
Network Working Group R. Quattlebaum
Internet-Draft J. Woodyatt
Intended status: Informational Nest Labs, Inc.
Expires: November 10, 2017 May 9, 2017

Spinel Host-Controller Protocol
draft-rquattle-spinel-unified-00

Abstract

 This document describes the Spinel protocol, which facilitates the
 control and management of IPv6 network interfaces on devices where
 general purpose application processors offload network functions at
 their interfaces to network co-processors (NCP) connected by simple
 communication links like serial data channels. While initially
 developed to support Thread(R), Spinel's layered design allows it to
 be easily adapted to other similar network technologies.

 This document also describes various Spinel specializations,
 including support for the Thread(R) low-power mesh network
 technology.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 10, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Spinel Protocol (Unified) May 2017

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may not be modified, and derivative works of it may not
 be created, and it may not be published except as an Internet-Draft.

Table of Contents

1. Introduction . 6
1.1. About this Draft . 7
1.1.1. Scope . 7
1.1.2. Renumbering . 7

2. Frame Format . 8
2.1. Header Format . 8
2.1.1. FLG: Flag . 8
2.1.2. NLI: Network Link Identifier 9
2.1.3. TID: Transaction Identifier 9
2.1.4. Command Identifier (CMD) 9
2.1.5. Command Payload (Optional) 10

3. Data Packing . 10
3.1. Primitive Types . 10
3.2. Packed Unsigned Integer 11
3.3. Data Blobs . 12
3.4. Structured Data . 13
3.5. Arrays . 13

4. Commands . 14
4.1. CMD 0: (Host->NCP) CMD_NOOP 14
4.2. CMD 1: (Host->NCP) CMD_RESET 14
4.3. CMD 2: (Host->NCP) CMD_PROP_VALUE_GET 14
4.4. CMD 3: (Host->NCP) CMD_PROP_VALUE_SET 15
4.5. CMD 4: (Host->NCP) CMD_PROP_VALUE_INSERT 15
4.6. CMD 5: (Host->NCP) CMD_PROP_VALUE_REMOVE 16
4.7. CMD 6: (NCP->Host) CMD_PROP_VALUE_IS 17
4.8. CMD 7: (NCP->Host) CMD_PROP_VALUE_INSERTED 17
4.9. CMD 8: (NCP->Host) CMD_PROP_VALUE_REMOVED 18
4.10. CMD 18: (Host->NCP) CMD_PEEK 18
4.11. CMD 19: (NCP->Host) CMD_PEEK_RET 19
4.12. CMD 20: (Host->NCP) CMD_POKE 19
4.13. CMD 21: (Host->NCP) CMD_PROP_VALUE_MULTI_GET 19
4.14. CMD 22: (Host->NCP) CMD_PROP_VALUE_MULTI_SET 20
4.15. CMD 23: (NCP->Host) CMD_PROP_VALUES_ARE 21

5. Properties . 21
5.1. Property Methods . 22
5.2. Property Types . 22

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 2]

Internet-Draft Spinel Protocol (Unified) May 2017

5.2.1. Single-Value Properties 22
5.2.2. Multiple-Value Properties 23
5.2.3. Stream Properties 23

5.3. Property Numbering 24
5.4. Property Sections . 24
5.5. Core Properties . 25
5.5.1. PROP 0: PROP_LAST_STATUS 25
5.5.2. PROP 1: PROP_PROTOCOL_VERSION 25
5.5.3. PROP 2: PROP_NCP_VERSION 26
5.5.4. PROP 3: PROP_INTERFACE_TYPE 26
5.5.5. PROP 4: PROP_INTERFACE_VENDOR_ID 27
5.5.6. PROP 5: PROP_CAPS 27
5.5.7. PROP 6: PROP_INTERFACE_COUNT 29
5.5.8. PROP 7: PROP_POWER_STATE 29
5.5.9. PROP 8: PROP_HWADDR 30
5.5.10. PROP 9: PROP_LOCK 30

5.6. Stream Properties . 30
5.6.1. PROP 112: PROP_STREAM_DEBUG 30
5.6.2. PROP 113: PROP_STREAM_RAW 31
5.6.3. PROP 114: PROP_STREAM_NET 33
5.6.4. PROP 114: PROP_STREAM_NET_INSECURE 34

5.7. PHY Properties . 34
5.7.1. PROP 32: PROP_PHY_ENABLED 34
5.7.2. PROP 33: PROP_PHY_CHAN 34
5.7.3. PROP 34: PROP_PHY_CHAN_SUPPORTED 35
5.7.4. PROP 35: PROP_PHY_FREQ 35
5.7.5. PROP 36: PROP_PHY_CCA_THRESHOLD 35
5.7.6. PROP 37: PROP_PHY_TX_POWER 35
5.7.7. PROP 38: PROP_PHY_RSSI 35
5.7.8. PROP 39: PROP_PHY_RX_SENSITIVITY 36

5.8. MAC Properties . 36
5.8.1. PROP 48: PROP_MAC_SCAN_STATE 36
5.8.2. PROP 49: PROP_MAC_SCAN_MASK 36
5.8.3. PROP 50: PROP_MAC_SCAN_PERIOD 36
5.8.4. PROP 51: PROP_MAC_SCAN_BEACON 37
5.8.5. PROP 52: PROP_MAC_15_4_LADDR 37
5.8.6. PROP 53: PROP_MAC_15_4_SADDR 38
5.8.7. PROP 54: PROP_MAC_15_4_PANID 38
5.8.8. PROP 55: PROP_MAC_RAW_STREAM_ENABLED 38
5.8.9. PROP 56: PROP_MAC_PROMISCUOUS_MODE 38
5.8.10. PROP 57: PROP_MAC_ENERGY_SCAN_RESULT 39
5.8.11. PROP 4864: PROP_MAC_WHITELIST 39
5.8.12. PROP 4865: PROP_MAC_WHITELIST_ENABLED 39

