
SIPPING J. Rosenberg
Internet-Draft Cisco Systems
Expires: January 18, 2006 H. Schulzrinne
 Columbia University
 July 17, 2005

Architecture and Design Principles of the Session Initiation Protocol
(SIP)

draft-rosenberg-sipping-sip-arch-01

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 18, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 The Session Initiation Protocol (SIP) and its many extensions and
 supporting technologies define a solution for multimedia
 communications on the Internet. Much of the design and architecture
 for SIP is based on a key set of architectural principles which,
 while commonly discussed on mailing lists and other forums, have not
 been explicitly captured. This document seeks to rectify that gap by

Rosenberg & Schulzrinne Expires January 18, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft SIP Architecture July 2005

 outlining the key set of architectural and design principles
 underlying SIP.

Table of Contents

1. Introduction . 3
2. Objectives . 3
2.1 New Features and Services 3
2.2 Not a PSTN Replacement 4
2.3 Client Heterogeneity 4
2.4 Client Multiplicity 5
2.5 Multimedia . 5

3. Architectural Principles 5
3.1 Proxies are for Routing 5
3.2 Endpoint Call State and Features 6
3.3 Dialog Models, not Call Models 7
3.4 Endpoint Fate Sharing 8
3.5 Component Based Design 8
3.6 Logical Components, not Physical 9
3.7 Designed for the Internet 9
3.8 Generality over Efficiency 10
3.9 Separation of Signaling and Media 10

4. Design Principles . 10
4.1 Proxies are Method, Body and Header Independent 10
4.2 Full State Nature of INVITE 11
4.3 SIP URIs Identify Resources 11
4.4 Extensibility and Compatibility 11
4.5 Internationalization 12
4.6 Explicit Intermediaries 12
4.7 Guided Proxy Routing 13
4.8 Transport Protocol Independence 13
4.9 Protocol Reuse . 13

5. Security Considerations 13
6. IANA Considerations . 14
7. Acknowledgements . 14
8. Informative References . 14

 Authors' Addresses . 17
 Intellectual Property and Copyright Statements 19

Rosenberg & Schulzrinne Expires January 18, 2006 [Page 2]

Internet-Draft SIP Architecture July 2005

1. Introduction

 The Session Initiation Protocol (SIP) [1] and its many extensions and
 supporting technologies (for example, [2] [3] [4] [6]) define a
 solution for multimedia communications on the Internet. Much of the
 design and architecture for SIP is based on a key set of
 architectural principles which, while commonly discussed on mailing
 lists and other forums, have not been explicitly captured.

Section 2 of RFC 3261 briefly mentions a few of the design principles
 behind SIP. In particular, it mentions that SIP is not a vertically
 integrated system, but rather a component of an overall solution. It
 also mentions that SIP does not provide services, but rather,
 provides primitives which can be used to build up more complex
 services.

 The guidelines for authors of SIP extensions [7] provides additional
 guidance in Section 3.2. In particular, it mentions session
 independence, signaling and media path decoupling, multi-provider and
 multi-hop as key design principles in SIP. It also touches on some
 proxy principles, such as method and body independence and
 transactional processing. It defines some of the characteristics of
 SIP methods - the full-state nature of INVITE, and the usage of of
 the request-URI as the key for forwarding. Finally, it mentions the
 importance of heterogeneity and generality over efficiency.

 This document expands upon many of these principles, and mentions
 some of the other ones that are key to the SIP design philosophy.

2. Objectives

 SIP's design is based around certain key objectives, including new
 features and services (and its corollary, that SIP is not a PSTN
 replacement), client heterogeneity, client multiplicity and
 multimedia.

2.1 New Features and Services

 Perhaps the most important objective behind SIP is the desire to
 provide new communications features and services to users. SIP does
 more than just provide the ability to make voice calls between
 endpoints that look and feel like traditional telephones. It
 provides new features that take advantage of smart endpoints,
 multimedia and broadband connectivity.

 One example is presence. SIP provides a generic event framework [5]
 on which presence is defined [8]. Presence allows SIP endpoints to
 obtain information on the ability, willingness and desire of another

https://datatracker.ietf.org/doc/html/rfc3261#section-2

Rosenberg & Schulzrinne Expires January 18, 2006 [Page 3]

Internet-Draft SIP Architecture July 2005

 user to communicate. In addition, SIP provides instant messaging
 capabilities, including a Short Message Service (SMS) style messaging
 [9] and a session mode [10].

