
Internet Engineering Task Force A. Malhotra
Internet-Draft Boston University
Intended status: Informational A. Langley
Expires: November 28, 2019 Google
 W. Ladd
 Cloudflare
 May 27, 2019

Roughtime
draft-roughtime-aanchal-02

Abstract

 This document specifies Roughtime - a protocol that aims to achieve
 rough time synchronization while detecting servers that provide
 inaccurate time and providing cryptographic proof of their
 malfeasance.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 28, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Malhotra, et al. Expires November 28, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Roughtime May 2019

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Motivation

 Time synchronization is essential to Internet security as many
 security protocols and other applications require synchronization
 [RFC7384][MCBG]. Unfortunately widely deployed protocols such as the
 Network Time Protocol (NTP) [RFC5905] lack essential security
 features, and even newer protocols like Network Time Security (NTS)
 [I-D.ietf-ntp-using-nts-for-ntp] fail to ensure that the servers
 behave correctly. Authenticating time servers prevents network
 adversaries from modifying time packets, but an authenticated time
 server still has full control over the contents of time packet and
 may go rogue. The Roughtime protocol provides cryptographic proof of
 malfeasance, enabling clients to detect and prove to a third party
 server's attempts to influence the time a client computes.

 +--------------+----------------------+-----------------------------+
 | Protocol | Authenticated Server | Server Malfeasance Evidence |
 +--------------+----------------------+-----------------------------+
NTP, Chronos	N	N
NTP-MD5	Y*	N
NTP-Autokey	Y**	N
NTS	Y	N
Roughtime	Y	Y
 +--------------+----------------------+-----------------------------+

 Security Properties of current protocols

 Table 1

 Y* For security issues with symmetric-key based NTP-MD5
 authentication, please refer to Message Authentication Code for the
 Network Time Protocol draft [I-D.ietf-ntp-mac]

 Y** For security issues with Autokey Public Key Authentication, refer
 to [Autokey]

 More specifically,

 If a server's timestamps do not fit into the time context of other
 servers' responses, then a Roughtime client can cryptographically
 prove this misbehaviour to third parties. This helps detect "bad"
 servers.

 A Roughtime client can roughly detect (with no absolute guarantee)
 a delay attack [DelayAttacks] but can not cryptographically prove

https://datatracker.ietf.org/doc/html/rfc7384
https://datatracker.ietf.org/doc/html/rfc5905

Malhotra, et al. Expires November 28, 2019 [Page 2]

Internet-Draft Roughtime May 2019

 this to a third party. However, the absence of proof of
 malfeasance SHOULD not be considered a proof of absence of
 malfeasance. So Roughtime SHOULD not be used as a witness that a
 server is overall "good".

 Note that the delay attacks cannot be detected/stopped by any
 protocol. Delay attacks can not, however, undermine the security
 guarantees provided by Roughtime.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Protocol Overview

 Roughtime is a protocol for rough time synchronization that enables
 clients to provide cryptographic proof of server malfeasance. It
 does so by having responses from servers include a signature with a
 certificate rooted in long term public/private key pair over a
 portion of the initial request, thus providing cryptographic proof
 that the timestamp was issued after previous responses and before
 future ones.

 Single server mode: At its most basic level, Roughtime is a one round
 protocol in which a completely fresh client requests the current time
 and the server sends a signed response. The response includes a
 timestamp (the number of microseconds since the Unix epoch) and a
 radius (in microseconds) used to indicate the server's certainty
 about the reported time. For example, a radius of 1,000,000
 microseconds means the server is absolutely confident that the true
 time is within one second of the reported time.

 The server proves freshness of its response as follows: The request
 contains a random challenge. The server incorporates the challenge
 into its signed response so that its needed to verify the signature.
 This proves that the signed response could only have been generated
 after the challenge was issued if the challenge has sufficient
 entropy.

 Chaining multiple servers: For subsequent requests, the client
 generates its nonce by hashing the reply from the first server with a
 random value. This proves that the nonce was created after the reply
 from the first server. It sends that to the second server and

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Malhotra, et al. Expires November 28, 2019 [Page 3]

Internet-Draft Roughtime May 2019

 receives a signature from it covering that nonce and the time from
 the second server.

 Cryptographic proof of misbehavior: If the time from the second
 server is before the first, then the client has proof of misbehavior;
 the reply from the second server implicitly shows that it was created
 later because of the way that the client constructed the nonce. If
 the time from the second server is after, then the client can contact
 the first server again and get a signature that was provably created
 afterwards, but with an earlier timestamp.

