
Network Working Group J. Rosenberg
Internet-Draft C. Jennings
Intended status: Standards Track Cisco Systems
Expires: September 3, 2018 March 2, 2018

SIPCoin: A Cryptocurrency for Preventing RoboCalling on the PSTN
draft-rosenberg-stir-sipcoin-00

Abstract

 Robocalling has become an increasing problem in the Public Switched
 Telephone Network (PSTN). While techniques like verified caller ID
 can help reduce its impact, ultimately robocalling will continue
 until economically it is no longer viable. This document proposes a
 new type of cryptocurrency, called SIPCoin, which is used to create a
 tax - in the form of computation - that must be paid before placing
 an inter-domain call on the SIP-based public telephone network.
 SIPCoin maintains complete anonymity of calls, is non-transferable
 between users avoiding its usage as an exchangeable currency, causes
 minimal increase call setup delays, and makes use of traditional
 certificate authority trust chains to validate proofs of work.
 SIPCoin is best used in concert with whitelist based techniques to
 minimize costs on known valid callers.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 3, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Rosenberg & Jennings Expires September 3, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft SIPCoin March 2018

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Problem Statement . 3
2. Reference Architecture 4
3. Terminology . 5
4. Requirements . 5
5. Applicability of Traditional Cryptocurrencies 7
6. Applicability of Challenge Based Solutions 8
7. Overview of SIPCoin . 8
7.1. SIPCoin Roles . 9
7.2. Creation and Maintenance of the Self Ledger 9
7.3. Transaction Types . 11
7.3.1. Create Transaction 11
7.3.2. Burn Transaction 11

7.4. Closing Ledger Pages 12
7.5. Server Validation . 13
7.6. Constructing Burn Receipts 14

8. Usage of SIPCoin with SIP 15
9. Deployment Considerations 16
9.1. Enterprise SIP Trunks 16
9.2. Inter-Carrier Trunks 17
9.3. Consumer provider to Mobile Phone 17
9.4. Target Model . 18

10. Governance . 18
11. Economic Analysis and Parameter Tuning 18
11.1. Cost Targets . 18
11.2. Impact of Compute Variability 20
11.3. Load Analysis on the CAs 20

12. Alternative Consensus Techniques 21
13. Security Considerations 21
13.1. Creating Additional SIPCoin 21
13.2. Burning a SIPCoin Multiple Times 22

14. IANA Considerations . 23
15. Acknowledgments . 23
16. References . 23
16.1. Normative References 23
16.2. Informative References 23

 Authors' Addresses . 23

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Rosenberg & Jennings Expires September 3, 2018 [Page 2]

Internet-Draft SIPCoin March 2018

1. Problem Statement

 Robocalling (also known as SPAM, voice SPAM, and so on) has become an
 increasing problem in the Public Switched Telephone Network (PSTN).
 Efforts to prevent it - such as the do-not-call list - have so far
 proven ineffective. Recently, robocallers have gotten even more
 crafty, and are tailoring the caller ID of incoming calls to match
 the area codes and exchanges of the recipients in order to increase
 the likelihood that targets pick up the phone.

 This problem is not new, and ultimately the techniques for its
 prevention have been known for some time. [RFC5039] outlines a
 number of techniques for prevention of SPAM in Session Initiation
 Protocol (SIP) [RFC3261] based systems.

 Ultimately, SPAM calls are a matter of economics. Each call costs
 the spammer a certain amount of money to perform. However, a small
 fraction of calls produce a successful result, generating economic
 returns. As long as the profit is positive, spammers will continue
 and will likely work around legal hurdles, blacklists, reputation
 systems, black lists, and so on. Consequently, the only true way to
 end robocalling is to use economics - to make it no longer
 profitable.

 This can be achieved in two ways. One is by the exchange of actual
 monies across all access and peering points in the public telephone
 network. As the telephone network continues to grow, this becomes
 increasingly difficult. Furthermore, it only requires a single point
 of failure at one peering point, and calls have a way to enter the
 network. Indeed, this is exactly why we see robocalling today
 despite the fact that monies are in fact exchanged within the PSTN.

 An alternative solution is to use computational puzzles, as described
 in Section 3.9 of [RFC5039]. The original concept described there is
 the a callee passes a computation test back to the caller, which
 performs it, and then passes the results towards the callee. This
 suffers from two problems. One, described in the document, is that
 there is high variability in the computation capabilities of
 individual calling devices and systems. Secondly, performing the
 computation at call initiation time increases call setup delays.
 This increase is likely to be large, owing to the amount of
 computation required to act as an economic disincentive.

 Consequently, the problem to be solved is to provide a system that
 requires callers to demonstrate a proof of work towards callees in a
 way which does not suffer these problems. Fortunately, in the
 intervening years since the publication of [RFC5039], blockchain
 technology was invented, and along with it, a wealth of

https://datatracker.ietf.org/doc/html/rfc5039
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc5039#section-3.9
https://datatracker.ietf.org/doc/html/rfc5039

Rosenberg & Jennings Expires September 3, 2018 [Page 3]

Internet-Draft SIPCoin March 2018

 cryptocurrencies (BitCoin, Ethereum, etc). The goal is to apply
 these technologies in a way to solve the unique requirements of the
 problem at hand.