5.9. NET Properties . 39
5.9.1. PROP 64: PROP_NET_SAVED 39
5.9.2. PROP 65: PROP_NET_IF_UP 39
5.9.3. PROP 66: PROP_NET_STACK_UP 40
5.9.4. PROP 67: PROP_NET_ROLE 40

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 3]

Internet-Draft Spinel Protocol (Unified) May 2017

5.9.5. PROP 68: PROP_NET_NETWORK_NAME 40
5.9.6. PROP 69: PROP_NET_XPANID 40
5.9.7. PROP 70: PROP_NET_MASTER_KEY 40
5.9.8. PROP 71: PROP_NET_KEY_SEQUENCE_COUNTER 40
5.9.9. PROP 72: PROP_NET_PARTITION_ID 40
5.9.10. PROP 73: PROP_NET_REQUIRE_JOIN_EXISTING 41
5.9.11. PROP 74: PROP_NET_KEY_SWITCH_GUARDTIME 41
5.9.12. PROP 75: PROP_NET_PSKC 41

5.10. IPv6 Properties . 41
5.10.1. PROP 96: PROP_IPV6_LL_ADDR 41
5.10.2. PROP 97: PROP_IPV6_ML_ADDR 41
5.10.3. PROP 98: PROP_IPV6_ML_PREFIX 41
5.10.4. PROP 99: PROP_IPV6_ADDRESS_TABLE 41
5.10.5. PROP 101: PROP_IPv6_ICMP_PING_OFFLOAD 42

5.11. Debug Properties . 42
5.11.1. PROP 16384: PROP_DEBUG_TEST_ASSERT 42
5.11.2. PROP 16385: PROP_DEBUG_NCP_LOG_LEVEL 42

6. Status Codes . 43
7. Technology: Thread(R) . 44
7.1. Capabilities . 44
7.2. Properties . 45
7.2.1. PROP 80: PROP_THREAD_LEADER_ADDR 45
7.2.2. PROP 81: PROP_THREAD_PARENT 45
7.2.3. PROP 82: PROP_THREAD_CHILD_TABLE 45
7.2.4. PROP 83: PROP_THREAD_LEADER_RID 45
7.2.5. PROP 84: PROP_THREAD_LEADER_WEIGHT 45
7.2.6. PROP 85: PROP_THREAD_LOCAL_LEADER_WEIGHT 46
7.2.7. PROP 86: PROP_THREAD_NETWORK_DATA 46
7.2.8. PROP 87: PROP_THREAD_NETWORK_DATA_VERSION 46
7.2.9. PROP 88: PROP_THREAD_STABLE_NETWORK_DATA 46
7.2.10. PROP 89: PROP_THREAD_STABLE_NETWORK_DATA_VERSION . . 46
7.2.11. PROP 90: PROP_THREAD_ON_MESH_NETS 46
7.2.12. PROP 91: PROP_THREAD_LOCAL_ROUTES 47
7.2.13. PROP 92: PROP_THREAD_ASSISTING_PORTS 47
7.2.14. PROP 93: PROP_THREAD_ALLOW_LOCAL_NET_DATA_CHANGE . . 47
7.2.15. PROP 94: PROP_THREAD_MODE 47
7.2.16. PROP 5376: PROP_THREAD_CHILD_TIMEOUT 47
7.2.17. PROP 5377: PROP_THREAD_RLOC16 47
7.2.18. PROP 5378: PROP_THREAD_ROUTER_UPGRADE_THRESHOLD . . . 48
7.2.19. PROP 5379: PROP_THREAD_CONTEXT_REUSE_DELAY 48
7.2.20. PROP 5380: PROP_THREAD_NETWORK_ID_TIMEOUT 48
7.2.21. PROP 5381: PROP_THREAD_ACTIVE_ROUTER_IDS 48
7.2.22. PROP 5382: PROP_THREAD_RLOC16_DEBUG_PASSTHRU 48
7.2.23. PROP 5383: PROP_THREAD_ROUTER_ROLE_ENABLED 48
7.2.24. PROP 5384: PROP_THREAD_ROUTER_DOWNGRADE_THRESHOLD . . 49
7.2.25. PROP 5385: PROP_THREAD_ROUTER_SELECTION_JITTER . . . 49
7.2.26. PROP 5386: PROP_THREAD_PREFERRED_ROUTER_ID 49
7.2.27. PROP 5387: PROP_THREAD_NEIGHBOR_TABLE 49

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 4]

Internet-Draft Spinel Protocol (Unified) May 2017

7.2.28. PROP 5388: PROP_THREAD_CHILD_COUNT_MAX 49
7.2.29. PROP 5389: PROP_THREAD_LEADER_NETWORK_DATA 50
7.2.30. PROP 5390: PROP_THREAD_STABLE_LEADER_NETWORK_DATA . . 50
7.2.31. PROP 5391: PROP_THREAD_JOINERS 50
7.2.32. PROP 5392: PROP_THREAD_COMMISSIONER_ENABLED 50
7.2.33. PROP 5393: PROP_THREAD_BA_PROXY_ENABLED 50
7.2.34. PROP 5394: PROP_THREAD_BA_PROXY_STREAM 51
7.2.35. PROP 5395: PROP_THREAD_DISOVERY_SCAN_JOINER_FLAG . . 51