 With only two servers, the client can end up with proof that
 something is wrong, but no idea what the correct time is. But with
 half a dozen or more independent servers, the client will end up with
 chain of proof of any server's misbehavior, signed by several others,
 and (presumably) enough accurate replies to establish what the
 correct time is. Furthermore this proof may be validated by third
 parties ultimately leading to a revocation of trust in the
 misbehaving server.

4. The guarantee

 A Roughtime response to a query sent at t_1, received at t_2, and
 with timestamp t_3 is guaranteed to have been created between the
 transmission of the query and its reception. If t_3 is not within
 that interval, a server inconsistency may be detected and used to
 impeach the server. The use of such a guarantee in synchronization
 is currently beyond the grasp of this document.

5. Message Format

 A uint32 is a 32 bit unsigned integer. It is serialized in bytes
 with the least significant byte first. A uint64 is a 64 bit unsigned
 integer. It is also seralized with the least significant byte first.
 8 byte timestamps are described in Section 7.

 A Roughtime packet is a UDP packet whose contents are interpreted as
 a map from uint32s to strings of bytes. The byte strings must all
 have lengths a multiple of four. All uint32 are encoded with the
 least significant byte first. The keys of this map are called tags,
 and we speak of the value of a tag as the string of bytes it is
 mapped to.

 A Roughtime packet is serialized as follows: First there is a header,
 The first four bytes in the header are the uint32 number of tags N,
 and hence of (tag, value) pairs. 4*(N-1) bytes are offsets, each
 offset a uint32. The last 4*N bytes are the tags.

Malhotra, et al. Expires November 28, 2019 [Page 4]

Internet-Draft Roughtime May 2019

 Tags are in ascending order, and no tag can be repeated. Offsets are
 all a multiple of four and MUST be strictly increasing. The offset
 array is considered to have a not explicitly encoded value of 0 as
 its zeroeth entry.

 Immediately following the header is a concatenation of all the
 strings. The first post-header byte is at offset 0, and the end of
 the final byte string is indicated by the end of the packet. The ith
 byte string ends at offset[i+1]-1, counting of course from 0, and
 begins at offset[i]. It is the value associated to the ith tag.

 This encoding may be recursive: a value may be said to be in
 Roughtime format and thus have a header, etc. Tags may be listed as
 four ASCII characters [RFC0020]. In this case the tag when
 serialized will be those four ASCII characters. For example NONC
 would be the numeric value 0x434e4f4e. They may also be listed as
 fewer then four ASCII characters with hex escape codes at the end.

6. Protocol

6.1. Queries

 A query is a Roughtime packet with the tag NONC. The contents of
 NONC are 64 bytes. The request packet MUST be a minimum of 1024
 bytes. To attain this size the tag PAD\xff MAY be added at the end
 of the packet with a conent of all zeros. Other tags MUST be ignored
 by the server. Future versions may specify additional tags and their
 semantics, so clients MUST NOT add other tags.

6.2. Responses

 A response contains the following tags: SREP, SIG\x00, CERT, INDX,
 PATH, SREP value is itself in Roughtime format that contains the
 folowing tags: ROOT, MIDP, RADI. SIG\x00 is an Ed25519 signature
 [RFC8032] over the SREP value using the public key contained in CERT
 as explained later.

 CERT in Roughtime format and contains the following tags: DELE,
 SIG\x00. This SIG\x00 is an Ed25519 signature over DELE that can be
 verified using the long term public key of the server. DELE is
 itself in Roughtime format containing tags MINT, MAXT, PUBK.

6.2.1. SREP

 o ROOT contains the root hash value of a Merkle tree using SHA512 as
 described when we reach the PATH and INDX blocks

 o MIDP contains an 8 byte timestamp of the moment of processing

https://datatracker.ietf.org/doc/html/rfc0020
https://datatracker.ietf.org/doc/html/rfc8032

Malhotra, et al. Expires November 28, 2019 [Page 5]

Internet-Draft Roughtime May 2019

 o RADI is a u32 contains the server's estimate of the accuracy of
 MIDP in microseconds. Servers MUST ensure the true time is within
 (MIDP-RADI, MIDP+RADI) at the time they compose the response
 packet.

6.2.2. DELE

 MINT is the minimum 8 byte timestamp at which the key in PUBK is
 trusted to begin signing time. MIDP > MINT for validity.

 MAXT is the maximum 8 byte timestamp at which PUBK may sign. MIDP
 < MAXT for validity.

 PUBK is a temporary Ed25519 public key. The use of this field is
 to enable seperation of a root public key from keys on devices
 exposed to the public Internet.

6.2.3. INDX and PATH

 INDX is a uint32 determining the position of NONC in a Merkle tree.
 PATH contains the values to be hashed with the running hash as one
 ascends the tree. PATH is a multiple of 64 bytes long. The
 following algorithm verifies inclusion in the Merkle tree:

 One starts by computing the hash of the NONC value from the request,
 with \x00 preappended. Then one walks from the least significant bit
 of INDX to the most significant bit, and also walks towards the end
 of PATH.