2. Reference Architecture

 The reference architecture for SIPCoin is:

 +----------+
 | Ledger |
 | Server |
 | |
 | |
 +----+-----+
 ^
 |
 | Ledger
 | Verification
 | Protocol
 |
 |
 a.com | b.com
 +-----+------+ +------------+
 | Ledger | SIP | |
 | Client +---------------^+ |
 | | | |
 |Call Agent | |Call Agent |
 +------------+ +------------+

 +-+ +-+ +-+ +-+
 | | | | | | | |
 +-+ +-+ +-+ +-+

 In this architecture, users associated with one call agent
 (representing a.com) wish to communicate with users associated with a
 different agent, reachable through b.com, using the Session
 Initiation Protocol (SIP) [RFC3261]. The b.com agent wishes to gate
 incoming calls based on proof of computational work provided by the
 a.com call agent. To perform this, the a.com agent implements the
 client component of the Ledger Verification Protocol (LVP). In LVP,
 clients - in this case embedded into the call agent - perform hashing
 operations, and maintain a self-generated ledger of transactions. To
 validate pages in the ledger, the ledger client accesses a ledger
 server through LVP. Through this protocol, the ledger client can
 obtain information to include int the SIP INVITE. A call agent will
 typically implement many instances of the ledger client, since each
 instance has an upper bound on the amount of calls per second it can
 perform.

https://datatracker.ietf.org/doc/html/rfc3261

Rosenberg & Jennings Expires September 3, 2018 [Page 4]

Internet-Draft SIPCoin March 2018

 In this architecture, there are two call agent roles - the generating
 agent and the receiving agent. Though, in the picture as shown, they
 represent the registrar of record for the caller and callee
 respectively, this need not be the case. Rather, the two roles can
 be implemented at differing paths along the actual call setup, and
 indeed occur multiple times along the call. Later sections in this
 document map the architecture to recommended points of physical
 implementation.

3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Generating Agent
 The SIP proxy, user agent or B2BUA which wishes to demonstrate
 proof of work in order to pass a call downstream towards a
 receiving agent which will ultimately validate the proof of work.

 Receiving Agent
 The SIP proxy, user agent or B2BUA which will only accept incoming
 calls under demonstration of proof of work.

4. Requirements

 o Unlimited Participants: The system must allow for an unlimited
 number of call agents to participate. New agents should be able
 to come and go on demand. This allows the system to extend to
 agents representing carriers, enterprises, home networks, and so
 on.

 o Low Latency: The system should not significantly increase the call
 setup delay for calls. This is a big constraint, since it means
 that proof-of-work computations must be performed in advance of
 placing the actual call. One to two seconds is acceptable, but
 not more than that.

 o Privacy Protection: There must not be any sharing of logs of
 calls, personally identifiable information (PII), phone numbers,
 or similar information. Sharing includes passing this information
 between entites which would otherwise not have access to it, or
 storing it in some kind of ledger.

 o Non-Transferrable: Any currency used for placing calls must be
 limited in scope to only allow placing of calls, and not be
 transferrable amongst participants in the system, or exchangeable
 for traditional or crypto currencies. This is a significant

https://datatracker.ietf.org/doc/html/rfc2119

Rosenberg & Jennings Expires September 3, 2018 [Page 5]

Internet-Draft SIPCoin March 2018

 requirement since it rules out all existing cryptocurrencies by
 definition. Why is this requirement important for this use case?

 * Enable small players: SIP was designed to enable an open
 interconnection amongst anyone on the Internet. A SIP domain
 can be a single device supporting a single user. It can be a
 home network. It can be a small business. It can be a large
 enterprise. It can be a small telco, a large telo, or a
 massive global provider. In order to enable the most open
 access possible, barriers to entry must be small.
 Consequently, we want to retain the property of SIP that a two
 person domain can install an open source SIP server, and be off
 and able to make calls. Transferability would mean that the
 currency has real value, and thus to operate a system, the
 agent must be able to connect to currency exchange systems,
 payment processing platforms, and so on, in order to obtain the
 currency before being able to place the first call. This makes
 it difficult for small players to participate.

 * Fraud: The entire purpose of this system is to prevent
 fraudulent entities from placing calls into the global SIP
 network. If it was based on transferrable cryptocurrencies, it
 would likely be susceptible to fraud and thus benefit the very
 entities we are trying to stop.

 * Managed Costs: Today's cryptocurrencies have highly variable
 exchange rates, sufficiently variable that they are difficult
 to use as a payment vehicle, and even more difficult to use for
 microtransactions. However, that is exactly the opposite of
 our case - we require high volume, extremely low cost
 microtransactions, at a price point which hits a particular
 operating point that is just high enough to make it
 unprofitable for spammers yet not overly expensive for real
 callers. Consequently, by tying the cost strictly to the price
 of computation, we reduce (though certainly do not fully
 eliminate!) the risks of highly variable currency and allow for
 relatively low cost microtransactions.

 o Non Privileged: The system should not require centralized entities
 to have access to telecom databases or other information which
 requires governmental or regulatory access. This constraint in
 the system makes it incrementally deployable without waiting for
 the centralized bureaucracy of telco operations. Any centralized
 capabilities must be an easy incremental add to existing services
 (e.g., a change to current cerificate authorities).

Rosenberg & Jennings Expires September 3, 2018 [Page 6]

Internet-Draft SIPCoin March 2018

 o Phone Numbers or SIP URI: The system should not require phone
 numbers to operate. It should work with traditional domain-based
 SIP URI as tell as tel URI phone numbers.

 o Predictable Cost: The system must enable a call agent to perform a
 certain amount of computation and be able to predict the amount of
 calling which it can perform for a given amount of computation
 performed in advance of the call. Without this property, an agent
 runs a risk it cannot service real-time requests for calls from
 its users because it doesn't have enough crypto currency. This
 property is related to the non-transferability requirement; if the
 crypto currencies were transferrable, an agent could instantly
 purchase crypto currency to place a call. Without
 transferability, predictable computation is required to ensure the
 ability to place a call.

 o Managed Governance: Since adjustments will need to be made in the
 computational costs required, the system must support a managed
 governance model under the authority of a standards body, such as
 the IETF or ITU.

5. Applicability of Traditional Cryptocurrencies

 One immediate question is - why not just use Bitcoin or one of the
 other crypto currencies? This would be easy to do. Each SIP INVITE
 would contain a reference to a transaction that passes the required
 costs from the caller to the callee.

 Putting aside for a moment the non-transferability requirement -
 which rules out all existing cryptocurrency - other requirements make
 Bitcoin and similar cryptocurrencies non viable.