 7.2.36. PROP 5396:
 PROP_THREAD_DISCOVERY_SCAN_ENABLE_FILTERING 51

7.2.37. PROP 5397: PROP_THREAD_DISCOVERY_SCAN_PANID 51
7.2.38. PROP 5398: PROP_THREAD_STEERING_DATA 52

8. Feature: Network Save . 52
8.1. Commands . 52
8.1.1. CMD 9: (Host->NCP) CMD_NET_SAVE 52
8.1.2. CMD 10: (Host->NCP) CMD_NET_CLEAR 53
8.1.3. CMD 11: (Host->NCP) CMD_NET_RECALL 53

9. Feature: Host Buffer Offload 54
9.1. Commands . 54
9.1.1. CMD 12: (NCP->Host) CMD_HBO_OFFLOAD 54
9.1.2. CMD 13: (NCP->Host) CMD_HBO_RECLAIM 54
9.1.3. CMD 14: (NCP->Host) CMD_HBO_DROP 54
9.1.4. CMD 15: (Host->NCP) CMD_HBO_OFFLOADED 54
9.1.5. CMD 16: (Host->NCP) CMD_HBO_RECLAIMED 55
9.1.6. CMD 17: (Host->NCP) CMD_HBO_DROPPED 55

9.2. Properties . 55
9.2.1. PROP 10: PROP_HBO_MEM_MAX 55
9.2.2. PROP 11: PROP_HBO_BLOCK_MAX 55

10. Feature: Jam Detection 56
10.1. Properties . 56
10.1.1. PROP 4608: PROP_JAM_DETECT_ENABLE 56
10.1.2. PROP 4609: PROP_JAM_DETECTED 56
10.1.3. PROP 4610: PROP_JAM_DETECT_RSSI_THRESHOLD 57
10.1.4. PROP 4611: PROP_JAM_DETECT_WINDOW 57
10.1.5. PROP 4612: PROP_JAM_DETECT_BUSY 57
10.1.6. PROP 4613: PROP_JAM_DETECT_HISTORY_BITMAP 58

11. Feature: GPIO Access . 58
11.1. Properties . 58
11.1.1. PROP 4096: PROP_GPIO_CONFIG 58
11.1.2. PROP 4098: PROP_GPIO_STATE 59
11.1.3. PROP 4099: PROP_GPIO_STATE_SET 60
11.1.4. PROP 4100: PROP_GPIO_STATE_CLEAR 60

12. Feature: True Random Number Generation 61
12.1. Properties . 61
12.1.1. PROP 4101: PROP_TRNG_32 61
12.1.2. PROP 4102: PROP_TRNG_128 61
12.1.3. PROP 4103: PROP_TRNG_RAW_32 62

13. Security Considerations 62

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 5]

Internet-Draft Spinel Protocol (Unified) May 2017

13.1. Raw Application Access 62
14.1. URIs . 63

Appendix A. Framing Protocol 63
A.1. UART Recommendations 63
A.1.1. UART Bit Rate Detection 64
A.1.2. HDLC-Lite . 64

A.2. SPI Recommendations 65
A.2.1. SPI Framing Protocol 66

A.3. I^2C Recommendations 67
A.4. Native USB Recommendations 68

Appendix B. Test Vectors . 68
B.1. Test Vector: Packed Unsigned Integer 68
B.2. Test Vector: Reset Command 68
B.3. Test Vector: Reset Notification 68
B.4. Test Vector: Scan Beacon 69
B.5. Test Vector: Inbound IPv6 Packet 69
B.6. Test Vector: Outbound IPv6 Packet 69
B.7. Test Vector: Fetch list of on-mesh networks 69
B.8. Test Vector: Returned list of on-mesh networks 70
B.9. Test Vector: Adding an on-mesh network 70

 B.10. Test Vector: Insertion notification of an on-mesh network 71
B.11. Test Vector: Removing a local on-mesh network 71

 B.12. Test Vector: Removal notification of an on-mesh network . 71
Appendix C. Example Sessions 72
C.1. NCP Initialization 72
C.2. Attaching to a network 72
C.3. Successfully joining a pre-existing network 73
C.4. Unsuccessfully joining a pre-existing network 74
C.5. Detaching from a network 74
C.6. Attaching to a saved network 74
C.7. NCP Software Reset 75
C.8. Adding an on-mesh prefix 75
C.9. Entering low-power modes 75
C.10. Sniffing raw packets 75

Appendix D. Glossary . 76
Appendix E. Acknowledgments 76

 Authors' Addresses . 78

1. Introduction

 Spinel is host-controller protocol designed to enable interoperation
 over simple serial connections between general purpose device
 operating systems (OS) and network co-processors (NCP) for the
 purpose of controlling and managing their IPv6 network interfaces,
 achieving the following goals:

 o Adopt a layered approach to the protocol design, allowing future
 support for other network protocols.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 6]

Internet-Draft Spinel Protocol (Unified) May 2017

 o Minimize the number of required commands/methods by providing a
 rich, property-based API.
 o Support NCPs capable of being connected to more than one network
 at a time.
 o Gracefully handle the addition of new features and capabilities
 without necessarily breaking backward compatibility.
 o Be as minimal and light-weight as possible without unnecessarily
 sacrificing flexibility.