 If PATH ends then the remaining bits of the INDX MUST be all zero.
 This indicates the termination of the walk, and the current value
 MUST equal ROOT if the response is valid.

 If the current bit is 0, one hashes \x01, the current hash, and the
 value from PATH.

 If the current bit is 1 one hashes \x01, the value from PATH, and the
 current hash.

6.3. Validity of response

 A client MUST check the following properties when it receives a
 response. We assume the long term server public key is known to the
 client through other means.

 The signature in CERT was made with the long-term key of the
 server

Malhotra, et al. Expires November 28, 2019 [Page 6]

Internet-Draft Roughtime May 2019

 The DELE timestamps and the MIDP value are consistent

 The INDX and PATH values prove NONC was included in the Merkle
 tree with value ROOT

 The signature of SREP in SIG\x00 validates with the public key in
 DELE

 A response that passes these checks is said to be valid. Validity of
 a response does not prove the time is correct, but merely that the
 server signed it, and more specifically began to compute the
 signature at a time in between (MIDP-RADI, MIDP+RADI).

7. Time

 An 8 byte timestamp contains a 4 byte Modified Julian Date (as in
 [MJD] followed by a 4 byte count of the number of microseconds since
 midnight on that day. This is not a unique representation: leap
 seconds are handled by changing the day number early or late, and
 hence having the number of microseconds increase even more. Unlike
 NTP this is not a representation that uses the full number of bits in
 the fraction part.

8. Cheater detection

 A chain of responses is a series of responses where the SHA-512 hash
 of the preceding response H, is concatenated with a 64 byte blind X,
 and then SHA-512(H, X) is the NONC used in the subsequent response.
 These may be represented as an array of objects in JSON where each
 object may have keys "blind" and "packet". Packet has the base64
 encoded bytes of the packet and blind is the blind used for the next
 nonce. The last packet needs no blind.

 A pair of responses (r_1, r_2) is invalid if MIDP_1-RADI_1 >
 MIDP_2+RADI_2. A chain of longer length is invalid if for any i, j
 such that i < j, (r_i, r_j) is an invalid pair.

 Invalidity of a chain is proof that causality has been violated if
 all servers were reporting correct time. An invalid chain where all
 individual responses are valid is cryptographic proof of malfeasance
 of at least one server: if all servers had the correct time in the
 chain, causality would imply that MIDP_1-RADI_1 < MIDP_2+RADI_2.

 In conducting the comparison of timestamps one must know the length
 of a day and hence have historical leap second data for the days in
 question. However if violations are greater then a second the loss
 of leap second data doesn't impede their detection.

Malhotra, et al. Expires November 28, 2019 [Page 7]

Internet-Draft Roughtime May 2019

9. Grease

 Servers MAY send back a fraction of responses that are syntactically
 invalid or contain invalid signatures as well as incorrect times.
 Clients MUST properly reject such responses. Servers MUST NOT send
 back responses with incorrect times and valid signatures. Either
 signature MAY be invalid for this application.

10. Roughtime Servers

 The below list contains a list of servers with their public keys in
 Base64 format. These servers implement an older version of this
 specification.

 roughtime.int08h.com:2002;
 AW5uAoTSTDfG5NfY1bTh08GUnOqlRb+HVhbJ3ODJvsE=

 roughtime.cloudflare.com:2002; gD63hSj3ScS+wuOeGrubXlq35N1c5Lby/
 S+T7MNTjxo=

 roughtime.sandbox.google.com:2002;
 etPaaIxcBMY1oUeGpwvPMCJMwlRVNxv51KK/tktoJTQ=

11. Trust anchors and policies

 A trust anchor is any distributor of a list of trusted servers. It
 is RECOMMENDED that trust anchors subscribe to a common public forum
 where evidence of malfeasance may be shared and discussed. Trust
 anchors SHOULD subscribe to a zero-tolerance policy: any generation
 of incorrect timestamps will result in removal. To enable this trust
 anchors SHOULD list a wide variety of servers so the removal of a
 server does not result in operational issues for clients. Clients
 SHOULD attempt to detect malfeasance and have a way to report it to
 trust anchors.

 Because only a single roughtime server is required for successful
 synchronization, Roughtime does not have the incentive problems that
 have prevented effective enforcement of discipline on the web PKI.
 We expect that some clients will aggressively monitor server
 behavior.

12. Acknowledgements

 Thomas Peterson corrected multiple nits. Marcus Dansarie, Kristof
 Teichel, Tal Mizrahi, and the other members of the NTP working group
 contributed comments and suggestions.