 Firstly, they fail on the privacy requirement. Usage of Bitcoin
 would require transactions in the ledger to identify the caller and
 called parties, thus leaking information about who is calling who.

 Secondly, the systems do not provide predictable or managed costs,
 which are essential for this application. The cost of Bitcoin is
 highly variable, and subject to (sometimes wild) market swings.
 These costs cannot be managed by any consensus organization, and
 indeed the cost may collapse entirely, completely destroying the
 benefit of the system.

 Finally, Bitcoin is too slow. It, and similar cryptocurrencies, rely
 on ledgers which post infrequently, causing transactions to take
 minutes or even hours to eventually post and be verified. This
 system requires a transaction - the spending of a coin to place a

Rosenberg & Jennings Expires September 3, 2018 [Page 7]

Internet-Draft SIPCoin March 2018

 call - to happen fast enough that it can be spent by the caller, and
 verified by the callee, within one to two seconds.

6. Applicability of Challenge Based Solutions

 The second question to ask is - why not just have the callee
 challenge the caller to perform a computational puzzle at time of
 call setup, and the caller returns the results?

 The primary problem with this class of solution is the time it takes
 to perform enough computation to serve as an economic disincentive
 for placing spam calls. To get a general feel for the costs using
 modern compute, consider Amazon EC2 on demand pricing. For a middle
 of the road compute optimized node - say - the c4.large instance - as
 of February 25, 2018, Amazon is charging USD 10 cents per hour (.0027
 cents per second) of computation for an instance in US East. We can
 imagine that our goal for disincentivizing an attacker is somewhere
 between a .1 cent per call, and perhaps as high as a 10 cents per
 call, this would require computation on this particular instance type
 of between 37 seconds (for .1 cent of cost) and 1.01 hours (for one
 dollar).

 Of course, modern Bitcoin mining no longer uses CPUs or even GPUs for
 that matter, but rather ASICs. Though these can perform far more
 computation per unit time interval than a CPU for specialized
 hashing. However, the raw cost per hour of operation - regardless of
 the amount of computation that can be performed - is the question at
 hand for analyzing the viability of a challenge/response approach.
 ASIC and GPU based systems are higher cost per hour to operate due
 largely to their scarcity. [[OPEN ISSUE: hmm, not sure this argument
 works owing to asymmetry issues]]

 37 seconds - and certainly one hour - is far too long to wait before
 a call can be forwarded to the called party. For this reason, this
 class of technique does not work. The solution requires the
 performance of the computation ahead of the call.

 [[TODO: go through all EC2 instance types, price out a more
 normalized compute cost - dollars per Ghz per hour. Such a metric
 normalizes against number of CPUs as well as variations in the
 performance of the CPUs.]]

7. Overview of SIPCoin

 This section provides an overview of SIPCoin, a new cryptocurrency
 used for placing SIP calls over the global SIP network.

Rosenberg & Jennings Expires September 3, 2018 [Page 8]

Internet-Draft SIPCoin March 2018

 SIPCoin differs from Bitcoin significantly in that it does not rely
 on completely decentralized trust. Rather, it bootstraps itself on
 the existing certification authorities which power the modern web.
 As such, the system has two distinct actors - clients, and servers.
 Clients are entities which perform computation in order to create
 SIPCoins, and then "burn" those coins in order to place a call.
 Consequently, SIPCoin supports only two types of transactions - a
 "create" transaction which creates a Bitcoin through the solution of
 computational puzzles, and then a "burn" transaction which destroys a
 coin by binding it to a particular SIP call. Since the create and
 burn transactions are localized - they affect only the client itself
 - there is never a need for sharing of the ledger. Consequently,
 clients actually maintain their own ledgers for these transactions,
 as described below. A client needs to provide proof that it has
 burned a token; that proof is performed with a different object - a
 Burn Receipt - constructed by the client using data returned from the
 server.

7.1. SIPCoin Roles

 Clients are uniquely identified by their public key. There is no
 need for a certificate to be associated with the public/private key
 pair. Indeed, typically a single administrative entity - such as a
 telco operator - would have hundreds or thousands of clients, each
 with its unique public/private keypair. An administrative entity can
 create and destroy client instances at will, without any centralized
 configuration or provisioning.

 Servers - typically run by, or co-resident with certificate
 authorities - are responsible for verification of ledger pages
 created by clients, and issuing of data needed by clients to
 construct burn receipts for coins that are verifiably burned on the
 ledger. The protocol puts the burden of storage of all ledger
 information entirely in the hands of clients, such that servers
 require a tiny amount of storage per client. Since servers are run
 by certificate authorities, their verification of ledger pages and
 issuance of data to construct burn receipts relies on their private
 keying material, trusted by all other actors.

7.2. Creation and Maintenance of the Self Ledger

 Each client is responsible for maintenance of a ledger of its own
 create and burn transactions, the only two types of transactions
 permitted in the system. The ledger is broken into a series of
 pages. The client posts transactions into the current page of the
 ledger, called the active page. Each page starts with a page key,
 which is a hash of the prior page, forming a chain. Following the
 hash are a series of transactions. The pages prior to the active one

Rosenberg & Jennings Expires September 3, 2018 [Page 9]

Internet-Draft SIPCoin March 2018

 will all - through the LDP protocol - be signed by the server. These
 pages are called closed pages, and the server's signature over the
 page forms the final element in a closed page. The client is
 responsible for storing the prior pages in the ledger persistently.

 Clients do not need to maintain prior pages indefinitely. Recall
 that each page is composed of a series of create and burn
 transactions. For a particular page, a client can delete a page from
 storage when all of the following conditions are met:

 1. All the prior pages have been deleted

 2. All of the create transactions in the page have been burnt in a
 subsequent page which has been closed

 3. All of the Create transactions in the page have a subsequent
 Create transaction in a page which has been closed

 In essence, the client maintains a sliding window of pages, with the
 tail being the current active page, and the head being the newest
 page that still contains an unburnt coin or Create transaction that
 formed the seed of the hash for the current, in-progress one.