 Another example is the application interaction framework [11]. This
 framework allows for endpoints to interact with network based
 applications that utilize scripted user interfaces. One example if
 such a usage would be a web front end that allows a user to control a
 prepaid calling service.

 Another example is the SIP caller preferences specification [12].
 This specification allows a caller to direct call handling, and in
 particular cause the call to be routed to specific types of
 destination endpoints based on capabilities and characteristics.

2.2 Not a PSTN Replacement

 A corollary to Section 2.1 is that SIP was not designed as a PSTN
 replacement. It provides many features and services the PSTN cannot
 provide, and it provides many services that the PSTN can provide, but
 in a much different manner. It has not been a goal of SIP to be able
 to directly map every message in ISUP or QSIG to SIP, or to be able
 to map each ISUP parameter into a SIP parameter. SIP was designed to
 facilitate communications in a way consistent with the architecture
 of the Internet, and the underlying network characteristics of the
 Internet result in a different technical solution.

2.3 Client Heterogeneity

 The types of endpoints that connect to the Internet are extremely
 diverse, ranging from the latest gaming PCs to small appliances with
 barely enough memory and CPU for an IP stack. Similarly, devices
 vary widely in their capabilities to render media, interact with the
 user, and display information to the user. For this reason, SIP
 itself was designed to support heterogenous clients with highly
 variable capabilities.

 SIP accomplishes this by providing an extension and capability
 negotiation framework covering many aspects of the protocol.
 Endpoints can negotiate support for new SIP option tags, new body
 types, new SIP methods, new codecs, and so on. That baseline
 framework can be leveraged for more complex situations. For example,
 the app interaction framework uses MIME type negotiation to indicate
 support for different types of scripts that control user interfaces.
 This, in turn, allows the framework to negotiate user interface
 capabilities with applications in the network.

 In order to provide interoperability, SIP supports (and in many cases

Rosenberg & Schulzrinne Expires January 18, 2006 [Page 4]

Internet-Draft SIP Architecture July 2005

 mandates) fallback behaviors that allow differing endpoints to find a
 common ground.

2.4 Client Multiplicity

 SIP was built under the assumption that users would have multiple
 clients at their disposal - softphones, hardphones, cell phones,
 PDAs, and so on, and that these devices could be in use
 simultaneously. Users can make multiple calls at the same time, each
 from a different user agent. Similarly, users can receive calls that
 "ring" each device at the same time or in sequence. Forking, which
 allows multiple devices to be rung at once, is a key part of the
 baseline SIP specification.

2.5 Multimedia

 Although much actual usage of SIP is in support of voice
 communications, SIP was designed to be media agnostic, and thus
 facilitate the deployment of multimedia. Audio, video, text and
 messaging are all possible with SIP. Nothing in SIP itself depends
 on or assumes a particular media stream type.

3. Architectural Principles

 This section discusses the key SIP architectural principles - the
 usage of proxies for routing, the relegation of call state to
 endpoints, the usage of dialog models and not call models, endpoint
 fate sharing, component based design, logical roles, Internet-based
 design, generality over efficiency, and separation of signaling and
 media.

3.1 Proxies are for Routing

 When designing a distributed system, one of the primary decisions is
 to determine what functionality will be assigned to which components
 of the system. SIP is a distributed system, composed of user agents
 and proxies. Proxies usually run "in the network" and their role is
 to faciliate rendezvous between users. The assumption in SIP is that
 users can be reachable at many differing devices, each of which
 provides a different set of features and capabilities. The problem,
 then, is to determine how to route a SIP message from a caller to a
 recipient, taking into account the desires of the caller, the
 recipient, and the policies of the providers in between. Each proxy
 on the path of a SIP request is responsible for executing the routing
 logic based on the desires of the entities on whose behalf it is
 acting. The final call routing decision is a composition of the
 decisions made by each of the proxies along the request path.

Rosenberg & Schulzrinne Expires January 18, 2006 [Page 5]

Internet-Draft SIP Architecture July 2005

 Because the role of the proxy is to connect users together in order
 to communicate, once they are connected, the proxy's task is usually
 done. SIP assumes that the IP network provides connectivity between
 the endpoints, and therefore, any additional signaling that takes
 place will frequently go end-to-end. This is not always the case;
 NATs and firewalls break the end-to-end connectivity model, and thus
 proxies frequently remain in the signaling path to facilitate the
 exchange of SIP messages.

 It is important to understand that a proxy is not a switch in the
 traditional telephony sense. It does not maintain call state, and
 thus many of the capabilities switches provide that derive from
 management of call state are not provided by proxies. Switches do
 provide call routing functions, and that aspect of switch behavior is
 also provided by proxies. Furthermore, switch features traditionally
 associated with routing are also commonly placed in proxies.

