can be
 used to interact with the user. Examples of services are telephony
 (that is, traditional circuit-based telephone service), push-to-talk,
 instant messaging, Short Message Service (SMS), and Multimedia
 Message Service (MMS).

https://datatracker.ietf.org/doc/html/rfc4479
https://datatracker.ietf.org/doc/html/rfc4479

Rosenberg Expires September 6, 2007 [Page 4]

Internet-Draft Service ID March 2007

 It is difficult to give a precise definition for service. One
 reasonable approach is to model each software or hardware agent in
 the system as a service. If a user starts a softphone application on
 their PC, then that represents a service. If a user has a videophone
 device, then that represents another service. This is effectively a
 physical view of services. This definition, however, starts to fall
 apart when a service is spread across multiple software agents or
 devices. For example, a SIP URI representing an address-of-record
 can be routed to a softphone or a videophone, or both. In that case,
 one might attempt instead to define a service based on its address on
 the network. This definition also falls apart when modeling devices
 or applications that receive calls and dispatch them to different
 "helpers" based on potentially complex logic. For example, a
 cellular telephone might house multiple SIP applications, each of
 which can "register" different handlers based on the method or even
 body type of the request. Each of those applications or handlers can
 rightfully be considered a service, but it doesn't have an address on
 the network distinct from the others.

 Because of this inherent difficulty in precisely defining a service,
 the data model doesn't try to constrain what can be considered a
 service. Rather, anything can be considered a service so long as it
 exhibits a set of key properties defined by this model. In
 particular, each service is associated with characteristics that
 identify the nature and capabilities of that service, with reach
 information that indicates how to connect to the service, with status
 information representing the state of that service, and relative
 information that describes the ways in which that service relates to
 others associated with the presentity.

 As a consequence, in this model, services are not explicitly
 enumerated. There is no central registry where one finds identifiers
 for each service. Consequently, each service does not have a single
 "service" attribute with values such as "ptt" or "telephony". That
 doesn't mean that these consolidated monikers aren't useful; indeed,
 they represent an essential summary of what the service is. Such
 summarization is useful in creating icons that allow a user to choose
 one service over another. A watcher is free to create such
 summarization information from any of the information associated with
 a service. The reach information often provides valuable information
 for creating such a summarization. Oftentimes, the scheme of the URI
 is synonymous with the view of what a service is. An "sms" URI [14]
 clearly indicates SMS, for example. For some URIs, there may be many
 services available, for example, SIP or tel [15], in which case the
 scheme is less meaningful as a way of creating a summary. The reach
 information could also indicate that certain application software has
 to be invoked (such as a videogame), in which case that aspect of the
 reach information would be useful for generating an iconic

Rosenberg Expires September 6, 2007 [Page 5]

Internet-Draft Service ID March 2007

 representation of the game.

 Building upon this, we can model a user agent as containing a SIP
 processing layer ontop of which sit a number of different SIP
 services, as shown in Figure 2

 +---------------------------------+
 | |
 | +-------------+ +-------------+ |
 | | UI | | UI | |
 | +-------------+ +-------------+ |
 | +-------------+ +-------------+ |
 | | | | | |
 | | Service 1 | | Service 2 | |
 | | | | | |
 | +-------------+ +-------------+ |
 | +-----------------------------+ |
 | | | |
 | | SIP | |
 | | Layer | |
 | | | |
 | +-----------------------------+ |
 | |
 +---------------------------------+

 Physical Device

 Figure 2

 The role of the SIP layer is to parse incoming messages, handle the
 SIP state machinery for transactions and dialogs, and then dispatch
 request to the appropriate service. The dispatching operation is
 based on any number of criteria in the SIP message itself. For
 example, the method might be used to dispatch the request. A
 messaging application on the phone would be dispatched when a MESSAGE
 request arrives. Similarly, when a user interacts with the device,
 they would select a specific service, and then use that service to
 initiate communications. The service would then request the SIP
 layer to send an appropriate message, depending on what was needed.
 Each service has a user interface (UI) that dictates how it interacts
 with the user.

