Network Working Group J. Rosenberg

Internet-Draft Five9
Intended status: Standards Track C. Jennings
Expires: January 9, 2020 Cisco Systems

A. Minessale
Signalwire/Freeswitch
July 8, 2019

Real Time Internet Peering Protocol
draft-rosenbergjennings-dispatch-ripp-01

Abstract

This document specifies the Realtime Internet Peering Protocol
(RIPP). RIPP is used to provide telephony peering between a trunking
provider (such as a telco), and a trunking consumer (such as an
enterprise, cloud PBX provider, cloud contact center provider, and so
on). RIPP is an alternative to SIP, SDP and RTP for this use case,
and is designed as a web application using HTTP/3. Using HTTP/3
allows trunking consumers to more easily build their applications on
top of cloud platforms, such as AWS, Azure and Google Cloud, all of
which are heavily focused on HTTP based services. RIPP also
addresses many of the challenges of traditional SIP-based trunking.
Most notably, it mandates secure caller ID via STIR, and provides
automated trunk provisioning as a mandatory protocol component. RIPP
supports both direct and "BYO" trunk configurations. Since it runs
over HTTP/3, it works through NATs and firewalls with the same ease
as HTTP does, and easily supports load balancing with elastic cluster
expansion and contraction, including auto-scaling - all because it is
nothing more than an HTTP application. RIPP also provides built in
mechanisms for migrations of calls between RIPP client and server
instances, enabling failover with call preservation.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

Rosenberg, et al. Expires January 9, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft RIPP

This Internet-Draft will expire on January 9, 2020.

Copyright Notice

July 2019

Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document.

Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document.

Code Components extracted from this document must

include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

(=

W IN

N o o |

|co

Introduction
1.1. Background
1.2. Problem Statement
1.3. Solution
1.4. Why Now?
Solution Requ1rements
Design Approaches
3.1. HBH, not E2ZE e e e
3.2. Client-Server, not Agent-to-Agent
3.3. Signaling and Media Together
3.4 URIs not IPs
3.5. OAuth not MTLS or prlvate IP
3.6. TLS not SRTP or SIPS
3.7. Authenticated CallerID
3.8. Calls Separate from Connections
3.9. Path validation, not ICE
Reference Architecture
Terminology
Overview of Operation
Example
7.1 Inbound Call
7.2 Outbound Call
7.3. End of call
. Detailed Behaviours
8.1. Configuration .
8.2 RIPP Trunk Provisioning
8.3. Capabilities
8.4. Initiating Calls
8.5 Establishing the Slgnallng Byways

BIER

N NN NN NNN R B [T
‘m b)Lh‘M %th‘p MAkD‘m M1Lb‘H [Y o‘c>m>ko\m o N N o 01 (U1 | (w |w

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Rosenberg, et al. Expires January 9, 2020 [Page 2]

Internet-Draft RIPP July 2019

8.6. The Media Sequence

8.7. Opening Media Byways

8.8. Sending and Receiving Media . .o e
8.9. Terminating and Re-establishing Connectlons and Byways
8.10. Signaling - Events

8.11. Call Termination

8.12. GET Transactions e

8.13. Graceful Call Migration: Server

8.14. Graceful Call Migration: Client

8.15. Ungraceful Call Migration

Gateway

9.1. RIPP to SIP

9.2. SIP to RIPP

RAML API .

IANA Considerations

Security Considerations

Acknowledgements

Informative References

thors Addresses

[(e]
[%2)
H
v

A=
Elhloloibieo
‘-b ‘00 ‘()L) ‘oo ‘00 ‘00 ‘w ‘oo ‘00 ‘oo ‘0\) ‘w ‘00 ‘oo ‘ww‘m ‘I\) ‘I\)
O O |© OO0~ WIEFERIOI|OI|©

1. Introduction
1.1. Background

Cloud computing platforms, such as those provided by Amazon, Azure,
and Google, have now become mainstream for the development of
software applications. These platforms are targeted at enabling web
applications, and as such many of their features are based on the
usage of HTTP.

One example are HTTP load balancers. Cloud computing platforms
provide highly scalable, geographically distributed, redundant load
balancers. These load balancers can monitor the state of downstream
servers and can uniformly distribute load amongst them. The load
balancers can compensate for failure of individual nodes and send new
traffic to other nodes.

Autoscaling is another example. The cloud computing platforms can
automatically add new instances of a server backend, or remove them,
and automatically configure the load balancers to include them in the
pool of available servers.

Yet another example is Kubernetes, which allows web-based
applications to be deployed into containers (typically Docker), with
load balancing, scaling, and HTTP request routing.

Rosenberg, et al. Expires January 9, 2020 [Page 3]

Internet-Draft RIPP July 2019

Another example are HTTP tracing tools, which facilitate the tracing
of requests through distributed microservices. These tools can
autogenerate sequence diagrams and facilitate in troubleshooting.

Yet another example are API gateways (such as APIGee and Kong), which
provide authentication and authorization, provisioning of
applications, rate limiting, analytics, sandboxing for testing,
embedded documentation, and so on.

And yet another example are denial-of-service prevention techniques,
typically done using BGP peering and re-routing. Though in principle
these techniques can work for VoIP, they are deployed in conjunction
with the load balancers which represent the entry point into these
cloud provider networks. Consequently, the protections these cloud
providers offer do not extend to applications which merely use these
platforms for virtual machines.

A more recent technology are service meshes, such as Istio, which
utilize sidecar HTTP proxies to facilitate inter-service
communications. These systems come with robust control planes which
enable additional routing features, such as canary deploys,
percentage based routing, and so on.

1.2. Problem Statement

Unfortunately, there are many applications being deployed into these
cloud platforms which require interconnection with the public
switched telephone network (PSTN). Examples of such applications
include cloud PBXs, cloud contact centers, cloud meetings
applications, and so on. Furthermore, commerce websites would like
to allow customers to call into the telephone network for customer
support.

In order for these applications to connect to the PSTN, they
typically deploy Session Initiation Protocol (SIP) [RFC3261] based
servers - SBCs, SIP proxies, and softswitches, to provide this
interconnection. Unfortunately, SIP based applications cannot make
use of the many capabilities these cloud platforms afford to HTTP
based applications. These SIP servers are usually deployed on bare
metal or VMs at best. Application developers must build their own
load balancing, HA, failover, clustering, security, and scaling
technologies, rather than using the capabilities of these platforms.

This has creating a barrier to entry, particularly for applications
such as websites which are not expert in VoIP technologies.
Furthermore, it has meant that VoIP applications have been unable to
take advantage of the many technology improvements that have come to

https://datatracker.ietf.org/doc/html/rfc3261

Rosenberg, et al. Expires January 9, 2020 [Page 4]

Internet-Draft RIPP July 2019

networking and protocol design since the publication of RFC 3261 in
2002.

In addition, SIP trunking has suffered from complex provisioning
operations, oftentimes requiring the exchange of static IPs and
ports. These operations are almost never self-service and
consequently, SIP trunk turn ups can take weeks. Finally, perhaps
the biggest challenge with SIP trunking has been its abuse for
injecting robocalls.

1.3. Solution

The goal of RIPP is to enable one administrative domain to send and
receive voice calls with another domain. In this regard, RIPP
replaces the usage of SIP, SDP offer/answer [REC3264] and RTP
[REC3550] for this particular use case. RIPP does not actually
deprecate or replace SIP itself, as it covers only a small subset of
the broader functionality that SIP provides. It is designed to be
the minimum protocol required to interconnect voice between a
trunking provider and a domain wishing to access trunking services.

In order to make use of new HTTP based technologies as described
above, RIPP uses HTTP/3 [I-D.ietf-quic-http], but is not an extension
to it. The goal is to ride the coattails of advancement in HTTP
based technologies without requiring them to do anything special for
the benefit of VoIP. This means that RIPP inherits the benefits of
classic HTTP deployments - easy load balancing, easy expansion and
contraction of clusters (including auto-scaling), standard techniques
for encryption, authentication, and denial-of-service prevention, and
So on.

RIPP also includes a built-in mechanism for provisioning, as a
mandatory component of the specification. This enables RIPP trunks
to be self-provisioned through web portals, and instantly turned on
in production. This will help accelerate the adoption of
telecommunications services across the web.

1.4. Why Now?

The idea of re-converging HTTP and SIP is certainly not new, and
indeed has been discussed in the hallways of IETF for many years.
However, several significant limitations made this previously
infeasible:

1. HTTP utilized TCP, which meant that it created head-of-line
blocking which would delay lost packets rather than just discard
them. This will often provide intolerable latency for VoIP.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3550

Rosenberg, et al. Expires January 9, 2020 [Page 5]

Internet-Draft RIPP July 2019

N

2. HTTP was request response, allowing the client to send requests
and receive a response. There as no way for a server to
asynchronously send information to the client in an easy fashion.