 The client is required to maintain these pages because they will need
 to be presented to the server to sign the current page, transitioning
 it from active to closed.

 If a client should lose its pages, it forfeits any coin which it may
 have created. This is a significant difference compared to
 traditional Bitcoin, which uses a distributed storage system to
 provide a global ledger based on consensus, shared by all
 participants. In SIPCoin, there are many parallel ledgers, and each
 is stored locally only to that participant. This also means that all
 partiicpants in SIPCoin can mine coins; it is not a competition.
 Competitive mining favors the largest and most invested players,
 preventing others from being able to mine at all, in some cases.
 Since it is not possible to transfer SIPCoin, such a situation would
 mean that a SIP entity might not be able to place a call since it
 never won a lottery.

 When a new client is created by an administrative entity, it needs to
 begin a new ledger. Each ledger and ledger page must be unique,
 ensureing that the proof of work transactions on one ledger cannot be
 copied into any other ledger. To create a new ledger, the client
 transacts with the server to obtain a first page. The first page is
 signed by the server - like all other pages. However, unlike
 subsequent pages, it contains no transcations - just a page key. The

Rosenberg & Jennings Expires September 3, 2018 [Page 10]

Internet-Draft SIPCoin March 2018

 server will choose a crypto-random value for the page key, ensuring
 that no two ledger pages start with the same value.

7.3. Transaction Types

 SIPCoin supports only two types of transactions that can be placed
 into the ledger. These are the create transaction and the burn
 transaction.

7.3.1. Create Transaction

 The create transaction is composed of the following elements:

 1. The challenge. This is a number that forms the seed of the
 hashing. For the first transaction in a page, the challenge is
 equal to the page key. For all subsequent create transactions,
 the challenge is a hash of the prior Create transaction in the
 ledger.

 2. The solution. This is a number which demonstrates that the proof
 of work has been done. Each proof of work is a hash function
 Ht() which takes as input two numbers, and returns a hashed
 result. The proof is demonstrated by providing a value S for the
 solution which, when hashed with the challenge C, forms a result
 H(S,C) which has N_Zero consecutive zeroes in the result. N_Zero
 is a global configuration parameter, and is discussed in more
 detail later on. Its adjustment is a principle part of the
 governance of the operation of SIPCoin.

 3. The Coin ID: This is computed by the client as a hash over its
 public key, the challenge, and the solution. It serves as a
 unique identifier for the Coin produced by this create
 transaction.

7.3.2. Burn Transaction

 The Burn transaction is created by the client when it wishes to place
 a SIP call. Consequently, each burn transaction is bound with a SIP
 INVITE. To perform this linkage, the burn transaction is composed of
 the Coin ID (obtained from a prior create transaction for an unspent
 coin) along with a hash over several fields of the SIP INVITE. The
 fields incude the From, To, Call-ID and fields from the SDP, such as
 media encryption keys. The hash also includes the timestamp for the
 burn transaction.

 Beacuse the burn transaction is a hash over these various parameters,
 when it is sent to the server for signature, the server has no way to
 invert the hash. Consequently, the server learns nothing about the

Rosenberg & Jennings Expires September 3, 2018 [Page 11]

Internet-Draft SIPCoin March 2018

 originator of the call, the recipient of the call, the type of media
 in the call, or anything else. All that the server learns is that a
 call was placed, and that it was placed by the administrative entity
 that has a relationship with the server. This does mean that
 servers, through the observation of burn transaction rates, will know
 the call volume being emitted by the entity, but thats it.

 The SIP agent running the client will not be able to send the SIP
 INVITE until it has received a burn receipt from the server. In
 essence, it needs to hold the INVITE until the ledger page is
 complete. For this reason, in SIPCoin, ledger pages close very fast.
 A client can post a ledger page for closure at a frequency on the
 order of one every 250ms to 500ms.

7.4. Closing Ledger Pages

 A client closes the active ledger page when one of two conditions is
 met:

 1. The ledger page contains N_trans transactions in it

 2. The client requires a burn receipt for a burn transaction on the
 page, and it has not posted a ledger to the server within the
 last T_min seconds

 A client is not required to close a ledger every T_min seconds; if it
 has no pending burn transactions in the ledger (only creates), it can
 wait. T_min specifies the minimum interval, and it is nominally
 enforced on the server to ensure the server is not overloaded.

 To actually close the page, the client signs the active page with its
 public key, and then transmits the active page to the server, along
 with the public key. The first time it closes a page, it will also
 need to post all closed pages to the server. The server will
 validate the transactions in the current page, including insuring
 that the client has not double burnt the same coin. That particular
 check requires the server to have all active pages for the client,
 which is why they must be sent.

 Once the server performs its checks, it will send back a signed
 version of the page, closing it. This enables the client to start a
 new active page in the ledger. The server also returns a signature
 over the now-closed page, using its trusted certificate.

 The server also returns a signed hash, described below, that allows
 the client to compute burn receipts for each SIPCoin that was burned.

Rosenberg & Jennings Expires September 3, 2018 [Page 12]

Internet-Draft SIPCoin March 2018

7.5. Server Validation

 The server follows a standardized process for validating the page
 submitted by the client. At a high level, it composes the following
 steps:

 1. The server authenticates the client; typically this is done using
 an administrative credential for the administrative entity
 responsible for the client. [[NOTE: Use ACME techniques for
 this??]]. LVP technically speaking does not require the server
 to actually authenticate the client if it chooses not to.

 2. The server checks the signature on all pages sent by the client
 to ensure that they have been signed by itself.

 3. The server validates that the pages form a sequential chain. It
 starts at the first page, computes it hash, and ensures that the
 result matches the page key of the subsequent page.

 4. The server keeps stored, for each unique client (as indexed by
 public key), the hash of the most recently signed active page
 from that client, thus closing it. It checks that the active
 page that is to be signed is the successor, by comparing the page
 key in the active page to the stored value. This prevents
 malicious clients from forking the ledger and placing the same
 burn transaction, but for different INVITEs, into each fork.