 On top of this core framework, we define the properties and commands
 to enable various features and network protocols.

1.1. About this Draft

 This document is currently in a draft status and is changing often.
 This section discusses some ideas for changes to the protocol that
 haven't yet been fully specified, as well as some of the impetus for
 the current design.

1.1.1. Scope

 The eventual intent is to have two documents: A Spinel basis document
 which discusses the network-technology-agnostic mechanisms and a
 Thread(R) specialization document which describes all of the
 Thread(R)-specific implementation details. Currently, this document
 covers both.

1.1.2. Renumbering

 Efforts are currently maintained to try to prevent overtly backward-
 incompatible changes to the existing protocol, but if you are
 implementing Spinel in your own products you should expect there to
 be at least one large renumbering event and major version number
 change before the standard is considered "baked". All changes will
 be clearly marked and documented to make such a transition as easy as
 possible.

 To allow conclusive detection of protocol (in)compatibility between
 the host and the NCP, the following commands and properties are
 already considered to be "baked" and will not change:

 o Command IDs zero through eight. (Reset, No-op, and Property-Value
 Commands)
 o Property IDs zero through two. (Last status, Protocol Version,
 and NCP Version)

 Renumbering would be undertaken in order to better organize the
 allocation of property IDs and capability IDs. One of the initial

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 7]

Internet-Draft Spinel Protocol (Unified) May 2017

 goals of this protocol was for it to be possible for a host or NCP to
 only implement properties with values less than 127 and for the NCP
 to still be usable---relegating all larger property values for extra
 features or other capabilities that aren't strictly necessary. This
 would allow simple implementations to avoid the need to implement
 support for PUIs (Section 3.2).

 As time has gone by and the protocol has become more fleshed out, it
 has become clear that some of the initial allocations were inadequate
 and should be revisited if we want to try to achieve the original
 goal.

2. Frame Format

 A frame is defined simply as the concatenation of

 o A header byte
 o A command (up to three bytes, see Section 3.2 for format)
 o An optional command payload

 +---------+--------+-----+-------------+
 | Octets: | 1 | 1-3 | n |
 +---------+--------+-----+-------------+
 | Fields: | HEADER | CMD | CMD_PAYLOAD |
 +---------+--------+-----+-------------+

2.1. Header Format

 The header byte is broken down as follows:

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | FLG | NLI | TID |
 +---+---+---+---+---+---+---+---+

 [CREF1]

2.1.1. FLG: Flag

 The flag field of the header byte ("FLG") is always set to the value
 two (or "10" in binary). Any frame received with these bits set to
 any other value else MUST NOT be considered a Spinel frame.

 This convention allows Spinel to be line compatible with BTLE HCI.
 By defining the first two bit in this way we can disambiguate between
 Spinel frames and HCI frames (which always start with either "0x01"
 or "0x04") without any additional framing overhead.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 8]

Internet-Draft Spinel Protocol (Unified) May 2017

2.1.2. NLI: Network Link Identifier

 The Network Link Identifier (NLI) is a number between 0 and 3, which
 is associated by the OS with one of up to four IPv6 zone indices
 corresponding to conceptual IPv6 interfaces on the NCP. This allows
 the protocol to support IPv6 nodes connecting simultaneously to more
 than one IPv6 network link using a single NCP instance. The first
 Network Link Identifier (0) MUST refer to a distinguished conceptual
 interface provided by the NCP for its IPv6 link type. The other
 three Network Link Identifiers (1, 2 and 3) MAY be dissociated from
 any conceptual interface.

2.1.3. TID: Transaction Identifier

 The least significant bits of the header represent the Transaction
 Identifier(TID). The TID is used for correlating responses to the
 commands which generated them.

 When a command is sent from the host, any reply to that command sent
 by the NCP will use the same value for the TID. When the host
 receives a frame that matches the TID of the command it sent, it can
 easily recognize that frame as the actual response to that command.

 The TID value of zero (0) is used for commands to which a correlated
 response is not expected or needed, such as for unsolicited update
 commands sent to the host from the NCP.

2.1.4. Command Identifier (CMD)

 The command identifier is a 21-bit unsigned integer encoded in up to
 three bytes using the packed unsigned integer format described in

Section 3.2. This encoding allows for up to 2,097,152 individual
 commands, with the first 127 commands represented as a single byte.
 Command identifiers larger than 2,097,151 are explicitly forbidden.

 +-----------------------+----------------------------+
 | CID Range | Description |
 +-----------------------+----------------------------+
 | 0 - 63 | Reserved for core commands |
 | 64 - 15,359 | _UNALLOCATED_ |
 | 15,360 - 16,383 | Vendor-specific |
 | 16,384 - 1,999,999 | _UNALLOCATED_ |
 | 2,000,000 - 2,097,151 | Experimental use only |
 +-----------------------+----------------------------+

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 9]

Internet-Draft Spinel Protocol (Unified) May 2017

2.1.5. Command Payload (Optional)

 Depending on the semantics of the command in question, a payload MAY
 be included in the frame. The exact composition and length of the
 payload is defined by the command identifier.

3. Data Packing

 Data serialization for properties is performed using a light-weight
 data packing format which was loosely inspired by D-Bus. The format
 of a serialization is defined by a specially formatted string.