HTTP2 [RFC7540] addressed the second of these with the introduction
of pushes and long running requests. However, its usage of TCP was
still a problem. This has finally been addressed with the arrival of
QUIC [I-D.ietf-quic-transport] and HTTP/3. QUIC is based on UDP, and
it introduces the concept of a stream that can be set up with zero
RTT. These streams are carried over UDP, and though are still
reliable, there is no head of line blocking across streams. This
change has made it possible for HTTP to support VoIP applications.

Solution Requirements
The protocol defined here is based on the following requirements:

REQ1l: The solution shall not require extensions or modifications to
HTTP/3.

REQ2: The solution shall work with both L4 and L7 HTTP load balancers

REQ3: The solution shall work in ways that are compatible with best
practices for load balancers and proxies supporting HTTP/3, and not
require any special changes to these load balancers in order to
function.

REQ4: The solution should hide the number of servers behind the load
balancer, allow the addition or removal of servers from the cluster
at will, and not expose any of this information to the peer

REQ5: The solution shall enable the usage of autoscaling technologies
used in cloud platforms, without any special consideration for RIPP -
its just a web app

REQ6: The solution shall provide call preservation in the face of
failures of the server or client. It is acceptable for a brief blip
of media due to transient packet loss, but thats it

REQ7: The solution shall support built-in migration, allowing a
server to quickly shed load in order to be restarted or upgraded,
without any impact to calls in progress

REQ8: The solution will be easy to interoperate with SIP

REQ9: The solution shall be incrementally deployable - specifically
it must be designed for easy implementation by SBCs and easy

https://datatracker.ietf.org/doc/html/rfc7540

Rosenberg, et al. Expires January 9, 2020 [Page 6]

Internet-Draft RIPP July 2019

(M)

deployment by PSTN termination and origination providers who do not
utilize cloud platforms

REQ10: The solution shall require authentication and encryption, with
no opportunity to disable them. Furthermore, it will require secure
callerID, with no provision for insecure callerID

REQ11: The solution shall provide low latency for media

REQ12: The solution shall support only audio, but be extensible to
video or other media in the future

REQ13: The solution must support secure caller ID out of the gate and
not inherit any of the insecure techniques used with SIP

REQ14: The solution shall include mandatory-to-implement provisioning
operations

Design Approaches

To meet the requirements stated above, RIPP makes several fundamental
changes compared to SIP. These changes, and their motivations, are
described in the sections below.

HBH, not E2E

SIP was designed as an end-to-end protocol. As such, it explicitly
incorporates features which presume the existence of a network of
elements - proxies and registrars in particular. SIP provides many
features to facilitate this - Via headers, record-routing, and so on.

HTTP on the other hand - is strictly a hop-by-hop technology. Though
it does support the notion of proxies (ala the CONNECT method for
reverse proxies), the protocol is fundamentally designed to be
between a client and an authoritative server. What happens beyond
that authoritative server is beyond the scope of HTTP, and can (and
often does) include additional HTTP transactions.

Consequently, in order to reside within HTTP, RIPP follows the same
pattern and only concerns itself with HBH behaviours. Like HTTP, a
RIPP server can of course act as a RIPP client and further connect
calls to downstream elements. However, such behavior requires no
additional specification and is therefore not discussed by RIPP.

Rosenberg, et al. Expires January 9, 2020 [Page 7]

Internet-Draft RIPP July 2019

3.2. Client-Server, not Agent-to-Agent

SIP is based fundamentally on the User Agent, and describes the
communications between a pair of user agents. Either user agent can
initiate requests towards the other. SIP defines the traditional
role of client and server as bound to a specific transaction.

HTTP does not operate this way. In HTTP, one entity is a client, and
the other is a server. There is no way for the server to send
messages asynchronously towards the client. HTTP/3 does enable two
distinct techniques that facilitate server messaging towards the
client. But to use them, RIPP must abide by HTTP/3 rules, and that
means distinct roles for clients and servers. Clients must always
initiate connections and send requests, not servers.

To handle this RIPP, specifies that the domain associated with the
caller implements the RIPP client, and the domain receiving the calls
is the RIPP server. For any particular call, the roles of client and
server do not change. To facilitate calls in either direction, a
domain can implement both RIPP client and RIPP server roles.

However, there is no relationship between the two directions.

3.3. Signaling and Media Together

One of the most fundamental design properties of SIP was the
separation of signalling and media. This was fundamental to the
success of SIP, since it enabled high quality, low latency media
between endpoints inside of an enterprise or consumer domain.

This design technique is quite hard to translate to HTTP, especially
when considering load balancing and scaling techniques. HTTP load
balancing is effective because it treats each request/response pair
as an independent action which can route to any number of backends.
In essence, the request/response transaction is atomic, and
consequentially RIPP needs to operate this way as well.

Though SIP envisioned that signalling and media separation would also
apply to inter-domain calls, in practice this has not happened.
Inter-domain interconnect - used primarily for interconnection with
the PSTN - is done traditionally with SBCs which terminate and re-
originate media. Since this specification is targeted solely at
these peering use cases, RIPP fundamentally combines signalling and
media together on the same connection. To ensure low latency, it
uses multiple independent request/response transactions - each
running in parallel over unique QUIC streams - to transmit media.

Rosenberg, et al. Expires January 9, 2020 [Page 8]

Internet-Draft RIPP July 2019

3.4. URIs not IPs

SIP is full of IP addresses and ports. They are contained in Via
headers, in Route and Record-Route headers. 1In SDP. 1In Contact
headers. The usage of IPs is one of the main reasons why SIP is so
difficult to deploy into cloud platforms. These platforms are based
on the behavior of HTTP which has been baed on TCP connections and
therefore done most of its routing at the connection layer, and not
the IP layer.

Furthermore, modern cloud platforms are full of NATs and private IP
space, making them inhospitable to SIP based applications which still
struggle with NAT traversal.

HTTP of course does not suffer from this. In general, "addressing",
to the degree it exists at all, is done with HTTP URIs. RIPP follows
this pattern. RIPP - as a web application that uses HTTP/3 - does
not use or convey any IP addresses or ports. Furthermore, the client
never provides addressing to the server - all traffic is sent in the
reverse direction over the connection.

3.5. OAuth not MTLS or private IP

When used in peering arrangements today, authentication for the SIP
connections is typically done using mutual TLS. It is also often the
case that security is done at the IP layer, and sometimes even via
dedicated MPLS connections which require pre-provisioning.
Unfortunately, these techniques are quite incompatible with how
modern cloud platforms work.

HTTP - due to its client-server nature, uses asymmetric techniques
for authentication. Most notably, certificate based authentication
is done by the client to verify that it is speaking to the server it
thinks it should be speaking to. For the server to identify the
client, modern platforms make use of OAuth2.0. Though OAuth is not
actually an authentication protocol, the use of OAuth has allowed
authentication to be done out of band via separate identity servers
which produce OAuth tokens which can then be used for authentication
of the client.

Consequently, RIPP follows this same approach. For each call, one
domain acts as the client, and the other, as the server. When acting
as a server, the domain authenticates itself with TLS and verifies
the client with OAuth tokens. For calls in the reverse direction,
the roles are reversed.

To make it possible to easily pass calls in both directions, RIPP
allows one domain to act as the customer of another, the trunking

Rosenberg, et al. Expires January 9, 2020 [Page 9]

Internet-Draft RIPP July 2019

provider. The customer domain authenticates with the provider and
obtains an OAuth token using traditional techniques. RIPP then
allows the customer domain to automatically create a bearer token for
inbound calls and pass it to the provider.

3.6. TLS not SRTP or SIPS

SIP has provided encryption of both signalling and media, through the
usage of SIP over TLS and SIPS, and SRTP, respectively.
Unfortunately, these have not been widely deployed. The E2E nature
of SRTP has made keying an ongoing challenge, with multiple
technologies developed over the years. SIP itself has seen greater
uptake of TLS transport, but this remains uncommon largely due to the
commonality of private IP peering as an alternative.

Because of the HBH nature of RIPP, security is done fundamentally at
the connection level - identically to HTTP. Since media is also
carrier over the HTTP connection, both signalling and media are
covered by the connection security provided by HTTP/3.

Because of the mandatory usage of TLS1.3 with HTTP/3, and the
expected widespread deployment of HTTP/3, running VOIP on top of
HTTP/3 will bring built-in encryption of media and signalling between
peering domains, which is a notable improvement over the current
deployment situation. It is also necessary in order to utilize
HTTP/3.

Because of this, RIPP does not support SRTP. If a client receives a
SIP call with SRTP, it must terminate the SRTP and decrypt media
before sending it over RIPP. This matches existing practice in many
cases.