 There were many factors driving the decision for proxies to take on
 the role of rendezvous, as opposed to endpoint control and
 management. Some of them include:

 Availability: Because proxies do not need to maintain call state,
 they can fail in the middle of a call without impacting calls in
 progress. This makes SIP systems highly available at very low
 cost.

 Scalability: Proxies can be deployed in clusters, where any one of
 the proxies in the cluster can serve a request. No state sharing
 is needed across elements in the cluster, and proxies can be added
 or removed from a cluster as capacity needs require. This results
 in perfect linear scalability.

 Flexibility: By relagating call state and many features to endpoints,
 they can manifest themselves in ways that are appropriate for the
 capabilities of user interfaces of the endpoint in question. This
 gives SIP the flexibility to truly deal with diverse endpoints.

3.2 Endpoint Call State and Features

 Since the role of the proxy is to facilitate rendezvous, the rest of
 the capabilities needed in communications systems fall to the
 endpoints. In particular, SIP endpoints are responsible for
 maintaining call state, and for implementing features that require
 awareness and management of that call state.

 As an example, consider call waiting. In SIP, call waiting
 functionality exists in the endpoints. This is because it is

Rosenberg & Schulzrinne Expires January 18, 2006 [Page 6]

Internet-Draft SIP Architecture July 2005

 relatively easy for endpoints to receive a new call while one is in
 progress, alert the user, and then select which media stream to
 render based on that selection. Indeed, the way in which the user is
 "alerted" and the mechanism by which they select the stream to render
 may vary widely depending on the type of endpoint. A dumb phone may
 do what is done today in the PSTN - provide an audio cue to alert the
 user, and then use the hookflash to switch between calls. However,
 on a PC-based softphone, a window pop can be used to alert the user
 to an incoming call, and then the user can use a mouse to select the
 call (perhaps represented as an object in a window) that they wish to
 hear. The interface may be different once again for a television set
 top box, which may render information about an incoming call on the
 TV screen, and then use a button on the remote to indicate that the
 call should be taken.

 In order to allow each of these endpoints to handle call waiting in
 the way that is appropriate for that endpoint, the feature
 intelligence needs to reside in the endpoint itself. In a
 centralized switch type of architecture, such as those provided by
 the Media Gateway Control Protocol (MGCP) [13] and Megaco [14], the
 endpoint is a slave to the controller, and the feature intelligence
 resides in the controller based on an assumed model of the user
 interface and capabilities of the devices. Those architectures
 fundamentally limit endpoint innovation because they provide no
 ability for endpoints to differentiate themselves by providing better
 features or enhanced user experiences; all of that resides in the
 controller. In order for SIP to provide heterogeneous clients and
 benefit from endpoint capabilities and innovation, it makes the
 opposite design choice on purpose.

 This aspect of SIP's design is often summarized as "smart endpoints".

3.3 Dialog Models, not Call Models

 SIP does not define a "call model" in the traditional PSTN sense.
 SIP does define a dialog model [15]. This model defines the state
 associated with a communications context between a pair of endpoints.
 However, there is a fundamental difference between a call model and
 the dialog model. A call model encompasses nearly all of the
 fullness of the application state machine that is executing based on
 the underlying protocols. In SIP, this is not so. SIP presumes that
 it is being used by some higher layer application that is making
 sense of the various dialogs and SIP messages that are being
 exchanged. The state machine governing the operation of that
 application is not standardized by SIP, and purposefully so. By
 allowing it to be endpoint and application specific, SIP allows for
 numerous applications and usages not originally envisioned in the
 original design of the protocol.

Rosenberg & Schulzrinne Expires January 18, 2006 [Page 7]

Internet-Draft SIP Architecture July 2005

 This particular facet of SIP's design has allowed it to be applied to
 problems as diverse as Push-to-Talk and home automation. Though
 sometimes these usages are not really a good fit for SIP, they are
 demonstrable validations of this design goal.

 A direct consequence of this design approach is that SIP doesn't
 generally standardize features. In many cases, features can execute
 within an endpoint without any involvement or awareness from other
 endpoints. Call waiting is a good example of that. In other cases,
 a feature requires some kind of communications with other elements in
 the network. In those cases, SIP prefers to specify a generic
 primitive that can support many features.