 This packing format is used for notational convenience. While this
 string-based datatype format has been designed so that the strings
 may be directly used by a structured data parser, such a thing is not
 required to implement Spinel. Indeed, higly constrained applications
 may find such a thing to be too heavyweight.

 Goals:

 o Be lightweight and favor direct representation of values.
 o Use an easily readable and memorable format string.
 o Support lists and structures.
 o Allow properties to be appended to structures while maintaining
 backward compatibility.

 Each primitive datatype has an ASCII character associated with it.
 Structures can be represented as strings of these characters. For
 example:

 o "C": A single unsigned byte.
 o "C6U": A single unsigned byte, followed by a 128-bit IPv6 address,
 followed by a zero-terminated UTF8 string.
 o "A(6)": An array of concatenated IPv6 addresses

 In each case, the data is represented exactly as described. For
 example, an array of 10 IPv6 address is stored as 160 bytes.

3.1. Primitive Types

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 10]

Internet-Draft Spinel Protocol (Unified) May 2017

 +----------+----------------------+---------------------------------+
 | Char | Name | Description |
 +----------+----------------------+---------------------------------+
"."	DATATYPE_VOID	Empty data type. Used
		internally.
"b"	DATATYPE_BOOL	Boolean value. Encoded in
		8-bits as either 0x00 or 0x01.
		All other values are illegal.
"C"	DATATYPE_UINT8	Unsigned 8-bit integer.
"c"	DATATYPE_INT8	Signed 8-bit integer.
"S"	DATATYPE_UINT16	Unsigned 16-bit integer.
"s"	DATATYPE_INT16	Signed 16-bit integer.
"L"	DATATYPE_UINT32	Unsigned 32-bit integer.
"l"	DATATYPE_INT32	Signed 32-bit integer.
"i"	DATATYPE_UINT_PACKED	Packed Unsigned Integer. See
		Section 3.2.
"6"	DATATYPE_IPv6ADDR	IPv6 Address. (Big-endian)
"E"	DATATYPE_EUI64	EUI-64 Address. (Big-endian)
"e"	DATATYPE_EUI48	EUI-48 Address. (Big-endian)
"D"	DATATYPE_DATA	Arbitrary data. See Section
		3.3.
"d"	DATATYPE_DATA_WLEN	Arbitrary data with prepended
		length. See Section 3.3.
"U"	DATATYPE_UTF8	Zero-terminated UTF8-encoded
		string.
"t(...)"	DATATYPE_STRUCT	Structured datatype with
		prepended length. See Section
		3.4.
"A(...)"	DATATYPE_ARRAY	Array of datatypes. Compound
		type. See Section 3.5.
 +----------+----------------------+---------------------------------+

 All multi-byte values are little-endian unless explicitly stated
 otherwise.

3.2. Packed Unsigned Integer

 For certain types of integers, such command or property identifiers,
 usually have a value on the wire that is less than 127. However, in
 order to not preclude the use of values larger than 255, we would
 need to add an extra byte. Doing this would add an extra byte to the
 majority of instances, which can add up in terms of bandwidth.

 The packed unsigned integer format is based on the unsigned integer
 format in EXI [1], except that we limit the maximum value to the
 largest value that can be encoded into three bytes(2,097,151).

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 11]

Internet-Draft Spinel Protocol (Unified) May 2017

 For all values less than 127, the packed form of the number is simply
 a single byte which directly represents the number. For values
 larger than 127, the following process is used to encode the value:

 1. The unsigned integer is broken up into _n_ 7-bit chunks and
 placed into _n_ octets, leaving the most significant bit of each
 octet unused.
 2. Order the octets from least-significant to most-significant.
 (Little-endian)
 3. Clear the most significant bit of the most significant octet.
 Set the least significant bit on all other octets.

 Where _n_ is the smallest number of 7-bit chunks you can use to
 represent the given value.

 Take the value 1337, for example:

 1337 => 0x0539
 => [39 0A]
 => [B9 0A]

 To decode the value, you collect the 7-bit chunks until you find an
 octet with the most significant bit clear.

3.3. Data Blobs

 There are two types for data blobs: "d" and "D".

 o "d" has the length of the data (in bytes) prepended to the data
 (with the length encoded as type "S"). The size of the length
 field is not included in the length.
 o "D" does not have a prepended length: the length of the data is
 implied by the bytes remaining to be parsed. It is an error for
 "D" to not be the last type in a type in a type signature.

 This dichotomy allows for more efficient encoding by eliminating
 redundency. If the rest of the buffer is a data blob, encoding the
 length would be redundant because we already know how many bytes are
 in the rest of the buffer.

 In some cases we use "d" even if it is the last field in a type
 signature. We do this to allow for us to be able to append
 additional fields to the type signature if necessary in the future.
 This is usually the case with embedded structs, like in the scan
 results.

 For example, let's say we have a buffer that is encoded with the
 datatype signature of "CLLD". In this case, it is pretty easy to

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 12]

Internet-Draft Spinel Protocol (Unified) May 2017

 tell where the start and end of the data blob is: the start is 9
 bytes from the start of the buffer, and its length is the length of
 the buffer minus 9. (9 is the number of bytes taken up by a byte and
 two longs)

 The datatype signature "CLLDU" is illegal because we can't determine
 where the last field (a zero-terminated UTF8 string) starts. But the
 datatype "CLLdU" _is_ legal, because the parser can determine the
 exact length of the data blob-- allowing it to know where the start
 of the next field would be.