3.7. Authenticated CallerID

Robocalling is seeing a dramatic rise in volume, and efforts to
combat it continue. One of the causes of this problem is the ease of
which SIP enables one domain to initiate calls to another domain
without authenticated caller ID.

wWith RIPP, we remedy this by requiring the client and servers to
implement STIR. Since RIPP is meant for peering between providers
(and not client-to-server connections), STIR is applicable. RIPP
clients must either insert a signed passport, or pass one through if
it exists. Similarly, RIPP servers must act as verifying parties and
reject any calls that omit a passport.

0 CJ - Need to check we have all the things needed in an Passport.

Rosenberg, et al. Expires January 9, 2020 [Page 10]

Internet-Draft RIPP July 2019

3.

[

Calls Separate from Connections

In SIP, there is a fuzzy relationship between calls and connections.
In some cases, connection failures cause call terminations, and vice
a versa.

HTTP, on the other hand, very clearly separates the state of the
resource being manipulated, with the state of the HTTP connection
used to manipulate it. This design principle is inherited by RIPP.
Consequently, call state on both client and server exist
independently from the connections which manipulate them. This
allows for greater availability my enabling connections for the same
call to move between machines in the case of failures.

Path validation, not ICE

HTTP/3 is designed to work through NAT as a client-server protocol.
It has built in techniques for dealing with NAT re-bindings, IP
address changes due to a client moving between networks (e.g., wifi
to cellular data). It has built in path validation that ensures that
HTTP cannot be used for amplification attacks.

SIP has, over the years, solved these problems to some degree, but
not efficiently nor completely. To work with HTTP, RIPP must utilize
the HTTP approaches for these problems. Consequently, RIPP does not
utilize ICE and has no specific considerations for NAT traversal, as
these are handled by HTTP/3 itself.

Reference Architecture

The RIPP reference architecture is shown in Figure 1.

Rosenberg, et al. Expires January 9, 2020 [Page 11]

Internet-Draft RIPP July 2019

Trunk Provider Trunk Consumer
Calls
L + From L +
| | A toB | |
| I I I
| Client | +-------- > | Server |
I I I I
| I I I
D SRS - + D RS- +
Calls
S + From RS +
| | B to A | |
I I I I
| Server | <-------- + | Client |
| I I I
I I I I
o m e e e e oo + o m e e e o - +

RIPP is used between a RIPP trunk provider and a RIPP trunk consumer.
Both entities implement the RIPP client and RIPP server roles; the
latter to receive calls, and the former to send them.

RIPP is also designed such that all communications between the a RIPP
client and the RIPP server can easily sit behind a typical HTTP load
balancer, as shown below:

Rosenberg, et al. Expires January 9, 2020 [Page 12]

Internet-Draft RIPP July 2019

Fommm e +
| |
| RIPP |
>| Server |
/] |
/o |
/ R +
/
/
/
/
R + /
| (-
Fommm e + | | 7/ Femmm e +
| | | |/ | |
| RIPP | | HTTP |/ | RIPP |
| Client |---->] LB | ----------- >| Server |
| | | I\ | |
| | | I\ | |
I + | [\ R +
R + \
\
\
\
\
\ Fomm e +
A |
\ | RIPP |
> | Server |
| |
| |
oo +

Since both the trunk provider and trunk consumer implement the client
and server roles, both entities will typically have a load balancer -
perhaps a server component, or a cloud-based service, used to receive
incoming calls. This is not required, of course. It is worth
restating that this load balancer is NOT specific to RIPP - it is any
off-the-shelf HTTP load balancer which supports HTTP/3. No specific
support for RIPP is required. RIPP is just a usage of HTTP.

Because RIPP clients and servers are nothing more than HTTP/3
applications, the behavior or RIPP is specified entirely by
describing how various RIPP procedures map to the core HTTP/3
primitives available to applications - opening connections, closing
connections, sending requests and responses, receiving requests and
responses, and setting header fields and bodies. That's it.

Rosenberg, et al. Expires January 9, 2020 [Page 13]

Internet-Draft RIPP July 2019

5.

Terminology
This specification follows the terminology of HTTP/3 - specifically:

RIPP Client: The entity that initiates a call, by acting as an HTTP
client.

RIPP Server: The entity that receives a call, by acting as an HTTP
server.

RIPP Connection: An HTTP connection between a RIPP client and RIPP
server.

RIPP Endpoint: Either a RIPP client or RIPP server.

RIPP Peer: An endpoint. When discussing a particular endpoint,
"peer" refers to the endpoint that is remote to the primary subject
of discussion.

This specification defines the following additional terms:

RIPP Trunk: A container for calls between a trunking provider and
trunking consumer. A RIPP trunk is identified by a pair of URI - the
RIPP Trunk Provider URI (hosted by the trunking provider) and the
RIPP Trunk Consumer URI (hosted by the trunking consumer). RIPP
trunks act as a unit of policy and capabilities, including rules such
as rate limits, allowed phone numbers, and so on.

Call: A VOIP session established by a RIPP client for the purposes of
exchanging audio and signalling information. A call is always
associated with a RIPP trunk.

Trunking Consumer: An administrative entity that utilizes trunking
services from the trunking provider. The relationship between the
trunking consumer and trunking provider is static and does not vary
from call to call. (e.g., Verizon would be the trunking provider to
an enterprise consumer, and the enterprise would be the trunking
consumer of Verizon. A trunking consumer implements a RIPP client to
initiate calls to the trunking provider, and a RIPP server to receive
them.

Trunking Provider: The administrative entity that provides telephony
trunking services to the trunking consumer. The relationship between
the trunking consumer and trunking provider is static and does not
vary from call to call. (e.g., Verizon would be the trunking provider
to an enterprise, and the enterprise would be the trunking customer
of Verizon. The trunking provider implements a RIPP server to

Rosenberg, et al. Expires January 9, 2020 [Page 14]

Internet-Draft RIPP July 2019

o

receive calls from the trunking consumer, and a RIPP client to send
calls to the trunking consumer

Trunking Customer: The administrative entity which purchases trunking
services from the trunking provider. The trunking customer may be
the same as the trunking consumer - such as an enterprise purchasing
and then consuming trunking services from a telco. Or, it can be
different - such as an enterprise purchasing trunking services from a
telco, and then authorizing a cloud PBX or cloud contact center
provider to consume those trunking services on their behalf.

RIPP Trunk Provider URI: An HTTP URI hosted by the trunking provider,
which represents the RIPP trunk from its perspective.

RIPP Trunk Consumer URI: An HTTP URI hosted by the trunking consumer,
which represents the RIPP trunk from its perspective.

Byway: A bidirectional byte stream between a RIPP provider and
consumer. A Byway passes its data through a long-running HTTP
request and a long-running HTTP response. Byways are used for
signalling and media.

Overview of Operation

RIPP begins with a configuration phase. This configuration phase
occurs when an OAuth2.0 client application (such as a softswitch,
cloud PBX, cloud contact center, etc) wishes to enable trunking
customers to provision RIPP trunks against a trunking provider. The
trunking provider acts as the resource provider in OAuth2.0 parlance.
Consequently, The configuration phase is identical to the way in
which client applications register with resource providers in
OAuth2.0, the details of which are beyond the scope of this
specification, but expected to follow existing best practices used by
web applications.

The next step is provisioning. Once a trunking customer has obtained
access to services from a trunking provider (by purchasing them , for
example), the trunking customer can perform provisioning.
Provisioning is the process by which a trunking customer connects a
RIPP trunk from a trunking provider to trunking consumer.
Provisioning is accomplished using

OAuth2.0 code authorization techniques. 1In the case of RIPP, the
OAuth resource owner is the trunking customer. The OAuth client is
the RIPP implementation within the trunking consumer. The resource
server is the RIPP implementation in the trunking provider.

To provision a RIPP trunk, the trunking customer will visit a web
page hosted by the trunking consumer, and typically click on a button

Rosenberg, et al. Expires January 9, 2020 [Page 15]

Internet-Draft RIPP July 2019

labeled with their trunking provider. This will begin the OAuth 2
authorization code flow. The trunking customer will authenticate
with the trunking provider. The trunking provider authorizes the
access, generates an authorization code, and generates a RIPP trunk
provider URI. The provider URI is included in a new OAuth parameter
defined by this specification, and is returned as a parameter in the
authorization response. The trunking consumer trades the
authorization code for a refresh and access token, and stores the
provider URI. Finally, the trunking consumer mints a bearer token
associated with the new RIPP trunk, and also mints a RIPP trunk
consumer URI for receiving calls from the provider on this trunk.
Both of these are passed to the trunking provider via a POST
operation to /consumerTrunk on the RIPP trunk provider URI.

The usage of the OAuth2.0 flows enables the trunking consumer and
trunking customer to be the same (i.e., a cloud PBX provider
purchases services from a telco), or different (i.e., an enterprise
customer has purchased trunking services from a telco, and wishes to
provision them into a cloud contact center that acts as the trunking
consumer). The latter is often referred to informally as "BYOSIP" in
traditional SIP trunking and is explicitly supported by RIPP using
OAuth2.0.