 5. The server examines every burn transaction in all pages sent by
 the server, and makes sure it matches exactly one create
 transaction. This ensures that the server has received all pages
 from the client (omission of a page from the client would enable
 it to double burn).

 6. The server processes the transactions in order in the active page
 which is to be signed. If a transaction is ia create
 transaction, it verifies that the challenge is either the page
 key (for the first ever Create transaction) or the hash of the
 prior Create transaction in the ledger otherwise. The server
 stores, indexed by the public key of the client, the hash of the
 most recent Create transaction. It verifies this Create
 transaction has used that value as the challenge. It then takes
 H(), and uses it with the challenge and solution values. It
 verifies that the result has N_zero consecutive zeros. It then
 hashes the client public key with the challenge and solution, and
 makes sure it matches the Coin ID. If the transaction is a burn
 transaction, the server takes the CoinID and searches through all
 burn transactions in all pages sent by the client, and makes sure
 it doesnt match the Coin ID in any other burn transaction.

Rosenberg & Jennings Expires September 3, 2018 [Page 13]

Internet-Draft SIPCoin March 2018

 Once these validation steps pass, the server generates a signature
 over the active page using its certificate. It then stores the hash
 of this closed page to enable it to validate the next one, and stores
 the hash of the last Create transaction in the page to validate the
 next Create transaction.

 To enable the client to create and send burn receipts, the server
 computes a balanced binary merkle tree, where the leaf nodes in the
 tree represent the Burn transactions from the page which was just
 closed. The head of the merkle tree is the signed by the CA with its
 private key. The signed head is returned to the client, along with
 the signed page that was just closed.

 For purposes of performance optimization, the server can elect the
 cache the inactive pages, avoiding the need for the client to resend
 them each time. To do that, the server stores the pages and
 generates a cache key, which is an opaque parameter chosen by the
 server. The client, in subsequent validation requests, can include
 this key. It can then be used by the server to route those requests
 to the server instance which is holding the cache, and then used to
 extract the cached pages indexed by that key. If the server has a
 cache miss, it can reject the request and force the client to
 resubmit all its inactive pages.

7.6. Constructing Burn Receipts

 To construct burn receipts, the client computes the merkle tree
 identically to the algorithm used by the server. It then verifes the
 signature over the head. This will normally be valid, since the CA
 is trusted in this architecture. The burn receipt for a SIPCoin is a
 digital object composed of:

 1. All of the nodes in the merkle tree, starting at the leaf for the
 burn transaction for the coin in question, to the head of the
 tree.

 2. For each node in the list above, the sibling of that node.

 3. The signature over the head, as provided by the server.

 This object is readily verified by having the receiving call agent
 hash upwards through the merkle tree and compare the result against
 the signature on the head. This burn receipt is included in the SIP
 INVITE. The usage of a merkle tree reduces the number of signing
 operations at the CA and also reduces the amount of data that must be
 transferred back to the client.

Rosenberg & Jennings Expires September 3, 2018 [Page 14]

Internet-Draft SIPCoin March 2018

8. Usage of SIPCoin with SIP

 The usage of SIPCOin with SIP is relatively straightforward. We say
 that a "SIPCoin is included in the INVITE" when the INVITE includes a
 Burn receipt for that coin; in this architecture coins are not
 actually transfer, only proof of their destruction. SIPCoins can be
 included in a SIP INVITE proactively with a Burn receipt, or they can
 be inserted reactively at request of the receiving agent. Its
 easiest to understand through the reactive flow.

 The generating agent sends an INVITE normally, without any SIPCoin in
 it. This arrives at the receiving agent. Ideally, the receiving
 agent will verify the caller ID (see [draft-rosenberg-stir-callback]
 for a solution to enable this to occur). Once verified, the
 receiving agent checks whether the caller is known to be acceptable
 to the called party. The definition of acceptable is a matter of
 local policy and depends on the physical entities performing the
 receiving agent role, as discussed below.

 If the caller is acceptable, the call is passed to the called party.
 If the nature of the caller is unknown (which is again a matter of
 local policy), the receiving agent rejects the INVITE with a response
 code 4xx which challenges for SIPCoin in order to accept the call.

 When this is received at the generating agent, it constructs a new
 INVITE, burns a coin, constructs the burn receipt, and places those
 into the INVITE. This passes to the same receiving agent. If the
 caller ID is verified (whcih would have been done from the prior
 step) and it continues to be unknown, the receiving agent validates
 the burn receipt.

 To validate it, the receiving agent performs the hashing through the
 merkle tree and verifies the signature on the hash at the top. The
 certificate verification requires the generating and calling agents
 to share a common trust anchor. This specification mandates that all
 agents trust the same set of CAs present in the Mozilla Firefox
 browser. This allows SIPCoin to be rooted in a well vetted,
 continuously maintained set of trust anchors which is proven to work
 globally.

 If the signature is valid, the receiving agent considers the burnt
 coin as a sufficient proof of work to allow the call to proceed to
 the called party.

 In the proactive model, which can be used by the caller to speed up
 call setup if they desire, they burn a SIPCoin prior to the challenge
 and include it in the INVITE straight away.

https://datatracker.ietf.org/doc/html/draft-rosenberg-stir-callback

Rosenberg & Jennings Expires September 3, 2018 [Page 15]

Internet-Draft SIPCoin March 2018

9. Deployment Considerations

 There are many ways in which SIPCoin can be used. And in fact, the
 hardest part of rolling out a solution like SIPCoin is handling the
 intermediate states where it is only partially deployed on the
 Internet. This document proposes a phased rollout where each step is
 motivated by economic benefit to the parties at hand.