3.4 Endpoint Fate Sharing

 A benefit of the smart endpoint model described in Section 3.2 is
 that call state and application state is co-located with the
 endpoints of the call itself. This means that the only way in which
 the call or application can fail is if the endpoints themselves fail.
 Of course, if the endpoints fail, the call is over in any case. This
 allows for fate sharing, and it allows SIP systems to be highly
 available.

3.5 Component Based Design

Section 3.3 alludes to another important principle behind SIP design
 - the use of protocol components and primitives. Generally speaking,
 SIP does not specify a vertical communications system. Rather, SIP
 itself is just a component in any complete communications system.
 SIP is designed to work hand-in-hand with other components, such as
 session descriptions like the Session Description Protocol (SDP) [6],
 media transport like the Real Time Transport Protocol (RTP) [17] and
 signaling compression like SigComp [18].

 SIP itself provides capabilities through component functions that can
 be composed together to provide more complex functions. As an
 example, most of the call control capabilities SIP enables are done
 through a combination of two classes of components - notification and
 manipulation. SIP provides a generic event framework [5] that allows
 a user agent to learn about state elsewhere in the network. That
 framework is used to support notifications about registration state
 [19], dialog state [15], conference state [16], messaging state [20],
 presence state [8] and subscription state [21]. The content of the
 notifications across these packages allow an endpoint to gain
 awareness about the state of much of a SIP system (subject to
 authorization, of course).

 With awareness about the state of parts of the SIP system, several

Rosenberg & Schulzrinne Expires January 18, 2006 [Page 8]

Internet-Draft SIP Architecture July 2005

 SIP components allow an endpoint to manipulate that state. The REFER
 method [22] allows endpoints to ask other endpoints to generate SIP
 requests. The Join [24] and Replaces [23] header fields allow an
 endpoint to merge and split dialogs.

 As an example of building more complex features from these
 primitives, consider single line extension, as described in [25].
 This feature is possible by having each line in the group use the
 dialog event package to learn about calls made to and from the other
 lines (the notification part), and then the Join mechanism for adding
 a line to an existing call (the manipulation part).

3.6 Logical Components, not Physical

 SIP defines its functionality by defining the exchange of messages
 between logical components in a distributed system. These components
 - user agents, proxies, redirect servers and registrars, are only
 logical, not physical. SIP does not dictate that these components be
 deployed as distinct servers. The expectation is that actual
 products will combine many logical functions into a single "box" as
 defined by business needs.

 Indeed, many SIP specifications define logical functions that are
 purely logical; in other words, they must be co-located with some
 other logical component, usually a proxy or a user agent. The
 privacy service [26] and the authentication service [27] are two
 examples of this.

3.7 Designed for the Internet

 SIP was designed for operation on the public Internet. That is not
 to say that it can't also be used on private IP networks; it can.
 However, the public Internet introduces a number of constraints and
 also a number of benefits that have been taken into account in SIPs
 design.

 As an example on the constraints, SIP signaling needs to be
 congestion controlled in order to run cooperatively on the Internet.
 The public Internet also means that SIP cannot assume a particular IP
 network topology, and needs to work in the face of packet loss and
 delays.

 As an example of the benefits, SIP can make use of many of the core
 Internet services. SIP uses the DNS for discovery of SIP servers
 [3], load balancing and reliability, DHCP for client configuration
 [28] [29], and a certificate infrastructure for SIP over TLS [1].
 SIP does not require any of these to operate, but it leverages them
 when SIP runs on an IP network where they are available.

Rosenberg & Schulzrinne Expires January 18, 2006 [Page 9]

Internet-Draft SIP Architecture July 2005

3.8 Generality over Efficiency

 When designing network protocols, there is often a tradeoff between
 efficiency (measured in terms of bandwidth, memory or processing) and
 generality. SIP was designed under the assumption that continuous
 improvements in CPU, memory and bandwidth availability, fueled by
 Moore's law and its related principles, would make efficiency a
 transient benefit, while generality is a permanent one. As a result,
 SIP generally prefers to build for generality at the expense of
 efficiency. This is not an absolute truth, but it has served as a
 general guideline.

 As a specific example, SIP has not tried to be parsimonious in its
 usage of bits in message fields. Rather, in environments where
 message overhead is an issue (such as wireless systems), message
 compression is handled in a shim layer using Sigcomp so that it does
 not need to pervade every extension that gets defined.

3.9 Separation of Signaling and Media

 It is fundamental to the design of SIP that the path followed by the
 media packets is independent of the path followed by the signaling
 packets. This separation allows for the IP network to deliver the
 media packets using the most direct and appropriate route it can,
 while the signaling packets, which are not as latency sensitive, can
 follow a series of proxy elements needed for the processing of the
 request. By separating the two, more complex proxy topologies can be
 utilized without concern for the impact on voice quality.