 SIP uses URI, and in particular, SIP URI, to identify resources
 within the system. The Address-of-Record, or AOR, identifies the
 user that is the originator or target of the request. The Globally
 Routable User Agent URI (GRUU) [4] identifies a specific instance of
 a user agent. In the model of Figure 2, there is still but one user

Rosenberg Expires September 6, 2007 [Page 6]

Internet-Draft Service ID March 2007

 agent, and thus a single GRUU. However, we have effectively
 introduced a layer of hierarchy into the system. Within a particular
 UA instance, there can be one or more service instances. Each
 service instance can be addressed by a URI. This URI is formed by
 adding a parameter, at the discretion of the UA, to the GRUU. The
 resulting URI is called a service instance URI.

 When a service spans multiple devices and multiple SIP UA instances,
 the aggregate set is represented by a service URI. Typically, a
 domain will need to construct such a URI, and bind it to the various
 service instances that can be reached through the service URI.

 In addition, each service may or may not be a well-known service. A
 well-known service is identified by a service URN [5]. The URN
 refers to the set of assumptions and processing requirements within
 the service layer that define how a request is processed. For
 example, a service URN of urn:service:games:voice-chess could be used
 to identify the voice chess application described in Section 3. In
 this case, the URN would need to be standardized, and there would be
 agreement that the "context" is that voice is interpreted by speech
 recognition for the purposes of performing chess moves, and a
 specific set of phrases would be agreed upon. It is also possible to
 have vendor specific services, which would be identified using a URN
 such as "urn:service:vnd:example.com:foobar", which refers to the
 foobar service produced by a specific vendor.

 It is extremely important to note that this name refers to the
 additional logic that is required in the processing of a SIP session
 in order for it to be successfully utilized. SIP assumes that the
 "normal" service is multimedia communications - the exchange of real
 time media between the users which generated and received the
 requests for the purpose of communications between humans or automata
 which act like a human. The chess example is more than this, because
 the media is additionally consumed by an automata that is looking to
 do specialized processing, and because the media is not primarily for
 human communication, its for controlling moves on a chess board.
 Because of this, a traditional communications applications has no
 well-known service associated with it.

5. Requirements

 REQ 1: It shall be possible for an incoming request to be dispatched
 to the correct service on a device.

Rosenberg Expires September 6, 2007 [Page 7]

Internet-Draft Service ID March 2007

 REQ 2: When multiple services reside on a single device, sharing a
 single SIP layer, it must not require multiple registrations.
 This is primarily a performance and overhead requirement.

 REQ 3: It shall be possible to support cases where sessions
 initiated from a particular service purposefully fail unless they
 can be connected to a matching service for the called party.

 REQ 4: It must be possible for services to "match" based on
 proprietary and well-known identifiers.

 REQ 5: It must be possible for a user to initiate a session without
 knowledge of any information about the recipient except for their
 AOR.

 REQ 6: The mechanism must allow a presence server to determine the
 services on the phone, without requiring advanced knowledge of
 those services.

 REQ 7: It must be possible to support cases where sessions initiated
 from a service on the caller side connect to a different service
 on the other side in cases where the session is meaningful when
 the notions of service on each side do not match.

6. Overview of Operation

 The proposed solution to the problem is relatively straightforward.

 The essential problem is that there are cases where a session cannot
 take place correctly unless the terminating party implements a
 certain piece of service logic. This is directly analagous to the
 case where a session cannot take place correctly unless the
 terminating party implements a certain SIP extension correctly; the
 problem is just occurring at a different layer in the stack based on
 the model of Figure 2. Consequently, the proposed solution is
 similar. The Require header field is utilized, and the option tag is
 just the service URN for the well-known service, suitably escaped.

 When a request with a Require header arrives at the home proxy of the
 UAS, the home proxy utilizes implicit preferences, as described in

RFC 3841 [3]. This will prefer routing of the request to contacts
 which have indicated support for those extensions. The UAS itself
 uses the Require header field to dispatch the request to the correct
 service instance.