3.4. Structured Data

 The structure data type ("t(...)") is a way of bundling together
 several fields into a single structure. It can be thought of as a
 "d" type except that instead of being opaque, the fields in the
 content are known. This is useful for things like scan results where
 you have substructures which are defined by different layers.

 For example, consider the type signature "Lt(ES)t(6C)". In this
 hypothetical case, the first struct is defined by the MAC layer, and
 the second struct is defined by the PHY layer. Because of the use of
 structures, we know exactly what part comes from that layer.
 Additionally, we can add fields to each structure without introducing
 backward compatability problems: Data encoded as "Lt(ESU)t(6C)"
 (Notice the extra "U") will decode just fine as "Lt(ES)t(6C)".
 Additionally, if we don't care about the MAC layer and only care
 about the network layer, we could parse as "Lt()t(6C)".

 Note that data encoded as "Lt(ES)t(6C)" will also parse as "Ldd",
 with the structures from both layers now being opaque data blobs.

3.5. Arrays

 An array is simply a concatenated set of _n_ data encodings. For
 example, the type "A(6)" is simply a list of IPv6 addresses---one
 after the other. The type "A(6E)" likewise a concatenation of IPv6-
 address/EUI-64 pairs.

 If an array contains many fields, the fields will often be surrounded
 by a structure ("t(...)"). This effectively prepends each item in
 the array with its length. This is useful for improving parsing
 performance or to allow additional fields to be added in the future
 in a backward compatible way. If there is a high certainty that
 additional fields will never be added, the struct may be omitted
 (saving two bytes per item).

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 13]

Internet-Draft Spinel Protocol (Unified) May 2017

 This specification does not define a way to embed an array as a field
 alongside other fields.

4. Commands

4.1. CMD 0: (Host->NCP) CMD_NOOP

 +---------+--------+----------+
 | Octets: | 1 | 1 |
 +---------+--------+----------+
 | Fields: | HEADER | CMD_NOOP |
 +---------+--------+----------+

 No-Operation command. Induces the NCP to send a success status back
 to the host. This is primarily used for liveliness checks.

 The command payload for this command SHOULD be empty. The receiver
 MUST ignore any non-empty command payload.

 There is no error condition for this command.

4.2. CMD 1: (Host->NCP) CMD_RESET

 +---------+--------+-----------+
 | Octets: | 1 | 1 |
 +---------+--------+-----------+
 | Fields: | HEADER | CMD_RESET |
 +---------+--------+-----------+

 Reset NCP command. Causes the NCP to perform a software reset. Due
 to the nature of this command, the TID is ignored. The host should
 instead wait for a "CMD_PROP_VALUE_IS" command from the NCP
 indicating "PROP_LAST_STATUS" has been set to
 "STATUS_RESET_SOFTWARE".

 The command payload for this command SHOULD be empty. The receiver
 MUST ignore any non-empty command payload.

 If an error occurs, the value of "PROP_LAST_STATUS" will be emitted
 instead with the value set to the generated status code for the
 error.

4.3. CMD 2: (Host->NCP) CMD_PROP_VALUE_GET

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 14]

Internet-Draft Spinel Protocol (Unified) May 2017

 +---------+--------+--------------------+---------+
 | Octets: | 1 | 1 | 1-3 |
 +---------+--------+--------------------+---------+
 | Fields: | HEADER | CMD_PROP_VALUE_GET | PROP_ID |
 +---------+--------+--------------------+---------+

 Get property value command. Causes the NCP to emit a
 "CMD_PROP_VALUE_IS" command for the given property identifier.

 The payload for this command is the property identifier encoded in
 the packed unsigned integer format described in Section 3.2.

 If an error occurs, the value of "PROP_LAST_STATUS" will be emitted
 instead with the value set to the generated status code for the
 error.

4.4. CMD 3: (Host->NCP) CMD_PROP_VALUE_SET

 +---------+--------+--------------------+---------+-------+
 | Octets: | 1 | 1 | 1-3 | n |
 +---------+--------+--------------------+---------+-------+
 | Fields: | HEADER | CMD_PROP_VALUE_SET | PROP_ID | VALUE |
 +---------+--------+--------------------+---------+-------+

 Set property value command. Instructs the NCP to set the given
 property to the specific given value, replacing any previous value.

 The payload for this command is the property identifier encoded in
 the packed unsigned integer format described in Section 3.2, followed
 by the property value. The exact format of the property value is
 defined by the property.

 If an error occurs, the value of "PROP_LAST_STATUS" will be emitted
 with the value set to the generated status code for the error.

4.5. CMD 4: (Host->NCP) CMD_PROP_VALUE_INSERT

 +---------+--------+-----------------------+---------+-------+
 | Octets: | 1 | 1 | 1-3 | n |
 +---------+--------+-----------------------+---------+-------+
 | Fields: | HEADER | CMD_PROP_VALUE_INSERT | PROP_ID | VALUE |
 +---------+--------+-----------------------+---------+-------+

 Insert value into property command. Instructs the NCP to insert the
 given value into a list-oriented property, without removing other
 items in the list. The resulting order of items in the list is
 defined by the individual property being operated on.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 15]

Internet-Draft Spinel Protocol (Unified) May 2017

 The payload for this command is the property identifier encoded in
 the packed unsigned integer format described in Section 3.2, followed
 by the value to be inserted. The exact format of the value is
 defined by the property.