4. Design Principles

 This section discusses some of the design principles used in SIP's
 design. They are not as fundamental as the architectural principles,
 but represent key design choices that were made.

4.1 Proxies are Method, Body and Header Independent

 Since the role of the proxy is to provide rendezvous, the primary
 information from the message used by the proxy is the request URI,
 Via, Route and Record-Route header fields. Extensions can also
 define new header fields that are relevant for proxy processing, such
 as the Accept-Contact and Request-Disposition header fields [12].

 However, except for the notable exceptions of ACK and CANCEL, proxy
 routing of a request does not normally depend on the request method.
 This allows SIP's rendezvous functions to be provided to other
 functions besides session initiation. The same is true for SIP
 bodies, which are of interest end-to-end and not used by proxies.

Rosenberg & Schulzrinne Expires January 18, 2006 [Page 10]

Internet-Draft SIP Architecture July 2005

 That said, the specifications do not prohibit proxies from invoking
 special routing logic based on method or other information in the
 message. Such behaviors are typical of distributed proxy networks
 where the overall processing of a SIP user agent is distributed
 across multiple components, and a proxy is used to route messages to
 the appropriate component.

4.2 Full State Nature of INVITE

 One of the important design choices made by SIP is that each INVITE
 request within a dialog conveys the full state of the session. For
 example, instead of a re-INVITE indicating that a video session
 should be added, a re-INVITE would state that the session is being
 updated and now includes audio and video. This characteristic of the
 INVITE method is useful for systems that perform inspection of the
 INVITE message in order to manipulate some underlying network state.
 An example of this is the MIDCOM framework [30].

4.3 SIP URIs Identify Resources

 SIP URIs are an important part of SIPs design. The SIP URI is an
 identifier for a communications resource, and that resource can be a
 user, a device, a service or some combination thereof. Traditional
 SIP addresses-of-records (AOR) identify users, but URIs have been
 defined that identify user agent instances [31], and voicemail
 services [32], for example.

 Generally speaking, it is not (and should not) be possible to inspect
 a URI and conclude whether or not the URI identifies a user, device,
 or a specific type of service. Only the owner of the domain on the
 right hand side of the @ sign can interpret or define the meaning of
 the resource identified on the left hand side. The owner of a domain
 must be able to, at will, change the nature of the resource
 identified by any specific token on the left hand side of the @ sign.

 It is quite appropriate for a SIP URI to identify a fairly complex
 resource, and to use the URI to parameterize the service that gets
 invoked [33]. Ideally, a SIP URI is handed out and discovered
 through other means, such as presence or on a business card.
 However, it is not desirable for a SIP URI to be constructed based on
 pre-determined awareness of the type of resources provided by a
 domain.

4.4 Extensibility and Compatibility

 Extensibility has been a key design goal for SIP. SIP assumed that
 many usages would arise which could not be forseen at the time SIP
 was specified. SIP needed to be able to support those future needs,

Rosenberg & Schulzrinne Expires January 18, 2006 [Page 11]

Internet-Draft SIP Architecture July 2005

 yet still be interoperable with older implementations. It is for
 this reason that SIP provides a fairly complex extensibility
 framework. New methods can be defined, new header fields, new body
 types, and new parameters. Several header fields, including the
 Accept, Accept-Language, Allow, Supported, Require, Proxy-Require,
 Accept-Encoding and Unsupported header fields, have been defined to
 facilitate negotiation of support for extensions.

 SIP provides two general modes for usage of extensions - "asking
 permission" and "asking forgiveness". In the former modality, an
 endpoint first discovers the capabilities of a peer, either through
 an OPTIONS message or through capability header fields exchanged
 during dialog establishment. Once they are discovered, those
 extensions can be safely used. In the latter modality, an initial
 request makes use of an extension, and then through either the
 Require or Proxy-Require header field, tells the peer to reject the
 request if the extension is not supported.

 SIP also differentiates between extensions that are specific to user
 agents, and those that are specific to proxies. This is due to the
 differing roles of proxies and user agents in the SIP network.

 In all cases, interoperability is only achieved by being able to fall
 back to or support baseline behavior. This is discussed extensively
 in [7]. An implementation that uses an extension but does not
 provide fallback is not compliant to the SIP specifications, and
 should be considered no better than proprietary.