 In addition, the user agents make use of UA loose routing [6] and
 GRUU [4], and add an implementation-specific parameter to their GRUU

https://datatracker.ietf.org/doc/html/rfc3841

Rosenberg Expires September 6, 2007 [Page 8]

Internet-Draft Service ID March 2007

 for each service instance on a device. This allows future out-of-
 dialog and mid-dialog requests to be targeted at the right service
 instance, and provides a simple mechanism for dispatch in the device,
 based entirely on the URI.

 When a UAC wants the request to be processed by an application prior
 to reaching the terminating proxy, it includes the service URN in
 Route headers that get appended to the route set for the request.
 For example, if a UA wants a call to be recorded, it would include a
 service URN like "urn:service:comm:recording" to the bottom-most
 Route header. This will cause an originating proxy to resolve the
 service URN to a URI for an application server, and then proxy the
 request there.

 In order to discover available services on a device, presence can be
 used. A UA would just SUBSCRIBE to the presence of the AOR, and get
 back a document that contains a service element for each service
 available for that user. The presence document includes the service
 URN for any well-known services (noting again that this is only
 needed when other information, such as method or media types, are
 insufficient to define the service). The service URN can then be
 used for creating summary information about the service. The URI
 present in the contact for that service is the service instance URI
 or service URI. The former is published by the UA to the network in
 a presence document, and the latter may be constructed by the network
 when composing documents together.

7. UA Behavior

7.1. Registration

 When a UA supports numerous services, it SHOULD generate a single
 registration representing the entire UA instance. The UA MUST
 utilize GRUU [4] and UA loose routing [6]. If any of the services on
 the UA are well-known services, the UA SHOULD include their URNs as
 option tags in the extensions media feature tag in the Contact header
 field parameter.

 The media feature tags can help the network construct presence
 documents when the UA doesn't publish them separately (though this
 is recommended as described below). They are also used for
 routing of requests.

 NOTE: An alternative design would be to have each service instance
 be a separate registered Contact. This would be more helpful for
 presence, though not needed if a PUBLISH is used. However it has
 the drawback of adding more state to the network and exposing

Rosenberg Expires September 6, 2007 [Page 9]

Internet-Draft Service ID March 2007

 "internal" routing within the UA to outside of the UA. It would
 mean that the proxy would need to know the dispatch logic, which
 is more likely to be known by the UA.

7.2. Publication

 If the UA supports presence, it SHOULD PUBLISH [7] a presence
 document for itself. This document SHOULD include a service
 (represented by a tuple) for each service instance. The contact of
 each tuple SHOULD be derived from the GRUU, and constructed by adding
 a UA-defined parameter to the GRUU for each service instance. The
 parameter MUST be different for each service instance, and SHOULD
 persist over time. The UA SHOULD include information that identifies
 what the service is, including supported methods and media types,
 when those are important for its definition. For services that
 require well-known logic, the agent SHOULD include the service URN
 amongst the extensions listed for that service.

 The UA can do a better job constructing the presence document than
 the registrar. This is because the UA knows what mechanisms are
 used to dispatch requests to each service, and knows what well-
 known service URN are associated with each service. Having an
 explicit contact for each service allows a UA to unambiguously be
 reached based on a service selection made by a watcher. This is
 important, since choice is a key concept provided by presence
 [14].

7.3. Session Initiation

 A UA can initiate a session either directly, or using presence.

 When using presence, the UA would start with the AOR for the target.
 It subscribes to the presence state for the AOR [8]. The result will
 be a presence document that includes a tuple for each service. The
 services will include information that describe them with sufficient
 information for the user to choose one. This may include well-known
 service URN associated with each service. When the user selects a
 service for the target user, the UA will generate an INVITE to the
 contact listed there. Since this contact is a service instance URI
 or service URI, the request will be routed towards the target UA and
 explicitly identify the desired service by the URI alone.