Once provisioned, both sides obtain capability declarations for the
RIPP trunk by performing a GET to /capAdv of its peers trunk URI.
The capabilities declaration is a simple document, whose syntax is
described in Section Section 10. It conveys the receive capabilities
of the entity sending it, and includes parameters like maximum
bitrate for audio. This process is optional, and each parameter has
a default. Either side can update its capabilities for the RIPP
trunk at any time, and trigger a fresh GET via an HTTP push.
Capability declarations occur outside of a call, are optional, and
convey static receive capabilities which are a fixed property of the
RIPP trunk. Consequently, capability declaration is significantly
different from SDP offer/answer.

Either the trunking consumer or provider can initiate calls by
posting to the /calls on RIPP trunk URI of its peer. The request
contains the target phone number in the request URI and an Identity
header field in the HTTP Request. The Identity header field is
identical in syntax and semantics to the SIP Identity header field
defined in [RFC8224], just carried in HTTP instead of SIP. This
request returns a globally unique call URI in the Location header
field of a 201 response sent by the server. Typically the response
will also include a session cookie, bound to the call, to facilitate
sticky session routing in HTTP proxies. This allows all further
signalling and media to reach the same RIPP server that handled the

https://datatracker.ietf.org/doc/html/rfc8224

Rosenberg, et al. Expires January 9, 2020 [Page 16]

Internet-Draft RIPP July 2019

initial request, while facilitating failover should that server go
down.

Once a call has been created, a pair of long-lived HTTP transactions
is initiated from the client to the server for purposes of
signalling. One is a GET, retrieving call events from its peer. THe
other is a PUT, sending call events to its peer. Each of these
produces a unidirectional data stream, one in the forwards direction,
one in the reverse. These are called byways. HTTP/3 ensures zero
RTT for setup of these byways.

Signaling commands are encoded into the signalling byway using
streaming JSON in both directions. Each JSON object encodes an event
and its parameters. Events are defined for alerting, connected,
ended, migrate, keepalive, and transfer-and-takeback.

The media byways carry a simple binary encoding in both directions.
Even though data can flow in both directions, a media byway is
unidirectional in terms of media transmission. A forward media byway
carries media from the client to the server, and a reverse byway
carries media from the server to the client. To eliminate HOL
blocking for media, a media packet is sent on a media byway when it
is first established. After the first packet, the client cannot be
sure a subsequent packet will be delayed due to the ordering
guarantees provided by HTTP/3 within a stream. To combat this, both
sides acknowledge the receipt of each packet using an ACK message
sent over the media byways, in the opposite direction of the media.
Consequently, in a forward media byway, ACK messages are carried from
server to client, and in a reverse media byway, they are carried from
client to server. Once a media packet is acknowledged, the media
byway can be used once again without fear of HOL blocking. Because
each media packet is acknowledged independently, each side can
compute statistics on packet losses and delays. Consequently, the
equivalent of RTCP sender and receiver reports are not needed.

RIPP defines some basic requirements for congestion control at the
client side. Specifically, clients drop media packets if there are
too many media byways in the blocked state.

RIPP provides a simple technique for allowing a call to seamlessly
migrate from one client instance to another on a different host, or
from one server instance to another on a different host. For a
client, it need only end the byways in use for the call and re-
initiate from a different instance. Similarly, a server can request
migration, and this triggers the client to perform this same action.
The call state persists independently of the state of the HTTP
connection or the byways embedded in HTTP transactions, so that a
reconnect can continue where things left off.

Rosenberg, et al. Expires January 9, 2020 [Page 17]

Internet-Draft RIPP July 2019

Finally, RIPP trunks can be destroyed by a trunking consumer by
issuing a DELETE against the RIPP trunk provider URI.

I~

Example
This section describes a typical example where one company, Acme, 1is
using a cloud calling service - Webex - and gets PSTN trunking from

the provider Comcast.

The sequence diagram for the outbound call flow is here:

Rosenberg, et al. Expires January 9, 2020 [Page 18]

Internet-Draft RIPP July 2019

| 200 OK |
R R |
I I
| POST /call/xyz/media-forward |
| >
| e \ |
| -| media byway c2s | |
| o | |
I |
| 200 OK |
| e |
I I
| POST /call/xyz/media-reverse |
| >
| e \ |
| -] media byway s2c | |
| o | |
I I
| 200 OK |
R |
R \
| | ringing eg. SIP 180 |-|
| R EREEEEEEEE ||
I |
| ringing event |
| oo |
AR EEEEEEEEEE \
| | accepted eg. SIP 200 |-|
| R RRREEEEEEEEEE ||
I I
| accepted |
R |
| e \ |
| -| caller hangs up | |
| o | |
I I
| PUT /call/xyz/event |
| >
EEEEEEEEEEES \ |
|-] end event | |
INEEEEEEEEEEE | |
I I
I 200 OK |
I

I

The first stage is for Webex to set up their service to be able to
work as an OAuth Resource Server, working with Comcast as the

Rosenberg, et al. Expires January 9, 2020 [Page 19]

Internet-Draft RIPP July 2019

Authorization Server, and to obtain the baseURI that Comcast uses for
RIPP authorization. Assume that this is "https://ripp.comcast.com".
The next stage is the admin from ACME logs on to their Webex account
and selects Comcast as the RIPP provider. This will cause the OAUTH
dance and the admin will end up having approved Webex to use Acme's
account at Comcast for RIPP. Webex will have received an OAuth
access and refresh token from Comcast and be passed the new Provider
Trunk URI. At this point, provisioning is complete and calls can
start. Assume the provider trunk URI returned is
"https://ripp.comcast.com/trunks/123".

Webex will start by setting up for incoming calls at
"https://ripp.webex/trunks/abc" with an opaque security token of
"secret1234". This is done by making a HTTP PUT to
https://ripp.comcast.com/trunks/123/consumerTrunk with a JSON body
of:

{
"consumerTrunkURI":"https://ripp.webex/trunks/abc " ,
"consumerToken":"secret1234"

}

The Comcast server will then find out the advertised capability of
the Webex trunk by doing a GET to https://ripp.webex/trunks/abc/
capAdv and using the secret1234 as an authorization token. Webex
supports the default values but also support G.729 as an additional
codec. It returns a JSON body of:

{ "audio/g729": true }

Similarly, the Webex server will find out the advertised capability
of the trunk by doing a GET to https:://ripp.comcast.com/trunks/123/
capAdv, using its OAuth token. 1In this case, the response is empty,
indicating that the capabilities are all default.

At this point we are ready for inbound or outbound calls.
7.1. Inbound Call

A PSTN calls arrives at Comcast that is routed to the this trunk via
a Comcast SBC that will convert it from SIP to RIPP. The SBC knows
which codecs the trunk supports (G.729, Opus and G.711) and can
immediately send the SIP answer in a 183. It can then can make an
HTTP post to the consumer trunk URI to set up the incoming call.
This is does by doing a POST to "https://ripp.webex/trunks/acmel23/
calls&target=14085551212@el164.arpa" using the authorization token
"secret1234". This will return a new call URI for this call of
https://ripp.webex/call/xyz.

https://ripp.comcast.com/trunks/123/consumerTrunk
https://ripp.webex/trunks/abc/capAdv
https://ripp.webex/trunks/abc/capAdv
https://ripp.webex/call/xyz

Rosenberg, et al. Expires January 9, 2020 [Page 20]

Internet-Draft RIPP July 2019

At this point the SBC can make a long poll GET and PUT to
"https://ripp.webex/call/xyz/events" to receive and send signaling
events for this call. The SBC will also open a number of media
byways by making POST requests to "https://ripp.webex/call/xyz/media-
forward" and "https://ripp.webex/call/xyz/media-reverse" to send and
receive media.

For each of the media-forward byways, the Comcast SBC will send a
BywayPreamble that tells the other side meta data about what will be
sent on this byway. For the media-reverse byways, the Webex server
will send the BywayPreamble. The BywayPreamble contains the name of
the codec, the base sequence number, frameTime, and baseTime. After
this BywayPreamble, media frames can be sent that contain a seqOffset
number, media length, and then the media data. The receiver compute
the time sequence number for the frame by adding the baseSegNum for
the byway to the seqOffset for the frame. The timestamp for the
media is computed using the baseTime for the byway plus the packeTime
multiplied by the seqNum.

The data from the https://ripp.webex/call/xyz/events request will be
an infinite JSON array of Events. When the Webex server answers the
call, the event returned would look like:

{ "name":"accepted" }
7.2. Outbound Call

For Webex to make it outbound call, it is the same as the inbound
call other than the provider trunk URI is used. The Webex server
would act as a client and do a HTTP POST to
"https://ripp.comcast.com/trunks/123/
calls&target=14085551212@el164.arpa" to create a call URI of
"http\s://ripp.comcast.com/call/c789". From that point the flow is
roughly the same as inbound with the client and server roles
reversed.