9.1. Enterprise SIP Trunks

 The easiest deployment topology, and the best way to start, is on SIP
 trunks between a customer and their provider. In this model, the
 generating agent is that of the administrative entity which is using
 the SIP trunk, and the receiving agent is that of the provider.
 These are adjacent agents connected by a single SIP hop. As an
 example, the generating agent could be an enterprise, and the
 receiving agent would be a traditional telco offering enterprise SIP
 trunks. This would also be combined with the reverse role, where the
 service provider also runs a generating agent and the enterprise runs
 a receiving agent.

 This arrangement provides a value proposition for the enterprise to
 protect itself from inbound spam calls which are received through
 their SIP trunk provider. If the spammer is another enterprise
 customer of the same provider, that enterprise becomes disincented
 from spamming due to costs. If the spammer is farther away - and in
 this phase they are most likely to be - the SP eats the cost and
 genreates the SIPCoin.

 In such a service model, the service provider would - through its
 bilateral relationships with its customers, insist its customers
 implement the Outbound SIP Trunk role. As a result, the service
 provider itself would not need to generate SIPCoin for intra-provider
 calls. However, it would genreate them for inter-provider calls.
 This provides a benefit to the enterprise, who are now protected from
 spammers connected to the same SP, and the fact that the SP creates
 and burns calls for transit calls means that the enterprise gets the
 benefit of only ever accepting inbound calls which have SIPCoins
 burned.

 In this model, the SP can save itself money in one of two ways.
 Firstly is through whitelisting. As part of the SIP trunk
 specification, enterprises on the receiving side should maintain a
 database of callers they 'trust'. A caller ID is trusted if the
 caller ID has been verified [draft-rosenberg-stir-callback], and the
 enterprise had previously, in the last few weeks, placed multiple
 calls to that number, those calls having connected and had a duration
 of at least a few minutes. This provides a simple model of: I'll

https://datatracker.ietf.org/doc/html/draft-rosenberg-stir-callback

Rosenberg & Jennings Expires September 3, 2018 [Page 16]

Internet-Draft SIPCoin March 2018

 trust your inbound call if I've called you previously. The
 enterprise PBX can also use contact lists from employees contianing
 phone numbers to populate this list.

 This means the SP cost is reduced for trusted callers, and not for
 others. To further reduce costs, the SPs are incented therefore to
 establish bilateral peering with each other over Inter-carrier
 trunks.

9.2. Inter-Carrier Trunks

 These work identically to the enterprise SIP trunks; the carriers on
 each side of an inter-carrier peering link implement both the
 generating and terminating roles of the call agents. When a
 terminating enterprise challenges its SP for a coin, if the call
 arrived via an inbound trunk from another carrier, the SP can
 propagate the request for a coin upstream to save itself costs. If
 the upstream provider doesnt support SIPCoin, the SP must burn the
 coin itself, creating costs, and thus incentive for each side to
 insist on implementation to reduce costs.

 In this way, SIPCoin implementations propagate outwrads, ultimately
 reaching the originating carriers for consumer services and
 enterprises. This brings us to the final phases.

9.3. Consumer provider to Mobile Phone

 This specification recommends that the terminating role be
 implemented in smartphones implementing the IMS specifications.
 Consider now an enterprise which placed a call towards a consumer
 mobile phone. This call is received at the terminating mobile
 provider. Since it knows that the mobile callee SIP UA supports
 SIPCoin (from the SUpported header field in the REGISTER), it
 propagates the INVITE towards the called phone after verifying the
 caller ID. The callee, seeing that the caller ID is verified, checks
 its local contact list. If the caller is on the contact list, it
 doesnt challenge for coin. If it isnt, it challenges for the coin.
 This propagates all the way back to the originating enterprise, which
 burns a coin to place the call, which is then accepted by the callee.

 The generting role is not appropriate for implementation on mobile
 phones, and as such the consumer mobile operator cannot pass its
 costs upstream. However, as part of bilateral peering arrangements
 and standards coordination, the SP can insist that each other require
 their mobile phones to comply with the specs that mandate
 implementation of the terminating role. That will save each other
 money in proportion to the balance of their inbound to outbound
 calls.

Rosenberg & Jennings Expires September 3, 2018 [Page 17]

Internet-Draft SIPCoin March 2018

 This then provides the final economic incentive to achieve the target
 architectural model.

9.4. Target Model

 In the idealized model, the terminating role is implemented by the
 receiving phones, and the generating role implemented by the call
 agents operating on their behalf. The entire SIP core network
 supports these roles, but as this target deployment architecture is
 reached, they never need to generate or verify SIPCoin since it is
 fully handled e2e. This minimize cost for all parties and
 concentrates it on the entites generating calls to numbers which are
 never called back, and not on the contact lists of mobile phones.

10. Governance

 In order for SIPCoin to be an effective tool against spammers, it
 requires ongoing governance. This governance takes three forms:

 1. Updating of this specification

 2. Periodic adjustment of the value of N_Zero

 The first of these is fairly routine for the IETF, but new for
 cryptocurrencies, which rely on distribued consensus amongst majority
 implementations. SIPCoin is more managed than those networks, and as
 such we propose the IETF, in essence, manage the behavior of the
 system through the published RFC.

 The second of these is more interesting. In order to deal with
 changes in the cost of computation over time, it is necessary to
 adjust the value of N_Zero periodically. This specification suggests
 that the IETF consensus process be used for this purpose. To speed
 up implementation, the value of N_Zero must be loaded dynamically by
 all clients and servers from an IETF maintained and verified website.
 This allows IETF governance to decide on a new value, and for that
 new value to be used instantly across the entirety of the SIP based
 telephone network.

11. Economic Analysis and Parameter Tuning

11.1. Cost Targets

 The goal of SIPCoin is to incur cost to callers, in such a way that
 it erodes the profitability of the spammers to the point of making it
 no longer viable, and, at the same time, representing only a small
 increase in the cost to legitimate callers. This represents an
 operating window in which the system needs to operate.