 Of course, when the UA selected the service to contact, the request
 would have been initiated from a matching service on the device. In
 that case, if the initiating request is associated with a required
 well-known service, the corresponding escaped service URN MUST appear
 as an option tag in the Require header field.

Rosenberg Expires September 6, 2007 [Page 10]

Internet-Draft Service ID March 2007

 When initiating a session directly, the user will select a service on
 the phone and then request communications by entering or selecting
 the target AOR. If the service from which the request is being made
 is associated with a required well-known service, the corresponding
 escaped service URN MUST appear as an option tag in the Require
 header field.

 This has an important procedural side effect. Based on the rules
 of the SIP change processs [15], the Require header field can only
 contain option tags defined in standards track documents.
 Otherwise, the resulting protocol cannot be considered SIP. This
 also means that a UA can only require well-known services when
 they are IETF defined. Otherwise, the resulting protocol is
 proprietary. This was purposefully done to help temper usage of
 the mechanism, which can cause significant interop problems if
 abused.

RFC 3261 uses the 'token' construct for option tags. The service URN
 is a valid token with the exception of the colon (:). Consequently,
 when used as an option tag, a service URN MUST be escape coded by
 replacing the colon with an exclamation point (!).

 When initiating a session from a presence document, there is no need
 for the UA to insert any Require header fields or otherwise add any
 content to the request beyond what is implied by the contact URI.
 This does not prevent a UA from inserting one when the UA does in
 fact require that a specific well-known service be present.

 The Contact header field of a dialog forming request SHOULD be formed
 by taking the GRUU, and adding a URI parameter (at the discretion of
 the UA) which identifies the particular service invoking the request.
 The resulting URI is called the service instance URI.

 If a UA wants the network to pass the request through application
 servers that provide specific processing, the UA MUST include a
 service URN for that service as the bottom-most Route header. The
 service URN that are available to the UA are learned through
 mechanisms outside the scope of this specification, and can include
 configuration [10] for example. If the UA wants the request to be
 processed by multiple applications, it MUST include a Route header
 value for each service URN. The UA SHOULD order them based on
 desired order of invocation, if known.

7.4. Receipt of a Request

 When a UA receives a request, it MAY use any content of the request
 in order to determine which service on the device is appropriate for
 handling the request. This includes the method, media types, and

https://datatracker.ietf.org/doc/html/rfc3261

Rosenberg Expires September 6, 2007 [Page 11]

Internet-Draft Service ID March 2007

 required extensions, including any service URN that might be present
 in the Require header field. The specific means by which a service
 "registers" itself with the underlying SIP layer to drive the
 dispatch logic is a matter of local implementation and outside the
 scope of this specification.

 Of course, if the UAS doesn't understand one of the option tags in
 the Require header field, it will generate a 420 response and include
 the list of unsupported option tags, including those which happen to
 be service URN. This is helpful for diagnosing interoperability
 problems due to incompatible services.

 Once the request is delivered to the service instance for processing,
 any response SHOULD include the service URI derived from the GRUU in
 the Contact header field.

8. Proxy Behavior

8.1. Request Targeting

 When a home proxy receives a request and uses the location service to
 route the request, it SHOULD follow the procedures defined in RFC

3841 [3] for preference and capability matching. These SHOULD be
 done even if the request did not contain an Accept-Contact or Reject-
 Contact header field. When neither was present, the proxy will
 construct implicit preferences based on the rules in Section 7.2.2 of
 RFC 3841.

 In addition, a proxy SHOULD construct an explicit preference for
 extensions when the request contains a Require header field. For
 each option tag in the Require header field, the proxy adds a term to
 the conjunction of the following form:

 (sip.extension=[option tag])

 This would include any option tags that were service URN. The result
 will be that calls get routed to devices which understand the
 required service.