7.3. End of call

If the call is ended on the server side, server sends a terminated
event with the ended flag set to true then waits a small time for
client to close the connection then closes the connection.

If the call is ended on the client side, the client sends a
terminated event with the ended flag set to true and then closes the

connection. In either case the even looks like:

{ "name":"terminated", "ended": true }

https://ripp.webex/call/xyz/events

Rosenberg, et al. Expires January 9, 2020 [Page 21]

Internet-Draft RIPP July 2019

8. Detailed Behaviours
This section provides an overview of the operation of RIPP.
8.1. Configuration

RIPP configuration happens when a trunking consumer wishes to be able
to provision, on demand, new RIPP trunks with a trunking provider.

One example use case is that of an enterprise, which has deployed an
IP PBX of some sort within its data centers. Once deployed, the
enterprise needs to enable the PBX to place and receive calls towards
the PSTN. The enterprise contracts with a RIPP trunking provider.
All of this happens as a precursor to configuration. At the end of
the contracting process, the enterprise administrator will visit the
configuration web page, and be able to register their enterprise PBX.
This process will typically return a client-ID, client-secret, and
authorization endpoint URL. The administrator manually enters these
into the configuration of their PBX. [[OPEN ISSUE: OpenID connect?]]

As another example use case, a cloud contact center, cloud PBX
provider, or any other saas application which wishes to obtain
trunking services, can contract with a RIPP trunking provider. 1In a
similar process to the enterprise case above, the administrator
obtains a clientID, client-secret, and authorization endpoint URL
which are configured into their service.

In the final use case, an enterprise administrator has purchased
trunking services from a RIPP trunking provider. They separately
have purchased cloud PBX, cloud contact center, or another saas
service which requires connectivity to a RIPP trunk. 1In this case,
the cloud PBX, cloud contact center, or other saas service acts as
the RIPP trunk consumer. The RIPP trunk consumer would configure
itself as a client with a variety of RIPP trunking providers, and for
each, obtain the clientID, client-secret and authorization URL. This
will allow the customers of the RIPP trunking consumer to provision
RIPP trunks automatically, and point them to the RIPP trunking
consumer .

8.2. RIPP Trunk Provisioning

Once a RIPP consumer has been configured as an OAuth client
application with a RIPP provider, a RIPP customer can provision a
RIPP trunk on-demand using a web form. RIPP consumers will typically
provide a self-service web form for such provisioning, since self-
service and instant provisioning are key goals of RIPP.

Rosenberg, et al. Expires January 9, 2020 [Page 22]

Internet-Draft RIPP July 2019

The RIPP customer visits this web form, and selects their provider.
The RIPP consumer would then initiate an OAuth2.0 authorization code
flow. This utilizes the clientID, client-secret and authorization
endpoint URL configured previously. The RIPP customer will
authenticate to the RIPP provider, and authorize creation of a new
RIPP trunk.

Once the RIPP customer authorizes creation of a RIPP trunk, the RIPP
provider MUST generate an authorization code and follow the
procedures defined in [RFC6749] for the authorization code grant
flow. Furthermore, the RIPP provider MUST mint a new URI identifying
this new RIPP trunk. This URI MUST contain a path component, and
MUST NOT contain any URI parameters. This URI MUST be an HTTPS URI,
and HTTP/3 MUST be supported for this URI. The path component MUST
be a globally unique identifier for this trunk, and not depend on the
authority component as part of the namespace for purposes of
uniqueness.

As an example, the following is a valid RIPP trunk URI:

<https://ripp.comcast.com/trunks/6ha937fjjj9o>

This URI MUST be returned in the OAuth2.0 parameter "ripp-trunk", and
MUST be base64 encoded.

The RIPP consumer MUST follow the procedures defined in [RFC6749] for
an OAuth client, trade in its authorization code for both a refresh
and access token. The RIPP provider MUST issue both refresh and
access tokens. It is expected that the refresh token will last a
long time, in order to avoid the resource owner needing to manually
re-authorize. The trunk consumer MUST be prepared for its access and
refresh tokens to be invalidated at any time. The RIPP consumer MUST
extract the "ripp-trunk" OAuth parameter from the authorization
response, decode, and persist it.

Once the RIPP consumer has obtained an access token, it MUST initiate
an HTTPS PUT request towards /consumerTrunk on the provider trunk
URI. This request MUST contain an Authorization header field
utilizing the access token just obtained. It MUST include a RIPP
provisioning object in the body. This object is specified in

Section Section 10.

The RIPP provisioning object MUST contain a RIPP trunk consumer URI
and a RIPP bearer token. The RIPP consumer MUST mint an HTTPS URI

for the RIPP Trunk consumer URI. This URI MUST support HTTP/3, and
MUST implement the behaviours associated with capabilities and new

call operations as defined below. This URI MUST have a path

https://datatracker.ietf.org/doc/html/rfc6749
https://ripp.comcast.com/trunks/6ha937fjjj9
https://datatracker.ietf.org/doc/html/rfc6749

Rosenberg, et al. Expires January 9, 2020 [Page 23]

Internet-Draft RIPP July 2019

component, MUST NOT contain any URI parameters, and MUST have a path
segment which is globally unique.

In addition, the RIPP consumer MUST mint a bearer token to be used by
the RIPP provider when performing operations against the RIPP Trunk
Client URI. The bearer token MAY be constructed in any way desired
by the RIPP consumer. The token and URI SHOULD remain valid for at
least one day, however, a security problem could cuase them to be
invalidated. The RIPP consumer MUST refresh the provisioning against
the RIPP trunk at least one hour in advance of the expiration, in
order to ensure no calls are delayed.

At this point, the RIPP trunk is provisioned. Both the RIPP provider
and RIPP consumer have a RIPP trunk URI and an Authorization token to
be used for placing calls in each direction.

8.3. Capabilities

Once provisioned, each side obtains receive capabilities about the
trunk from its peer. To do that, each client performs an HTTP GET to
/capAdv on its peer's RIPP trunk URI. The response body MUST be a
RIPP capabilities object as defined in Section Section 10.

Once established, either side MAY update the capabilities by sending
an HTTP push to trigger its peer to fetch a fresh capability
document. Due to race conditions, it is possible that the client may
receive calls compliant to the old capabilities document for a brief
interval. It MUST be prepared for this.

When the trunk resource is destroyed, its associated capabilities are
also destroyed.

The RIPP capabilities document is a list of name-value pairs, which
specify a capability. Every capability has a default, so that if no
document is posted, or it is posted but a specific capability is not
included, the capability for the peer is understood. Capabilities
are receive only, and specify what the entity is willing to receive.
Capabilities are bound to the RIPP trunk, and are destroyed when the
RIPP trunk is destroyed.

This specification defines the following capability set. This set is
extensible through an IANA registry.

0 max-bitrate: The maximum bitrate for receiving voice. This is
specified in bits per second. It MUST be greater than or equal to

1. Its default is 64000.

Rosenberg, et al. Expires January 9, 2020 [Page 24]

Internet-Draft RIPP July 2019

0 max-samplerate: The maximum sample rate for audio. This is
specified in Hz. It MUST be greater than or equal to 8000. Its
default is 8000.

0 max-samplesize: The maximum sample size for audio. This is
specified in bits. It MUST be greater than or equal to 8. The
default is 16.

o force-cbr: Indicates whether the entity requires CBR media only.
It MUST be either "true" or "false". The default is "false". If
"true", the sender MUST send constant rate audio.

0 two-channel: Indicates whether the entity supports receiving two
audio channels or not. Two channel audio is specifically used for
RIPP trunks meant to convey listen-only media for the purposes of
recording, similar to SIPREC [RFC7866]. It MUST be either "true"
or "false". The default is "false".

o tnt: Indicates whether the entity supports the takeback-and-
transfer command. Telcos supporting this feature on a trunk would
set it to "true". The value MUST be "true" or "false". The
default is "false".

In addition, codecs can be listed as capabilities. This is done by
using the media type and subtype, separated by a "/", as the
capability name. Media type and subtype values are taken from the
IANA registry for RTP payload format media types, as defined in
[REC4855]. The value of the capability is "true" if the codec is
supported, "false" if it is not. The default is "false" for all
codecs except for "audio/PCMU", "audio/opus", "audio/telephone-event"
and "audio/CN", for which the default is "true". Because codec
capabilities are receive-only, it is possible, and totally
acceptable, for there to be different audio codecs used in each
direction.