4.5 Internationalization

 SIP is meant to be used in an international setting. It supports
 UTF-8 encoding of freeform text and declaration and negotiation of
 languages.

4.6 Explicit Intermediaries

 Proxies represent a form of intermediary that operates on requests on
 behalf of users. However, unlike other intermediaries like NATs and
 firewalls, which are invisible to participants in the protocol,
 proxies are visible. They declare themselves through Via and Record-
 Route header fields, their roles are well defined and bounded, and
 they are meant to act in concert with user agents. A proxy is
 involved in request processing only by the explicit request of a user
 agent or another proxy. An element which intercepts a SIP message
 not addressed to can not ever be considered a compliant proxy.

 Furthermore, when proxies need to provide additional functions on
 behalf of user agents, this is always best done by explicit

Rosenberg & Schulzrinne Expires January 18, 2006 [Page 12]

Internet-Draft SIP Architecture July 2005

 communications with the endpoints, rather than implicit behaviors.
 Explicit cooperation with endpoints guarantess that SIP can continue
 to provide the end-to-end security features that are important to its
 design. As an example of this, if a proxy needs to restrict the set
 of audio codecs used by a user agent, it is far better to use the
 session policy mechanisms [34] to ask the client to discard the
 codec, than for the proxy to attempt to modify the SDP in an INVITE
 message as it goes by.

4.7 Guided Proxy Routing

 Many SIP capabilities are provided by having an entity, either a user
 agent or a proxy server, predetermine a set of downstream proxy
 resource that must be visited prior to completion of the request.
 This is known as loose routing, and is a key part of SIPs design.
 The main task in loose routing is the discovery of the URI to use.
 SIP provides several techniques for that, including the Record-Route
 mechanism in RFC 3261, the Path header field [35], and the Service-
 Route header field [36].

4.8 Transport Protocol Independence

 Another design choice made by SIP is its ability to run over several
 different transport protocols. These include, at the moment, UDP,
 TCP and SCTP. The transport protocol must be capable of providing
 just a minimal set of capabilities - the transport of 8-bit messages
 of at least around 1500 bytes. [[EDITORS NOTE: In hindsight its not
 clear that this flexibility has been worth the cost of complexity.
 Mention this?]]

4.9 Protocol Reuse

 SIP has attempted to reuse many other protocol components as part of
 its design. SIP uses MIME [37] for transport and encoding of body
 parts, reuses many of the HTTP [38] header fields and semantics,
 makes use of the URI framework [39], including non-SIP URIs like the
 tel URI [40], uses standardized transport protocols like SCTP [41]
 and existing security protocols, like TLS [42] and SMIME [43].

 This reuse flattens the learning curve for SIP and eases
 implementation by allowing developers to use off-the-shelf
 implementations of its component parts.

5. Security Considerations

 This specification does not introduce any new security considerations
 for the Internet. However, SIP does introduce new considerations,
 and those are discussed in the SIP specification and its extensions.

https://datatracker.ietf.org/doc/html/rfc3261

Rosenberg & Schulzrinne Expires January 18, 2006 [Page 13]

Internet-Draft SIP Architecture July 2005

6. IANA Considerations

 This specification does not introduce any IANA considerations.

7. Acknowledgements

 The authors would like to thank Cary Fitzgerald for his "Tao of SIP"
 list.

8. Informative References

 [1] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [2] Rosenberg, J. and H. Schulzrinne, "Reliability of Provisional
 Responses in Session Initiation Protocol (SIP)", RFC 3262,
 June 2002.

 [3] Rosenberg, J. and H. Schulzrinne, "Session Initiation Protocol
 (SIP): Locating SIP Servers", RFC 3263, June 2002.

 [4] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with
 Session Description Protocol (SDP)", RFC 3264, June 2002.

 [5] Roach, A., "Session Initiation Protocol (SIP)-Specific Event
 Notification", RFC 3265, June 2002.

 [6] Handley, M. and V. Jacobson, "SDP: Session Description
 Protocol", RFC 2327, April 1998.

 [7] Rosenberg, J., "Guidelines for Authors of Extensions to the
 Session Initiation Protocol (SIP)",

draft-ietf-sip-guidelines-09 (work in progress), February 2005.

 [8] Rosenberg, J., "A Presence Event Package for the Session
 Initiation Protocol (SIP)", RFC 3856, August 2004.

 [9] Campbell, B., Rosenberg, J., Schulzrinne, H., Huitema, C., and
 D. Gurle, "Session Initiation Protocol (SIP) Extension for
 Instant Messaging", RFC 3428, December 2002.