 If the type signature of the property specified by "PROP_ID" consists
 of a single structure enclosed by an array ("A(t(...))"), then the
 contents of "VALUE" MUST contain the contents of the structure
 ("...") rather than the serialization of the whole item ("t(...)").
 Specifically, the length of the structure MUST NOT be prepended to
 "VALUE". This helps to eliminate redundant data.

 If an error occurs, the value of "PROP_LAST_STATUS" will be emitted
 with the value set to the generated status code for the error.

4.6. CMD 5: (Host->NCP) CMD_PROP_VALUE_REMOVE

 +---------+--------+-----------------------+---------+-------+
 | Octets: | 1 | 1 | 1-3 | n |
 +---------+--------+-----------------------+---------+-------+
 | Fields: | HEADER | CMD_PROP_VALUE_REMOVE | PROP_ID | VALUE |
 +---------+--------+-----------------------+---------+-------+

 Remove value from property command. Instructs the NCP to remove the
 given value from a list-oriented property, without affecting other
 items in the list. The resulting order of items in the list is
 defined by the individual property being operated on.

 Note that this command operates _by value_, not by index!

 The payload for this command is the property identifier encoded in
 the packed unsigned integer format described in Section 3.2, followed
 by the value to be removed. The exact format of the value is defined
 by the property.

 If the type signature of the property specified by "PROP_ID" consists
 of a single structure enclosed by an array ("A(t(...))"), then the
 contents of "VALUE" MUST contain the contents of the structure
 ("...") rather than the serialization of the whole item ("t(...)").
 Specifically, the length of the structure MUST NOT be prepended to
 "VALUE". This helps to eliminate redundant data.

 If an error occurs, the value of "PROP_LAST_STATUS" will be emitted
 with the value set to the generated status code for the error.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 16]

Internet-Draft Spinel Protocol (Unified) May 2017

4.7. CMD 6: (NCP->Host) CMD_PROP_VALUE_IS

 +---------+--------+-------------------+---------+-------+
 | Octets: | 1 | 1 | 1-3 | n |
 +---------+--------+-------------------+---------+-------+
 | Fields: | HEADER | CMD_PROP_VALUE_IS | PROP_ID | VALUE |
 +---------+--------+-------------------+---------+-------+

 Property value notification command. This command can be sent by the
 NCP in response to a previous command from the host, or it can be
 sent by the NCP in an unsolicited fashion to notify the host of
 various state changes asynchronously.

 The payload for this command is the property identifier encoded in
 the packed unsigned integer format described in Section 3.2, followed
 by the current value of the given property.

4.8. CMD 7: (NCP->Host) CMD_PROP_VALUE_INSERTED

 +---------+--------+-------------------------+---------+-------+
 | Octets: | 1 | 1 | 1-3 | n |
 +---------+--------+-------------------------+---------+-------+
 | Fields: | HEADER | CMD_PROP_VALUE_INSERTED | PROP_ID | VALUE |
 +---------+--------+-------------------------+---------+-------+

 Property value insertion notification command. This command can be
 sent by the NCP in response to the "CMD_PROP_VALUE_INSERT" command,
 or it can be sent by the NCP in an unsolicited fashion to notify the
 host of various state changes asynchronously.

 The payload for this command is the property identifier encoded in
 the packed unsigned integer format described in Section 3.2, followed
 by the value that was inserted into the given property.

 If the type signature of the property specified by "PROP_ID" consists
 of a single structure enclosed by an array ("A(t(...))"), then the
 contents of "VALUE" MUST contain the contents of the structure
 ("...") rather than the serialization of the whole item ("t(...)").
 Specifically, the length of the structure MUST NOT be prepended to
 "VALUE". This helps to eliminate redundant data.

 The resulting order of items in the list is defined by the given
 property.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 17]

Internet-Draft Spinel Protocol (Unified) May 2017

4.9. CMD 8: (NCP->Host) CMD_PROP_VALUE_REMOVED

 +---------+--------+------------------------+---------+-------+
 | Octets: | 1 | 1 | 1-3 | n |
 +---------+--------+------------------------+---------+-------+
 | Fields: | HEADER | CMD_PROP_VALUE_REMOVED | PROP_ID | VALUE |
 +---------+--------+------------------------+---------+-------+

 Property value removal notification command. This command can be
 sent by the NCP in response to the "CMD_PROP_VALUE_REMOVE" command,
 or it can be sent by the NCP in an unsolicited fashion to notify the
 host of various state changes asynchronously.

 Note that this command operates _by value_, not by index!

 The payload for this command is the property identifier encoded in
 the packed unsigned integer format described in Section 3.2, followed
 by the value that was removed from the given property.

 If the type signature of the property specified by "PROP_ID" consists
 of a single structure enclosed by an array ("A(t(...))"), then the
 contents of "VALUE" MUST contain the contents of the structure
 ("...") rather than the serialization of the whole item ("t(...)").
 Specifically, the length of the structure MUST NOT be prepended to
 "VALUE". This helps to eliminate redundant data.

 The resulting order of items in the list is defined by the given
 property.

4.10. CMD 18: (Host->NCP) CMD_PEEK

 +---------+--------+----------+---------+-------+
 | Octets: | 1 | 1 | 4 | 2 |
 +---------+--------+----------+---------+-------+
 | Fields: | HEADER | CMD_PEEK | ADDRESS | COUNT |
 +---------+--------+----------+---------+-------+

 This command allows the NCP to fetch values from the RAM of the NCP
 for debugging purposes. Upon success, "CMD_PEEK_RET" is sent from
 the NCP to the host. Upon failure, "PROP_LAST_STATUS" is emitted
 with the appropriate error indication.