In general, an entity MUST declare a capability for any
characteristic of a call which may result in the call being rejected.
This requirement facilitates prevention of call failures, along with
clear indications of why calls have failed when they do. For
example, if a RIPP trunk provider provisions a trunk without support
for G.729, but the consumer configures their to utilize this codec,
this will be known as a misconfiguration immediately. This enables
validation of trunk configurations in an automated fashion, without
placing test calls or calling customer support.

https://datatracker.ietf.org/doc/html/rfc7866
https://datatracker.ietf.org/doc/html/rfc4855

Rosenberg, et al. Expires January 9, 2020 [Page 25]

Internet-Draft RIPP July 2019

8.4. Initiating Calls

HTTP connections are completely independent of RIPP trunks or calls.
As such, RIPP clients SHOULD reuse existing HTTP connections for any
request targeted at the same authority to which an existing HTTP
connection is open. RIPP clients SHOULD also utilize O-RTT HTTP
procedures in order to speed up call setup times.

To initiate a new call, a RIPP client creates an HTTPS POST request
to /calls endpoint on the RIPP trunk URI of its peer. For a trunking
consumer, this is the RIPP trunk URI provisioned during the OAuth2.0
flow. For the trunking provider, it is the RIPP trunk consumer URI
learned through the provisioning POST operation. This MUST be an
HTTP/3 transaction. The client MUST validate that the TLS
certificate that is returned matches the authority component of the
RIPP trunk URI.

This request MUST contain the token that the client has obtained out-
of-band. For the RIPP trunk consumer, this is the OAuth token. For
the RIPP trunk provider, it is the bearer token learned through the
provisioning POST operation.

The client MUST also add the "target" URI parameter. This parameter
MUST be of the form user@domain. If the target is a phone number on
the PSTN, this must take the form @el64.arpa, where is a valid E.164
number. RIPP also supports private trunks, in which case the it MUST
take the form @, where the number is a non-E164 number scoped to be
valid within the domain. This form MUST NOT be used for E.164
numbers. Finally, RIPP can be used to place call to application
services - such as a recorder - in which case the parameter would
take the form of an RFC822 email address.

The client MUST add an HTTP Identity header field. This header field
is defined in Section Section 11 as a new HTTP header field. Its
contents MUST be a valid Identity header field as defined by
[REC8224]. This ensures that all calls utilize secure caller ID. A
RIPP client MUST NOT place the caller ID in any place except for the
Identity header field in this request. Specifically, a "From",
"Contact", or "P-Asserted-ID" header field MUST NOT ever appear.

0 CJ - I would prefer to add this another way without using a
header .

The server MUST validate the OAuth token, MUST act as the verifying
party to verify the Identity header field, and then authorize the
creation of a new call, and then either accept or reject the request.
If accepted, it indicates that the server is willing to create this
call. The server MUST return a 201 Created response, and MUST

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc8224

Rosenberg, et al. Expires January 9, 2020 [Page 26]

Internet-Draft RIPP July 2019

include a Location header field containing an HTTPS URI which
identifies the call that has been created. The URI identifying the
call MUST include a path segment which contains a type 4 UUID,
ensuring that call identifiers are globally unique.

The server MAY include HTTP session cookies in the 201 response. The
client MUST support receipt of cookies [RFC6265]. It MUST be
prepared to receive up to 10 cookies per call. The client MUST
destroy all cookies associated with a call, when the call has ended.
Cookies MUST NOT be larger the 5K.

The usage of an HTTP URI to identify the call itself, combined with
session cookies, gives the terminating RIPP domain a great deal of
flexibility in how it manages state for the call. 1In traditional
softswitch designs, call and media state is held in-memory in the
server and not placed into databases. 1In such a design, a RIPP
server can use the session cookie in combination with sticky session
routing in the load balancers to ensure that subsequent requests for
the same call go to the same call server. Alternatively, if the
server is not using any kind of HTTP load balancer at all, it can use
a specific hostname in the URI to route all requests for this call to
a specific instance of the server. This technique is particularly
useful for telcos who have not deployed HTTP infrastructure, but do
have SBCs that sit behind a single virtual IP address. The root URI
can use a domain whose A record maps to this IP. Once a call has
landed on a particular SBC, the call URI can indicate the specific IP
of the SBC.

For example, the RIPP trunk URI for such a telco operator might be:

<https://sbc-farm.comcast.com/trunks/6ha937fjjj9>

which always resolves to 1.2.3.4, the VIP shared amongst the SBC
farm. Consequently, a request to this RIPP trunk would hit a
specific SBC behind the VIP. This SBC would then create the call and
return a call URL which points to its actual IP, using DNS

<https://sbc23.sbc-farm.comcast.com/call/ha8d7f6fso029s88clzopa>

However, the HTTP URI for the call MUST NOT contain an IP address; it
MUST utilize a valid host or domain name. This is to ensure that TLS
certificate validation functions properly without manual
configuration of certificates (a practice which is required still for
SIP based peering).

Neither the request, nor the response, contain bodies.

https://datatracker.ietf.org/doc/html/rfc6265
https://sbc-farm.comcast.com/trunks/6ha937fjjj9
https://sbc23.sbc-farm.comcast.com/call/ha8d7f6fso29s88clzopa

Rosenberg, et al. Expires January 9, 2020 [Page 27]

Internet-Draft RIPP July 2019

8.5. Establishing the Signaling Byways

To perform signalling for this call, the client MUST initiate an HTTP
GET and PUT request towards the call URI that it just obtained,
targeted at the /event endpoint.

The signaling is accomplished by a long running HTTP transaction,
with a stream of JSON in the PUT request, and a stream of JSON in the
GET response.

The body begins with an open curly bracket, and after that is a
series of JSON objects, each starting with a curly bracket, and
ending with a curly bracket. Consequently, each side MUST
immediately send their respective open brackets after the HTTP header
fields. We utilize streaming JSON in order to facilitate usage of
tools like CURL for signalling operations.

8.6. The Media Sequence

In RIPP, media is represented as a continuous sequence of RIPP media
frames embedded in a media byway. Each ripp media frame encodes a
variable length sequence number offset, followed by a variable length
length field, followed by a codec frame equal to that length. The
media byway itself, when created, includes properties that are shared
across all media frames within that byway. These parameters include
the sequence number base, the timestamp base, the codec type, and the
frame size in milliseconds for the codec.

This is a significantly different design than RTP, which conveys many
repeated parameters (such as the payload type and timestamp) in every
packet. 1Instead, RIPP extracts information that will be shared
across many packets and associates it with the byway itself. This
means the media frames only contain the information which varies -
the sequence number and length. [[OPEN ISSUE: we could maybe even
eliminate the sequence number by computing it from offset in the
stream. Worried about sync problems though?]]

Consequently, each media frame has the following properties:

0 The sequence number, which is equal to the sequence number base
associated with the media byway, PLUS the value of the sequence
number offset

0 The timestamp, which is equal to the timestamp base from the
byway, PLUS the sequence number offset TIMES the frame size in
milliseconds. Note that this requires that frame size must remain
fixed for all media frames in a byway.

Rosenberg, et al. Expires January 9, 2020 [Page 28]

Internet-Draft RIPP July 2019

0 The codec type, which is a fixed property of the byway. There are
no payload type numbers in RIPP.

RIPP does not support gaps in the media sequence due to silence.
Something must be transmitted for each time interval. If a RIPP
implementation wishes to change codecs, it MUST utilize a different
byway for that codec.

8.7. Opening Media Byways

The client bears the responsibility for opening media byways - both
forward and reverse. Consequently, the server is strongly dependent
on the client opening reverse byways; it cannot send media unless
they've been opened.

A client MUST open a new forward byway whenever it has a media frame
to send, all existing forward byways (if any) are in the blocked
state, and the client has not yet opened 20 byways.

Furthermore, the client MUST keep a minimum of 10 reverse byways open
at all times. This ensures the server can send media. The client
MUST open these byways immediately, in parallel.

The use of multiple media byways in either direction is essential to
low latency operation of RIPP. This is because, as describe below,
media frames are sprayed across these byways in order to ensure that
there is never head-of-1line blocking. This is possible because, in
HTTP/3, each transaction is carried over a separate QUIC stream, and
QUIC streams run on top of UDP. Furthermore, a QUIC stream does not
require a handshake to be established - creation of new QUIC streams
is a O-RTT process.

The requests to create these transactions MUST include Cookie headers
for any applicable session cookies.

To open a forward media byway, the client MUST initiate a POST
request to the /media-forward endpoint on the call URI, and MUST
include a RIPP-Media header field in the request headers. Similarly,
to open a reverse media byway, the client MUST initiate a POST
request to the /media-reverse endpoint of the call URI. It MUST NOT
include a RIPP-Media header field in the request headers. The server
MUST include the RIPP-Media header in the response headers. The
RIPP-Media header contains the properties for the byway - the
sequence number base, the timestamp base, and the name of the codec.

RIPP supports multiple audio channels, meant for SIPREC use cases.
Each channel MUST be on a separate byway. When multi-channel audio

Rosenberg, et al. Expires January 9, 2020 [Page 29]

Internet-Draft RIPP July 2019

is being used, the client MUST include the multi-channel parameter
and MUST include the channel number, starting at 1.