 [10] Campbell, B., "The Message Session Relay Protocol",
draft-ietf-simple-message-sessions-10 (work in progress),

 February 2005.

 [11] Rosenberg, J., "A Framework for Application Interaction in the
 Session Initiation Protocol (SIP)",

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3262
https://datatracker.ietf.org/doc/html/rfc3263
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3265
https://datatracker.ietf.org/doc/html/rfc2327
https://datatracker.ietf.org/doc/html/draft-ietf-sip-guidelines-09
https://datatracker.ietf.org/doc/html/rfc3856
https://datatracker.ietf.org/doc/html/rfc3428
https://datatracker.ietf.org/doc/html/draft-ietf-simple-message-sessions-10

Rosenberg & Schulzrinne Expires January 18, 2006 [Page 14]

Internet-Draft SIP Architecture July 2005

draft-ietf-sipping-app-interaction-framework-04 (work in
 progress), February 2005.

 [12] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Caller
 Preferences for the Session Initiation Protocol (SIP)",

RFC 3841, August 2004.

 [13] Andreasen, F. and B. Foster, "Media Gateway Control Protocol
 (MGCP) Version 1.0", RFC 3435, January 2003.

 [14] Groves, C., Pantaleo, M., Anderson, T., and T. Taylor, "Gateway
 Control Protocol Version 1", RFC 3525, June 2003.

 [15] Rosenberg, J., "An INVITE Inititiated Dialog Event Package for
 the Session Initiation Protocol (SIP)",

draft-ietf-sipping-dialog-package-06 (work in progress),
 April 2005.

 [16] Rosenberg, J., "A Session Initiation Protocol (SIP) Event
 Package for Conference State",

draft-ietf-sipping-conference-package-12 (work in progress),
 July 2005.

 [17] Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson,
 "RTP: A Transport Protocol for Real-Time Applications",

RFC 3550, July 2003.

 [18] Price, R., Bormann, C., Christoffersson, J., Hannu, H., Liu,
 Z., and J. Rosenberg, "Signaling Compression (SigComp)",

RFC 3320, January 2003.

 [19] Rosenberg, J., "A Session Initiation Protocol (SIP) Event
 Package for Registrations", RFC 3680, March 2004.

 [20] Mahy, R., "A Message Summary and Message Waiting Indication
 Event Package for the Session Initiation Protocol (SIP)",

RFC 3842, August 2004.

 [21] Rosenberg, J., "A Watcher Information Event Template-Package
 for the Session Initiation Protocol (SIP)", RFC 3857,
 August 2004.

 [22] Sparks, R., "The Session Initiation Protocol (SIP) Refer
 Method", RFC 3515, April 2003.

 [23] Mahy, R., Biggs, B., and R. Dean, "The Session Initiation
 Protocol (SIP) "Replaces" Header", RFC 3891, September 2004.

https://datatracker.ietf.org/doc/html/draft-ietf-sipping-app-interaction-framework-04
https://datatracker.ietf.org/doc/html/rfc3841
https://datatracker.ietf.org/doc/html/rfc3435
https://datatracker.ietf.org/doc/html/rfc3525
https://datatracker.ietf.org/doc/html/draft-ietf-sipping-dialog-package-06
https://datatracker.ietf.org/doc/html/draft-ietf-sipping-conference-package-12
https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc3320
https://datatracker.ietf.org/doc/html/rfc3680
https://datatracker.ietf.org/doc/html/rfc3842
https://datatracker.ietf.org/doc/html/rfc3857
https://datatracker.ietf.org/doc/html/rfc3515
https://datatracker.ietf.org/doc/html/rfc3891

Rosenberg & Schulzrinne Expires January 18, 2006 [Page 15]

Internet-Draft SIP Architecture July 2005

 [24] Mahy, R. and D. Petrie, "The Session Initiation Protocol (SIP)
 "Join" Header", RFC 3911, October 2004.

 [25] Johnston, A. and R. Sparks, "Session Initiation Protocol
 Service Examples", draft-ietf-sipping-service-examples-08 (work
 in progress), February 2005.

 [26] Jennings, C., Peterson, J., and M. Watson, "Private Extensions
 to the Session Initiation Protocol (SIP) for Asserted Identity
 within Trusted Networks", RFC 3325, November 2002.

 [27] Peterson, J. and C. Jennings, "Enhancements for Authenticated
 Identity Management in the Session Initiation Protocol (SIP)",

draft-ietf-sip-identity-05 (work in progress), May 2005.