8.2. Application Invocation

 When a proxy receives a request where the next Route header field
 value after the proxy itself contains a service URN, the proxy MUST
 resolve the service URN to a SIP URI that can be used to perform that
 service. The specific mechanism for resolution is outside of the
 scope of this specification. It can include standardized resolution
 services such as DDDS [16] or LoST [11], or can be done through local

https://datatracker.ietf.org/doc/html/rfc3841
https://datatracker.ietf.org/doc/html/rfc3841
https://datatracker.ietf.org/doc/html/rfc3841#section-7.2.2
https://datatracker.ietf.org/doc/html/rfc3841#section-7.2.2

Rosenberg Expires September 6, 2007 [Page 12]

Internet-Draft Service ID March 2007

 configuration.

 If there are more than one consecutive Route header field values with
 service URN, a proxy MAY resolve all of them, and MAY reorder them
 based on localized knowledge of the required invocation sequence.
 This is particularly important when the proxy is aware of additional
 applications that need to be invoked, for which it needs to add
 additional Route header field values.

9. Guidelines for Using Service URN

 This document introduces the concept of using a service URN to
 identify well-known logic that is required in order to successfully
 process a request. Care must be taken in the usage of this
 mechanism, or serious interoperability problems can occur.

 For example, consider an extreme example whereby the vendor of a UA
 defines a service URN for each version of their software, under the
 assumption that the logic in the UA represents a well-known service.
 If multiple vendors do this, a request from one vendor's device will
 fail to interoperate with the devices from any other vendor, even if
 they would be interoperable otherwise.

 Consider a more realistic case where a service provider chooses to
 utilize a well-known service URN for voice telephony and another one
 for video telephony. There is nothing unique about the actual
 service logic used to realize each. However, calls made from the
 video telephony application include a Require header field, requiring
 the usage of video telephony on the other side. If the call should
 reach a device that supports only voice, such as a PSTN gateway, the
 call will automatically fail. However, had existing SIP negotiation
 techniques been utilized (in this case, the ability to reject media
 streams), the call would have succeeded.

 It is for this reason that the well-known service URN in the Require
 header field are restricted in several ways. Firstly, they are meant
 specifically and exclusively for usage in cases where some service
 logic must be present and matching on both the originating and
 terminating sides in order for any type of reasonable communications
 to exist. Secondly, it is limited to capabilities that cannot be
 negotiated or indicated by other SIP techniques (such as support for
 a specific media type). One metric for this is that, absent the
 option tag in the Require header, a request to initiate the session
 would be identical to a request to or from a different service that
 is not actually interoperable.

 Furthermore, the SIP change process forbids the usage of vendor

Rosenberg Expires September 6, 2007 [Page 13]

Internet-Draft Service ID March 2007

 proprietary option tags in the Require header field. This means that
 IETF standardization is required for the definition of service URN
 that would be used with the mechanism proposed here.

10. Guidelines on Namespace Structure

 The service URN [5] creates a basic namespace in which services can
 be registered. When a new service is added, care should be taken to
 make sure it is as general purpose as possible while still preserving
 interoperability. When variations are possible, but for which
 interoperability exists, these SHOULD be registered using
 subservices.

 This specification requests IANA to create the "vendor" top-level
 service for vendor specific services. Each sub service MUST be
 constructed by taking the domain name of the vendor (example.com for
 example), and following that by a vendor-defined subservice that
 identifies their service. For example, if vendor example.org wants
 to create a service called foo, its service URN would be
 "urn:service:vendor.example.org.foo". Note that these subservices
 are not IANA registered, and that vendor-defined service URN are not
 IANA registered SIP option tags.

11. Security Considerations

 This specification makes use of option tags and URI to facilitate
 routing of a request to the appropriate service instance. An
 attacker in the network could modify these fields to cause the
 request to be routed to the wrong service instance, which would
 worsen user experience and possibly cause an interoperability
 failure. Such an attack would require a man-in-the-middle to modify
 SIP requests. An attacker capable of such modifications can launch
 far more disruptive attacks by manipulating other fields, such as
 Contact or the SDP. Consequently, such attacks do not seem likely.

12. IANA Considerations

 This specification registers a new service URN label per the
 guidelines in Section 4 of [5]. This represents vendor-proprietary
 services. Allocation of subservices is done using hierarchical
 allocation [13] and requires no IANA action.