All RIPP implementations MUST support G.711 and Opus audio codecs.
All implementations MUST support [RFC2833] for DTMF, and MUST support
[REC3389] for comfort noise, for both sending and receiving.

The sequence number space is unique for each direction, channel, and
call (as identified by the call URI). Each side MUST start the
sequence number at zero, and MUST increment it by one for each
subsequent media frame. The sequence number base is represented as a
string corresponding to a 32 bit unsigned integer, and the sequence
number offset in the media frame is variable length, representing an
unsigned integer. Consequently, the sequence number space for a
media stream within a call has a total space of 32 bits. With a
minimum frame size of 10ms, RIPP can support call durations as long
as 11,930 hours. Rollover of the sequence number is not permitted,
the client or server MUST end the call before rollover. This means
that the combination of call URI, direction (client to server, or
server to client), channel number, and sequence number represent a
unique identifier for media packets.

8.8. Sending and Receiving Media
The approach for media is media striping.

To avoid HOL blocking, we cannot send a second media packet on a
byway until we are sure the prior media packet was received. This is
why the client opens multiple media byways.

When either the client or server sends a media frame on a byway, it
immediately marks the byway as blocked. At that point, it SHOULD NOT
send another media frame on that byway. The client or server notes
the sequence number and channel number for that media frame. Once it
receives an acknowledgement for that corresponding media frame, it
marks the byway as UNBLOCKED. A client or server MAY send a media
frame on any unblocked byway.

The sequence number for the media frame is computed based on the
rules described above.

Per the logic described above, the client will open additional byways
once the number of blocked byways goes above a threshold. 1If a the
number of blocked byways in either direction hits 75% of the total
for that direction, this is a signal that congestion has occurred.

In such a case, the client or server MUST either drop packets at the
application layer, or buffer them for later transmission. [[TODO:

https://datatracker.ietf.org/doc/html/rfc2833
https://datatracker.ietf.org/doc/html/rfc3389

Rosenberg, et al. Expires January 9, 2020 [Page 30]

Internet-Draft RIPP July 2019

can we play with QUIC priorities to prioritize newer media frames
over older?]]

When a client or server receives a media frame, it MUST send an
acknowledge message. This message MUST be sent on the same byway on
which the media was received. This acknowledgement message MUST
contain the full sequence number and channel number for the media
packet that was received. It MUST also contain the timestamp,
represented as wallclock time, at which the media packet was
received.

If the server has marked 75% of the reverse media byways as blocked,
it MUST send a signaling event instructing the client to open another
reverse media byway. Once this command is received, the client MUST
open a new reverse byway, unless the total number of byways has
reached 20.

A client MAY terminate media byways gracefully if they have not sent
or received packets on that byway for 5 or more seconds. This is to
clean up unused byways.

There is no need for sender or receiver reports. The equivalent
information is knowable from the application layer acknowledgements.

8.9. Terminating and Re-establishing Connections and Byways

The state of the connection, the QUIC streams, and byways, is
separate from the state of the call. The client MAY terminate an
HTTP connection or byway at any time, and re-establish it.
Similarly, the server or client may end the a byway at any time.

If a byway ends or the connection breaks or is migrated, the client
MUST re-initiate the byways immediately, or risk loss of media and
signalling events. However, to deal with the fact that re-
establishment takes time, both client and server MUST buffer their
signalling and media streams for at least 5 seconds, and then once
the connections and byways are re-established, it sends all buffered
data immediately.

Note that it is the sole responsibility of the client to make sure
byways are re-established if they fail unexpectedly.

8.10. Signaling - Events

Signaling is performed by having the client and server exchange
events. Each event is a JSON object embedded in the signalling
stream, which conveys the event as perceived by the client or server.
Each event has a sequence number, which starts at zero for a call,

Rosenberg, et al. Expires January 9, 2020 [Page 31]

Internet-Draft RIPP July 2019

and increases by one for each event. The sequence number space is
unique in each direction. The event also contains a direction field,
which indicates whether the event was sent from client to server, or
server to client. It also contains a timestamp field, which
indicates the time of the event as perceived by the sender. This
timestamp is not updated when retransmissions happen; the timestamp
exists at the RIPP application layer and RIPP cannot directly observe
HTTP retransmits.

It also contains a call field, which contains the URI of the call in
question.

Finally, there is an event type field, which conveys the type of
event. This is followed by additional fields which are specific to
the event type.

This structure means that each event carried in the signalling is
totally self-describing, irregardless of the enclosing connection and
stream. This greatly facilitates logging, debugging,
retransmissions, retries, and other race conditions which may deliver
the same event multiple times, or deliver an event to a server which
is not aware of the call.

Events are also defined so that the resulting state is uniquely
defined by the event itself. This ensures that knowing the most
recent event is sufficient to determine the state of the call.

This specification defines the following events:

alerting: Passed from server to client, indicating that the recipient
is alerting.

accepted: Passed from server to client, indicating that the call was
accepted.

rejected: Passed from server to client, indicating that the call was
rejected by the user.

failed: Passed from server to client, indicating that the call was
rejected by server or downstream servers, not by the user, but due to
some kind of error condition. This event contains a response code
and reason phrase, which are identical to the response codes and
reason phrases in SIP.

noanswer: Passed from server to client, indicating that the call was
delivered to the receiving user but was not answered, and the server
or a downstream server timed out the call.

Rosenberg, et al. Expires January 9, 2020 [Page 32]

Internet-Draft RIPP July 2019

end: initiated by either client or server, it indicates that the call
is to be terminated. Note that this does NOT delete the HTTP
resource, it merely changes its state to call end. Furthermore, a
call cannot be ended with a DELETE against the call URI; DELETE is
not permitted and MUST be rejected by the server. The call end event
SHOULD contain a reason, using the Reason codes defined for SIP.

0 CJ - Not keen on SIP reason codes - they did not conatin enough
info for all the Q950 stuff and were not particually extensible.
I think it would be better to define a set here with clear mapping
to SIP and SIP +Q950 reasons.

migrate: sent from server to client, it instructs the client to
terminate the connections and re-establish them to a new URI which
replaces the URI for the call. The event contains the new URI to
use. This new URI MUST utilize the same path components, and MUST
have a different authority component.

open-reverse: sent from server to client, it instructs the client to
open an additional set of reverse media byways.

0o CJ - would it work to have this all far simplier and just have the
trunk cap advertisemtn say how many to open up ?

tnt: send from consumer to provider, it invokes a takeback-and-
transfer operation. It includes the phone number to which the call
should be transferred. The provide will then transfer the call to
the target number. This event is meant to invoke the feature as it
has been implemented by the provider. RIPP does not define
additional behaviors.

8.11. Call Termination

Signaling allows an application layer call end to be sent. This will
also cause each side to terminate the the outstanding transactions
using end flags per HTTP/3 specs. However, the opposite is not true
- ending of the transactions or connection does not impact the call
state.

A server MUST maintain a timer, with a value equal to one second, for
which it will hold the call in its current state without any active
signalling byway. If the server does not receive a signalling byway
before the expiration of this timer, it MUST consider the call as
ended. Once the call has ended, the call resource SHOULD be
destroyed.

Rosenberg, et al. Expires January 9, 2020 [Page 33]

Internet-Draft RIPP July 2019

If the server receives a signalling or media byway for a call that is
TERMINATED, it MUST reject the transaction with an 404 response code,
since the resource no longer exists.

8.12. GET Transactions

A client MAY initiate a GET request against the call URI at any time.
This returns the current state of the resource. This request returns
the most recent event, either sent by the server or received by the
server.

0 CJ - lets call this previosEvent as the event part waits till the
next event on a long poll. Be good to say something about how
this is used as it is not clear to me it is needed.

8.13. Graceful Call Migration: Server

To facilitate operational maintenance, the protocol has built in
support for allowing a server instance to drain all active calls to
another server instance.

The server can issue a migrate event over the signalling byway, which
includes a new call URI that the peer should use. Once received, the
client closes all transactions to the current call URI. It then
establishes new signalling, media and media control byways to the URI
it just received. All media that the client wishes to transmit, but
was unable to do so during the migration, is buffered and then sent
in a burst once the media byways are re-established. This ensures
there is no packet loss (though there will be jitter) during the
migration period.

We don't use QUIC layer connection migration, as that is triggered by
network changes and not likely to be exposed to applications.

8.14. Graceful Call Migration: Client

Clients can move a call from one client instance to another easily.
No commands are required. The client simply ends the in-progress
transactions for signalling and media, and then reinitiates them to
the existing call URI from whatever server is to take over. Note
that the client MUST do this within 1s or the server will end the
call.

8.15. Ungraceful Call Migration
Since all media packets are acknowledged at the application layer, it

is possible for endpoints to very quickly detect remote failures,
network failures, and other related problems.