 [28] Schulzrinne, H., "Dynamic Host Configuration Protocol (DHCP-
 for-IPv4) Option for Session Initiation Protocol (SIP)
 Servers", RFC 3361, August 2002.

 [29] Schulzrinne, H. and B. Volz, "Dynamic Host Configuration
 Protocol (DHCPv6) Options for Session Initiation Protocol (SIP)
 Servers", RFC 3319, July 2003.

 [30] Srisuresh, P., Kuthan, J., Rosenberg, J., Molitor, A., and A.
 Rayhan, "Middlebox communication architecture and framework",

RFC 3303, August 2002.

 [31] Rosenberg, J., "Obtaining and Using Globally Routable User
 Agent (UA) URIs (GRUU) in the Session Initiation Protocol
 (SIP)", draft-ietf-sip-gruu-03 (work in progress),
 February 2005.

 [32] Jennings, C., "SIP Conventions for Voicemail URIs",
draft-jennings-sip-voicemail-uri-03 (work in progress),

 October 2004.

 [33] Campbell, B. and R. Sparks, "Control of Service Context using
 SIP Request-URI", RFC 3087, April 2001.

 [34] Hilt, V., "Session Initiation Protocol (SIP) Session Policies -
 Document Format and Session-Independent Delivery Mechanism",

draft-ietf-sipping-session-indep-policy-02 (work in progress),
 February 2005.

 [35] Willis, D. and B. Hoeneisen, "Session Initiation Protocol (SIP)
 Extension Header Field for Registering Non-Adjacent Contacts",

RFC 3327, December 2002.

https://datatracker.ietf.org/doc/html/rfc3911
https://datatracker.ietf.org/doc/html/draft-ietf-sipping-service-examples-08
https://datatracker.ietf.org/doc/html/rfc3325
https://datatracker.ietf.org/doc/html/draft-ietf-sip-identity-05
https://datatracker.ietf.org/doc/html/rfc3361
https://datatracker.ietf.org/doc/html/rfc3319
https://datatracker.ietf.org/doc/html/rfc3303
https://datatracker.ietf.org/doc/html/draft-ietf-sip-gruu-03
https://datatracker.ietf.org/doc/html/draft-jennings-sip-voicemail-uri-03
https://datatracker.ietf.org/doc/html/rfc3087
https://datatracker.ietf.org/doc/html/draft-ietf-sipping-session-indep-policy-02
https://datatracker.ietf.org/doc/html/rfc3327

Rosenberg & Schulzrinne Expires January 18, 2006 [Page 16]

Internet-Draft SIP Architecture July 2005

 [36] Willis, D. and B. Hoeneisen, "Session Initiation Protocol (SIP)
 Extension Header Field for Service Route Discovery During
 Registration", RFC 3608, October 2003.

 [37] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message Bodies",

RFC 2045, November 1996.

 [38] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
 Leach, P., and T. Berners-Lee, "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

 [39] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986,
 January 2005.

 [40] Schulzrinne, H., "The tel URI for Telephone Numbers", RFC 3966,
 December 2004.

 [41] Stewart, R., Xie, Q., Morneault, K., Sharp, C., Schwarzbauer,
 H., Taylor, T., Rytina, I., Kalla, M., Zhang, L., and V.
 Paxson, "Stream Control Transmission Protocol", RFC 2960,
 October 2000.

 [42] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

 [43] Ramsdell, B., "Secure/Multipurpose Internet Mail Extensions
 (S/MIME) Version 3.1 Message Specification", RFC 3851,
 July 2004.

Authors' Addresses

 Jonathan Rosenberg
 Cisco Systems
 600 Lanidex Plaza
 Parsippany, NJ 07054
 US

 Phone: +1 973 952-5000
 Email: jdrosen@cisco.com
 URI: http://www.jdrosen.net

https://datatracker.ietf.org/doc/html/rfc3608
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3966
https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc3851
http://www.jdrosen.net

Rosenberg & Schulzrinne Expires January 18, 2006 [Page 17]

Internet-Draft SIP Architecture July 2005

 Henning Schulzrinne
 Columbia University
 M/S 0401
 1214 Amsterdam Ave.
 New York, NY 10027
 US

 Email: schulzrinne@cs.columbia.edu
 URI: http://www.cs.columbia.edu/~hgs

Rosenberg & Schulzrinne Expires January 18, 2006 [Page 18]

http://www.cs.columbia.edu/~hgs

Internet-Draft SIP Architecture July 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Rosenberg & Schulzrinne Expires January 18, 2006 [Page 19]