Rosenberg & Jennings Expires September 3, 2018 [Page 18]

Internet-Draft SIPCoin March 2018

 Let us first consider the tolerable costs to legitimate callers. In
 most cases we anticipate the costs to be borne by the service
 providers, and then passed on to consumers or perhaps absorbed if the
 costs do not merit it. Its important to point out that the cost of
 SIPCoin is metered per call regardless of destination or duration of
 call. This tends to penalize entities that make many short calls (as
 telemarketers do) while benefit those who make fewer, long,
 international calls (which is more typical of users paying high costs
 today to call friends and family abroad).

 As a back of the envelope analysis - the average phone bill in the
 U.S. is approximately $100 for a mobile phone each month. According
 to [PR Newswire][<https://www.prnewswire.com/news-releases/no-time-

to-talk-americans-sendingreceiving-five-times-as-many-texts-compared-
to-phone-calls-each-day-according-to-new-report-300056023.html>], the

 average American makes or answers six phone calls per day. Assuming
 this is symmetric, thats 3 placed calls per day, 90 per month. With
 a three percent increase in their bill as an upper bound, this means
 $3 per month, or 3 cents per call.

 On the other side of the house - the spammers. Its hard to get
 precise data - but here is a back of the envelope. A recent [Boston
 Globe article][<https://www.bostonglobe.com/ideas/2017/05/11/the-

onslaught-spam-calls-will-keep-getting-worse/2w1tyrSnzEj8NPO81hUUBK/
story.html>] cites that in the US, 2.5B robocalls were placed in the

 US in April of 2017. Later in the article, it quotes a cost to
 Americans of $350 million between 2011 and 2013. If we assume this
 translates directly to the profits of the spammers, over that 36
 month period thats $9.7M profit per month. If it took 2.5B robocalls
 per month to achieve that profit, that is a profit of 0.38 cents per
 call.

 This means there is - on the surface - a viable operating point here.
 Assuming a 50% erosion in profit is enough to make a dent in
 telemarketing, our lower bound on the cost of SIPCoin is 0.19 cents
 per call, and our upper bound is 3 cents per call. This represents
 an order of magnitude spread. That is without consideration to the
 addition of whitelists.

 When combined with the whitelist and verified caller ID, we can
 signicantly shift the cost to the spammers. As a back of the
 envelope, costs are incurred to non-spammers when a user makes a call
 to a number that the user has never received a call from nor is on
 the contact list of the callee. There are real use cases for this -
 a call to a contact center is one such case. Another is a call to a
 new contact number learned via business card or personal
 introduction. These are, relativey few. If we assume that, of the
 100 or so calls made each month perhaps one is like that, this adds

https://www.prnewswire.com/news-releases/no-time-to-talk-americans-sendingreceiving-five-times-as-many-texts-compared-to-phone-calls-each-day-according-to-new-report-300056023.html
https://www.prnewswire.com/news-releases/no-time-to-talk-americans-sendingreceiving-five-times-as-many-texts-compared-to-phone-calls-each-day-according-to-new-report-300056023.html
https://www.prnewswire.com/news-releases/no-time-to-talk-americans-sendingreceiving-five-times-as-many-texts-compared-to-phone-calls-each-day-according-to-new-report-300056023.html
https://www.bostonglobe.com/ideas/2017/05/11/the-onslaught-spam-calls-will-keep-getting-worse/2w1tyrSnzEj8NPO81hUUBK/story.html
https://www.bostonglobe.com/ideas/2017/05/11/the-onslaught-spam-calls-will-keep-getting-worse/2w1tyrSnzEj8NPO81hUUBK/story.html
https://www.bostonglobe.com/ideas/2017/05/11/the-onslaught-spam-calls-will-keep-getting-worse/2w1tyrSnzEj8NPO81hUUBK/story.html

Rosenberg & Jennings Expires September 3, 2018 [Page 19]

Internet-Draft SIPCoin March 2018

 another two order of magnitude to the spread, resulting in a three
 order of magnitude improvement. This means that, as long as we can
 keep the economics of calling such that it is not three times cheaper
 for a spammer than an SP to mine SIPCoin, the system can be
 effective.

11.2. Impact of Compute Variability

 The hardest challenge in building a system that operates in the cost
 targets is dealing with the highly variable costs of computation. To
 give some perspective on this, a somewhat dated article on Bitcoin
 compute costs [<https://en.bitcoin.it/wiki/Non-

specialized_hardware_comparison>] shows a spread of three orders of
 magnitude in hashing performance across a range of Intel CPUs (from
 0.245 Mhash/s (million hashes per second), up to 140 million). It
 cites the performance of GPUs as sitting in a range from 1 MHash/s up
 to 2568 MHash/s, and quotes ASICs as being able to reach 1000 GHash/s
 (Billion hashes per second). The performance spread is therefore
 seven orders of magnitude. Though there is surely a spread in cost
 as well, it is assuredly not as large. This means that in SIPCoin,
 the spammers will be incentivized to buy high performance compute
 which is viable economically only at high scale.

 However, considering the deployment architecture described above, the
 generating role is implemented by enterprises that have SIP trunks to
 their carriers, and the carriers. The low end computational devices
 - mobile phones - actually delegate their generating role to the call
 agent acting on their behalf. If we imagine that small home networks
 and small businesses would similarly delegate their generating role
 to their service provider, we end up in a model where trust
 relationships primarily put the burden of computation on larger
 entities, which can in general afford to just all use ASICs, which
 can eliminate the disparity between the spammers and the good guys.

 In other words, if the spammer can afford some ASIC-based machines,
 Verizon can too.

11.3. Load Analysis on the CAs

 This proposal introduces a new role to be played by a CA, in the
 verification of SIPCoin ledgers. This process is, fortunately,
 almost stateless, requiring a query for just two hash value indexed
 by a public key. There are no user records, payment systems,
 cryptographic storage (beyond what they already implement). However,
 it is extremely high volume.