Malhotra, et al. Expires November 28, 2019 [Page 8]

Internet-Draft Roughtime May 2019

13. IANA Considerations

 We request IANA assign a UDP port and create a new registry for
 Roughtime tags.

14. Security Considerations

 This protocol will not survive the advent of quantum computers.
 Currently only one signature scheme is supported. Maintaining a list
 of trusted servers and adjudicating violations of the rules by
 servers are not discussed in this document and are essential for
 security. Arithmetic on the adjusted timescale is interesting with
 intervals, and this may impact the interpretation of the MAXT and
 MINT fields. Servers carry out a significant amount of computation
 in response to clients, and thus may experience vulnerability to
 denial of service attacks.

 This protocol does not provide any confidentiality, and given the
 nature of timestamps such impact is minor. The compromise of a
 PUBK's private key, even past MAXT, is a problem as the private key
 can be used to sign invalid times that are in the range MINT to MAXT,
 and thus violate the good behavior guarantee of the server.

 Roughtime clients MUST update their view of which servers are
 trustworthy in order to benefit from the detection of misbehavior.

 Packets sent by the client MUST be at least 1024 bytes in length in
 order to mitigate amplification attacks, and servers MUST ignore
 request packets that are smaller than this length.

15. Privacy Considerations

 This protocol is designed to obscure all client identifiers. Servers
 necessarily have persistent long term identities essential to
 enforcing correct behavior.

16. References

16.1. Normative References

 [RFC0020] Cerf, V., "ASCII format for network interchange", STD 80,
RFC 20, DOI 10.17487/RFC0020, October 1969,

 <https://www.rfc-editor.org/info/rfc20>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://www.rfc-editor.org/info/rfc8032>.

https://datatracker.ietf.org/doc/html/rfc20
https://www.rfc-editor.org/info/rfc20
https://datatracker.ietf.org/doc/html/rfc8032
https://www.rfc-editor.org/info/rfc8032

Malhotra, et al. Expires November 28, 2019 [Page 9]

Internet-Draft Roughtime May 2019

16.2. Informative References

 [Autokey] Rottger, S., "Analysis of the NTP Autokey Procedures",
 2012, <https://zero-entropy.de/autokey_analysis.pdf>.

 [DelayAttacks]
 Mizrahi, T., "A Game Theoretic Analysis of Delay Attacks
 Against Time Synchronization Protocols", 2012,
 <https://ieeexplore.ieee.org/document/6336612>.

 [I-D.ietf-ntp-mac]
 Malhotra, A. and S. Goldberg, "Message Authentication Code
 for the Network Time Protocol", draft-ietf-ntp-mac-06
 (work in progress), January 2019.

 [I-D.ietf-ntp-using-nts-for-ntp]
 Franke, D., Sibold, D., Teichel, K., Dansarie, M., and R.
 Sundblad, "Network Time Security for the Network Time
 Protocol", draft-ietf-ntp-using-nts-for-ntp-19 (work in
 progress), April 2019.

 [MCBG] Malhotra, A., Cohen, I., Brakke, E., and S. Goldberg,
 "Attacking the Network Time Protocol", 2015,
 <https://eprint.iacr.org/2015/1020>.

 [MJD] Moyer, G., "The Origin of the Julian Day System", 1981.

 [resolution]
 International Earth Rotation and Reference Systems
 Service, "Resolution B1", 2000.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

https://zero-entropy.de/autokey_analysis.pdf
https://ieeexplore.ieee.org/document/6336612
https://datatracker.ietf.org/doc/html/draft-ietf-ntp-mac-06
https://datatracker.ietf.org/doc/html/draft-ietf-ntp-using-nts-for-ntp-19
https://eprint.iacr.org/2015/1020
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://datatracker.ietf.org/doc/html/rfc5905
https://www.rfc-editor.org/info/rfc5905

Malhotra, et al. Expires November 28, 2019 [Page 10]

Internet-Draft Roughtime May 2019

 [RFC7384] Mizrahi, T., "Security Requirements of Time Protocols in
 Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,
 October 2014, <https://www.rfc-editor.org/info/rfc7384>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Authors' Addresses

 Aanchal Malhotra
 Boston University
 111 Cummington Mall
 Boston 02215
 USA

 Email: aanchal4@bu.edu

 Adam Langley
 Google

 Watson Ladd
 Cloudflare
 101 Townsend St
 San Francisco
 USA

 Email: watson@cloudflare.com

https://datatracker.ietf.org/doc/html/rfc7384
https://www.rfc-editor.org/info/rfc7384
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174

Malhotra, et al. Expires November 28, 2019 [Page 11]