 Here is the information to be added to the table of service URN:

Rosenberg Expires September 6, 2007 [Page 14]

Internet-Draft Service ID March 2007

 Service: vendor

 Specification: RFC XXXX [[NOTE TO RFC-EDITOR: Please replace XXXX
 with the RFC number of this specification.]]

 Brief Description: Vendor proprietary service tree

13. Example

 Consider our example from Section 3. A user, joe@example.com, starts
 their chess application and wishes to play with bob@example.com.
 Joe's INVITE would look like:

 INVITE sip:bob@example.com SIP/2.0
 Via: SIP/2.0/UDP host.example.com;branch=z9hG4bK99a
 From: Joe <sip:joe@example.com>;tag=n88ah
 To: Bob <sip:bob@example.com>
 Call-ID: 1j9FpLxk3uxtma7@host.example.com
 CSeq: 1 INVITE
 Supported: gruu
 Require: urn!service!chess
 <allOneLine>
 Contact:
 <sip:joe@example.com
 ;gr=urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6>
 ;service=chess
 </allOneLine>
 Content-Length: --
 Content-Type: application/sdp

 [SDP Not shown]

 Note that the request contains a Require header field with the
 service URN. The Contact header field contains a GRUU, and Joe's UA
 has added a parameter, "service=chess" to this URI. This parameter
 is used only by Joe's UA for dispatching the request to the chess
 application when a request is sent to that URI.

 In another example, a Joe receives a presence document indicating
 that the chess service is supported for Bob:

Rosenberg Expires September 6, 2007 [Page 15]

Internet-Draft Service ID March 2007

 <?xml version="1.0" encoding="UTF-8"?>
 <presence xmlns="urn:ietf:params:xml:ns:pidf"
 xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"
 xmlns:rp="urn:ietf:params:xml:ns:pidf:rpid"
 xmlns:caps="urn:ietf:params:xml:ns:pidf:caps"
 xmlns:su="urn:ietf:params:xml:ns:pidf:urn-caps"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 entity="sip:bob@example.com">
 <tuple id="sg89ae">
 <status>
 <basic>open</basic>
 </status>
 <dm:deviceID>mac:8asd7d7d70</dm:deviceID>
 <caps:servcaps>
 <caps:extensions>
 <caps:supported>
 <su:urn>urn:service:chess</su:urn>
 </caps:supported>
 </caps:extensions>
 </caps:servcaps>
 <contact>sip:bob@example.com
 ;gr=urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf7>
 ;service=chess</contact>
 </tuple>
 <dm:person id="p1">
 <rp:activities>
 <rp:on-the-phone/>
 </rp:activities>
 </dm:person>
 <dm:device id="pc122">
 <rp:user-input>idle</rp:user-input>
 <dm:deviceID>mac:8asd7d7d70</dm:deviceID>
 </dm:device>
 </presence>

 Joe's UA notices that the chess service is available by the service
 URN, and it renders an icon representing that service. When Joe
 selects it, the chess application launches and generates an INVITE.
 Note that the chess application itself will include a Require header
 field, since chess has to be supported on the far end to proceed with
 the call:

Rosenberg Expires September 6, 2007 [Page 16]

Internet-Draft Service ID March 2007

 <alloneline>
 INVITE sip:bob@example.com
 ;gr=urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf7>
 ;service=chess SIP/2.0
 </alloneline>
 Via: SIP/2.0/UDP host.example.com;branch=z9hG4bK99a
 From: Joe <sip:joe@example.com>;tag=n88ah
 To: Bob <sip:bob@example.com>
 Call-ID: 1j9FpLxk3uxtma7@host.example.com
 CSeq: 1 INVITE
 Supported: gruu
 Require: urn!service!chess
 <allOneLine>
 Contact:
 <sip:joe@example.com
 ;gr=urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6>
 ;service=chess
 </allOneLine>
 Content-Length: --
 Content-Type: application/sdp

 [SDP Not shown]

14. Acknowledgements

 This document is based on discussions with Paul Kyzivat and Andrew
 Allen, who contributed significantly to the ideas here.