 Assume a large carrier is about 100 million subscribers. Assume that
 they do an average of about 10 calls attempts per day per user.

https://en.bitcoin.it/wiki/Non-specialized_hardware_comparison
https://en.bitcoin.it/wiki/Non-specialized_hardware_comparison

Rosenberg & Jennings Expires September 3, 2018 [Page 20]

Internet-Draft SIPCoin March 2018

 Assume volume at peak is 3x average (ignoring things like earthquakes
 in California). For calculation purposes, lets say we we are
 closing ledger ever 0.5 seconds. That gives us (100,000,000 * 10 * 3
 / 246060 / 0.5) = 70,000 entries per close in busy case. Lets say
 our EC signature are 100 bytes and that a burn or create transaction
 fit in 256 bytes total and that a given page has about equal number
 of create and burn. This gives me that the CA, even it it only goes
 back a 2 pages, needs to look at 3 pages * 70,000 entries * 2 (for
 create and burn) * 256 bytes = 100 Mbyte each half second or about
 1.6 Gbps.

 Is this too much? Its a lot. But not out of the realm of
 reasonableness.

12. Alternative Consensus Techniques

 The proposal here uses the CAs as trusted third parties to verify the
 ledger. This is owing to the challenges in achieving rapid consensus
 in large scale distributed blockchains. However, a variant on the
 proposal here is to elect randomly a small subset of the entities
 participating in bitcoin and require consensus only amongst a subset.
 The size of the subset needs to only be larger than twice the number
 of malicious entities we wish to tolerate. One can argue that the
 incentives for being malicious in SIPCoin are smaller (just
 spammers), perhaps they only represent 5% of call agents in the
 network (whcih would be a lot!). So we only need 10% of the nodes
 for consensus.

 If the set of elected nodes can be small, and they are very well
 connected to each other, we can run full-mesh consensus protocols
 which are potenitally fast enough to achieve consensus and sign
 results and then distribute them at a speed which meets the
 requirements here. These elected agents would exactly implement the
 server side role of LVP, and validation is by looking at consensus
 view rather than verifying signatures.

13. Security Considerations

 There are many attacks possible in this system. THe primary ones to
 prevent are the clients acting maliciously in order to either create
 additional SIPCoin without doing the hashing work, or use the same
 SIPCoin for multiple SIP INVITEs. We consider both forms of attack.

13.1. Creating Additional SIPCoin

 A client might maliciously obtain a SIPCoin from another client in
 some way (perhaps eavesdropping or theft of databaase), and then use
 it for itself. However, it cannot do that. Since the challenge in

Rosenberg & Jennings Expires September 3, 2018 [Page 21]

Internet-Draft SIPCoin March 2018

 the SIPCoin is bound to the ledger in which it lies, by using the
 page key, and then the page key is linked to the entire ledger chain
 for the same client, it is not possible to insert SIPCoins into
 different ledgers.

 A client might try and perform the hashing and then insert the same
 SIPCoin twice into the same ledger page. However, this is not
 possible because the server will confirm each Create transaction
 derives from a unique predecssor. In a similar way, a client might
 try to insert the same create transaction into two different ledgers.
 Since the server maintains an index of the most recent Create
 transaction, it would detect this.

13.2. Burning a SIPCoin Multiple Times

 One way in which a client might try and burn the same coin twice is
 to literally have the same burn transaction reference the same coin
 in its sequential ledger chain. This is prevented through the core
 validation steps performed by server, which looks for such
 duplicates.

 Another way in which a client might try and burn the same coin twice
 is to fork the ledger, and put the same Burn event in different
 pages. This is prevented because the server will verify and then
 sign the first such forked page presented to it. When it does, the
 server basically advances the pointer it maintains to the most
 recently closed page in the ledger. When the client tries to fool
 the server into verifying the second fork, the server will reject it
 because the currently active page is not the direct descendant of the
 previously closed page. Thus, the client can only maintain a single,
 sequential ledger.

 THe client might try and use the same Burn Receipt in two different
 SIP transactions. This is not possible, because the Burn receipt
 includes a hash over the fields in the INVITE which cannot be
 duplicated by the call agent without for differnt calls - the called
 party and timestamp. Narrow timestamp windows (say, 2 seconds),
 prevent even calls to the same number with the same Call-ID within
 that window.

 A client might try and take burn receipts from INVITEs it reuses, and
 replay them in different INVITEs. The binding of the burn receipt to
 the called user prevents this.

 [[TODO: lot more rigor needed here]]

Rosenberg & Jennings Expires September 3, 2018 [Page 22]

Internet-Draft SIPCoin March 2018

14. IANA Considerations

 TODO

15. Acknowledgments

 Many thanks to Ram Jagadeesan and Richard Barnes for their input.

16. References

16.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

16.2. Informative References

 [draft-rosenberg-stir-callback]
 Rosenberg, J. and C. Jennings, "Bootstrapping STIR
 Deployments with Self-Signed Certs and Callbacks", March
 2018, <https://tools.ietf.org/html/

draft-rosenberg-stir-callback-00>.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 DOI 10.17487/RFC3261, June 2002,
 <https://www.rfc-editor.org/info/rfc3261>.

 [RFC5039] Rosenberg, J. and C. Jennings, "The Session Initiation
 Protocol (SIP) and Spam", RFC 5039, DOI 10.17487/RFC5039,
 January 2008, <https://www.rfc-editor.org/info/rfc5039>.

Authors' Addresses

 Jonathan Rosenberg
 Cisco Systems

 Email: jdrosen@jdrosen.net

 Cullen Jennings
 Cisco Systems

 Email: fluffy@iii.ca

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/draft-rosenberg-stir-callback
https://tools.ietf.org/html/draft-rosenberg-stir-callback-00
https://tools.ietf.org/html/draft-rosenberg-stir-callback-00
https://datatracker.ietf.org/doc/html/rfc3261
https://www.rfc-editor.org/info/rfc3261
https://datatracker.ietf.org/doc/html/rfc5039
https://www.rfc-editor.org/info/rfc5039

Rosenberg & Jennings Expires September 3, 2018 [Page 23]