Rosenberg, et al. Expires January 9, 2020 [Page 34]

Internet-Draft RIPP July 2019

[©

Failure detection falls entirely at the hands of the client. A
failure situation is detected when any one of the following happens:

1. The QUIC connection closes unexpectedly
2. Any outstanding signalling or media byway is reset by the peer
3. No media packets are received from the peer for 1s

4. No acknowledgements are received for packets that have been sent
in the last 1s

If the client detects such a failure, it MUST abort all ongoing
transactions to the server, terminate the QUIC connection, and then
establish a new connection using O-RTT, and re-establish signalling
and media transactions. If this retry fails, the client MUST
consider the call terminated. It SHOULD NOT a further attempt to re-
establish the call.

0o CJ - Note there is no way to know if it can use O-RTT or not, all
depends on cached state so the best it can do is hope it might
work.

SIP Gateway

RIPP is designed to be easy to gateway from SIP. The expectation is
that RIPP will be implemented in SBCs and softswitches. A SIP to
RIPP gateway has to be call-stateful, acting as a B2BUA, in order to
gateway to RIPP. Furthermore, a SIP to RIPP gateway has to act as a
media termination point in SIP. It has to perform any SRTP
decryption and encryption, and it must de-packetize RTP packets to
extract their timestamps, sequence numbers, and codec types.

SIP to RIPP gateways are not transparent. SIP header fields which
are unknown or do not map to RIPP functionality as described here,
MUST be discarded.

Any configuration and provisioning for RIPP happens ahead of receipt

or transmission of SIP calls. Consequently, the logic described here
applies at the point that a gateway receives a SIP INVITE on the SIP

side, or receives a POST to the RIPP trunk URI on the RIPP side.

This specification does define some normative procedures for the
gateway function in order to maximize interoperability.

Rosenberg, et al. Expires January 9, 2020 [Page 35]

Internet-Draft RIPP

9.1. RIPP to SIP
9.2. SIP to RIPP
10. RAML API

#%RAML 1.0
title: RIPP
baseUri: http://ripp.example.net/{version}
version: vi
protocols: [HTTPS]
securedBy: [oauth_2_0]
securitySchemes:
oauth_2_0: !include securitySchemes/oauth_2_0.raml

types:
InboundEndpoint:
type: object
properties:
consumerTrunkURI: string
consumerToken: string
Event:
type: object
properties:
name:

enum: [alerting, accepted, rejected, failed,

end, open-reverse]
direction:
enum: [c2s, s2c]
sequence number:
type: number

timestamp:

type: number
ended:

type: boolean
timeStamp:

type: datetime
tntDestination:

type: string

note: only in events with name tnt
migrateToURL:

type: string

note: only in events with name migrate

Advertisement:

type object

properties:
max-bitrate: number

July 2019

tnt, migrate,

max-samplerate: number

Rosenberg, et al. Expires January 9, 2020 [Page 36]

Internet-Draft RIPP July 2019

max-channels: number
non-el64: boolean
force-cbr: boolean
tnt: boolean
Frame:

segNumOffset: number

datalLen: number

data: string

FrameAck:
segNum: number
BywayPreamble:

baseSegNum: number
baseTime: number
frameTime: number
codec:
enum: [opus, g711, dtmf, cn, ack]
BywayMedia:
mediaFrames: array

/trunks:
/{trunkID}:
/consumerTrunk:
put:
description: Set the URI and security token for consumer trunk URI
securedBy: [oauth_2_0]
/capAdv:
get:
description: Get the Capability Advertisement for this trunk
securedBy: [oauth_2_0]
responses:
200:
body:
application/json:
type: Advertisement
/calls:
post:
gueryParameters:
target:
securedBy: [oauth_2_0]
description: Create a new call. Returns a Call URI
responses:
202:
/call:

/{callibD}:

Rosenberg, et al. Expires January 9, 2020 [Page 37]

Internet-Draft RIPP July 2019

/prevEvent:
get:
description: Retreive the previous event from server
responses:
200:
body:
application/json:
type: Event
/event:
get:

description: wWait for next event then retreive the most recent
event from server

responses:
200:
body:
application/json:
type: Event
put:
description: Tell server about recent event
body:
application/json:
type: Event
responses:
200:
/media-forward:
post:

description: Starts an infinite flow of media frames from
client to server
body:
application/octet-stream:
type: BywayFlow
responses:
200:
application/octet-stream:
type: BywayFlow
/media-reverse:
post:
description: Starts an infinite flow of media frames from
server to client
body:
application/octet-stream:
type: BywayFlow
responses:
200:
application/octet-stream:
type: BywayFlow

Rosenberg, et al. Expires January 9, 2020 [Page 38]

Internet-Draft

RIPP July 2019

IANA Considerations

Security Considerations

Acknowledgements

Thank you to Jason Livingood for the detailed review.

Informative References

[I-D.ietf-quic-http]

Bishop, M., "Hypertext Transfer Protocol Version 3
(HTTP/3)", draft-ietf-quic-http-20 (work in progress),
April 2019.

[I-D.ietf-quic-transport]

[RFC2833]

[RFC3261]

[RFC3264]

[RFC3389]

[RFC3550]

[RFC4855]

Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
and Secure Transport", draft-ietf-quic-transport-20 (work
in progress), April 2019.

Schulzrinne, H. and S. Petrack, "RTP Payload for DTMF
Digits, Telephony Tones and Telephony Signals", RFC 2833,
DOI 10.17487/RFC2833, May 2000,
<https://www.rfc-editor.org/info/rfc2833>,

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
A., Peterson, J., Sparks, R., Handley, M., and E.
Schooler, "SIP: Session Initiation Protocol", RFC 3261,
DOI 10.17487/RFC3261, June 2002,
<https://www.rfc-editor.org/info/rfc3261>.

Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
with Session Description Protocol (SDP)", REC 3264,

DOI 10.17487/RFC3264, June 2002,
<https://www.rfc-editor.org/info/rfc3264>.

Zopf, R., "Real-time Transport Protocol (RTP) Payload for
Comfort Noise (CN)", REC 3389, DOI 10.17487/RFC3389,
September 2002, <https://www.rfc-editor.org/info/rfc3389>.

Schulzrinne, H., Casner, S., Frederick, R., and V.
Jacobson, "RTP: A Transport Protocol for Real-Time
Applications", STD 64, RFC 3550, DOI 10.17487/RFC3550,
July 2003, <https://www.rfc-editor.org/info/rfc3550>.

Casner, S., "Media Type Registration of RTP Payload
Formats", RFC 4855, DOI 10.17487/RFC4855, February 2007,
<https://www.rfc-editor.org/info/rfc4855>.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-20
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-20
https://datatracker.ietf.org/doc/html/rfc2833
https://www.rfc-editor.org/info/rfc2833
https://datatracker.ietf.org/doc/html/rfc3261
https://www.rfc-editor.org/info/rfc3261
https://datatracker.ietf.org/doc/html/rfc3264
https://www.rfc-editor.org/info/rfc3264
https://datatracker.ietf.org/doc/html/rfc3389
https://www.rfc-editor.org/info/rfc3389
https://datatracker.ietf.org/doc/html/rfc3550
https://www.rfc-editor.org/info/rfc3550
https://datatracker.ietf.org/doc/html/rfc4855
https://www.rfc-editor.org/info/rfc4855

Rosenberg, et al. Expires January 9, 2020 [Page 39]

Internet-Draft RIPP July 2019

[RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
DOI 10.17487/RFC6265, April 2011,
<https://www.rfc-editor.org/info/rfc6265>.

[RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,
<https://www.rfc-editor.org/info/rfc6749>.

[RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
Transfer Protocol Version 2 (HTTP/2)", REC 7540,
DOI 10.17487/RFC7540, May 2015,
<https://www.rfc-editor.org/info/rfc7540>.

[RFC7866] Portman, L., Lum, H., Ed., Eckel, C., Johnston, A., and A.
Hutton, "Session Recording Protocol", RFEC 7866,
DOI 10.17487/RFC7866, May 2016,
<https://www.rfc-editor.org/info/rfc7866>.

[RFC8224] Peterson, J., Jennings, C., Rescorla, E., and C. Wendt,
"Authenticated Identity Management in the Session
Initiation Protocol (SIP)", RFC 8224,
DOI 10.17487/RFC8224, February 2018,
<https://www.rfc-editor.org/info/rfc8224>.

Authors' Addresses

Jonathan Rosenberg
Five9

Email: jdrosen@jdrosen.net
Cullen Jennings

Cisco Systems

Email: fluffy@iii.ca
Anthony Minessale
Signalwire/Freeswitch

Email: anthm@signalwire.com

https://datatracker.ietf.org/doc/html/rfc6265
https://www.rfc-editor.org/info/rfc6265
https://datatracker.ietf.org/doc/html/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc7866
https://www.rfc-editor.org/info/rfc7866
https://datatracker.ietf.org/doc/html/rfc8224
https://www.rfc-editor.org/info/rfc8224

Rosenberg, et al. Expires January 9, 2020 [Page 40]