15. References

15.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [3] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Caller
 Preferences for the Session Initiation Protocol (SIP)",

RFC 3841, August 2004.

 [4] Rosenberg, J., "Obtaining and Using Globally Routable User
 Agent (UA) URIs (GRUU) in the Session Initiation Protocol
 (SIP)", draft-ietf-sip-gruu-11 (work in progress),

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3841
https://datatracker.ietf.org/doc/html/draft-ietf-sip-gruu-11

Rosenberg Expires September 6, 2007 [Page 17]

Internet-Draft Service ID March 2007

 October 2006.

 [5] Schulzrinne, H., "A Uniform Resource Name (URN) for Services",
draft-ietf-ecrit-service-urn-05 (work in progress),

 August 2006.

 [6] Rosenberg, J., "Applying Loose Routing to Session Initiation
 Protocol (SIP) User Agents (UA)",

draft-rosenberg-sip-ua-loose-route-00 (work in progress),
 October 2006.

 [7] Niemi, A., "Session Initiation Protocol (SIP) Extension for
 Event State Publication", RFC 3903, October 2004.

 [8] Rosenberg, J., "A Presence Event Package for the Session
 Initiation Protocol (SIP)", RFC 3856, August 2004.

15.2. Informational References

 [9] Rosenberg, J., "A Framework for Application Interaction in the
 Session Initiation Protocol (SIP)",

draft-ietf-sipping-app-interaction-framework-05 (work in
 progress), July 2005.

 [10] Petrie, D. and S. Channabasappa, "A Framework for Session
 Initiation Protocol User Agent Profile Delivery",

draft-ietf-sipping-config-framework-10 (work in progress),
 January 2007.

 [11] Hardie, T., "LoST: A Location-to-Service Translation Protocol",
draft-ietf-ecrit-lost-04 (work in progress), February 2007.

 [12] Rosenberg, J., "A Framework for Conferencing with the Session
 Initiation Protocol (SIP)", RFC 4353, February 2006.

 [13] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
 Considerations Section in RFCs", BCP 26, RFC 2434,
 October 1998.

 [14] Rosenberg, J., "A Data Model for Presence", RFC 4479,
 July 2006.

 [15] Mankin, A., Bradner, S., Mahy, R., Willis, D., Ott, J., and B.
 Rosen, "Change Process for the Session Initiation Protocol
 (SIP)", BCP 67, RFC 3427, December 2002.

 [16] Mealling, M., "Dynamic Delegation Discovery System (DDDS) Part
 One: The Comprehensive DDDS", RFC 3401, October 2002.

https://datatracker.ietf.org/doc/html/draft-ietf-ecrit-service-urn-05
https://datatracker.ietf.org/doc/html/draft-rosenberg-sip-ua-loose-route-00
https://datatracker.ietf.org/doc/html/rfc3903
https://datatracker.ietf.org/doc/html/rfc3856
https://datatracker.ietf.org/doc/html/draft-ietf-sipping-app-interaction-framework-05
https://datatracker.ietf.org/doc/html/draft-ietf-sipping-config-framework-10
https://datatracker.ietf.org/doc/html/draft-ietf-ecrit-lost-04
https://datatracker.ietf.org/doc/html/rfc4353
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc4479
https://datatracker.ietf.org/doc/html/bcp67
https://datatracker.ietf.org/doc/html/rfc3427
https://datatracker.ietf.org/doc/html/rfc3401

Rosenberg Expires September 6, 2007 [Page 18]

Internet-Draft Service ID March 2007

Author's Address

 Jonathan Rosenberg
 Cisco
 Edison, NJ
 US

 Email: jdrosen@cisco.com
 URI: http://www.jdrosen.net

Rosenberg Expires September 6, 2007 [Page 19]

http://www.jdrosen.net

Internet-Draft Service ID March 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Rosenberg Expires September 6, 2007 [Page 20]