 Due to the low-level nature of this command, certain error conditions
 may induce the NCP to reset.

 The NCP MAY prevent certain regions of memory from being accessed.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 18]

Internet-Draft Spinel Protocol (Unified) May 2017

 The implementation of this command has security implications. See
Section 13 for more information.

 This command requires the capability "CAP_PEEK_POKE" to be present.

4.11. CMD 19: (NCP->Host) CMD_PEEK_RET

 +---------+--------+--------------+---------+-------+-------+
 | Octets: | 1 | 1 | 4 | 2 | n |
 +---------+--------+--------------+---------+-------+-------+
 | Fields: | HEADER | CMD_PEEK_RET | ADDRESS | COUNT | BYTES |
 +---------+--------+--------------+---------+-------+-------+

 This command contains the contents of memory that was requested by a
 previous call to "CMD_PEEK".

 This command requires the capability "CAP_PEEK_POKE" to be present.

4.12. CMD 20: (Host->NCP) CMD_POKE

 +---------+--------+----------+---------+-------+-------+
 | Octets: | 1 | 1 | 4 | 2 | n |
 +---------+--------+----------+---------+-------+-------+
 | Fields: | HEADER | CMD_POKE | ADDRESS | COUNT | BYTES |
 +---------+--------+----------+---------+-------+-------+

 This command writes the bytes to the specified memory address for
 debugging purposes.

 Due to the low-level nature of this command, certain error conditions
 may induce the NCP to reset.

 The implementation of this command has security implications. See
Section 13 for more information.

 This command requires the capability "CAP_PEEK_POKE" to be present.

4.13. CMD 21: (Host->NCP) CMD_PROP_VALUE_MULTI_GET

 o Argument-Encoding: "A(i)"
 o Required Capability: "CAP_CMD_MULTI"

 Fetch the value of multiple properties in one command. Arguments are
 an array of property IDs. If all properties are fetched
 successfully, a "CMD_PROP_VALUES_ARE" command is sent back to the
 host containing the propertyid and value of each fetched property.
 The order of the results in "CMD_PROP_VALUES_ARE" match the order of
 properties given in "CMD_PROP_VALUE_GET".

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 19]

Internet-Draft Spinel Protocol (Unified) May 2017

 Errors fetching individual properties are reflected as indicating a
 change to "PROP_LAST_STATUS" for that property's place.

 Not all properties can be fetched using this method. As a general
 rule of thumb, any property that blocks when getting will fail for
 that individual property with "STATUS_INVALID_COMMAND_FOR_PROP".

4.14. CMD 22: (Host->NCP) CMD_PROP_VALUE_MULTI_SET

 o Argument-Encoding: "A(iD)"
 o Required Capability: "CAP_CMD_MULTI"

 +---------+--------+--------------------------+---------------------+
 | Octets: | 1 | 1 | n |
 +---------+--------+--------------------------+---------------------+
 | Fields: | HEADER | CMD_PROP_VALUE_MULTI_SET | Property/Value |
 | | | | Pairs |
 +---------+--------+--------------------------+---------------------+

 With each property/value pair being:

 +---------+--------+---------+------------+
 | Octets: | 2 | 1-3 | n |
 +---------+--------+---------+------------+
 | Fields: | LENGTH | PROP_ID | PROP_VALUE |
 +---------+--------+---------+------------+

 This command sets the value of several properties at once in the
 given order. The setting of properties stops at the first error,
 ignoring any later properties.

 The result of this command is generally "CMD_PROP_VALUES_ARE" unless
 (for example) a parsing error has occured (in which case
 "CMD_PROP_VALUE_IS" for "PROP_LAST_STATUS" would be the result). The
 order of the results in "CMD_PROP_VALUES_ARE" match the order of
 properties given in "CMD_PROP_VALUE_MULTI_SET".

 Since the processing of properties to set stops at the first error,
 the resulting "CMD_PROP_VALUES_ARE" can contain fewer items than the
 requested number of properties to set.

 Not all properties can be set using this method. As a general rule
 of thumb, any property that blocks when setting will fail for that
 individual property with "STATUS_INVALID_COMMAND_FOR_PROP".

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 20]

Internet-Draft Spinel Protocol (Unified) May 2017

4.15. CMD 23: (NCP->Host) CMD_PROP_VALUES_ARE

 o Argument-Encoding: "A(iD)"
 o Required Capability: "CAP_CMD_MULTI"

 +---------+--------+---------------------+----------------------+
 | Octets: | 1 | 1 | n |
 +---------+--------+---------------------+----------------------+
 | Fields: | HEADER | CMD_PROP_VALUES_ARE | Property/Value Pairs |
 +---------+--------+---------------------+----------------------+

 With each property/value pair being:

 +---------+--------+---------+------------+
 | Octets: | 2 | 1-3 | n |
 +---------+--------+---------+------------+
 | Fields: | LENGTH | PROP_ID | PROP_VALUE |
 +---------+--------+---------+------------+

 This command is emitted by the NCP as the response to both the
 "CMD_PROP_VALUE_MULTI_GET" and "CMD_PROP_VALUE_MULTI_SET" commands.
 It is roughly analogous to "CMD_PROP_VALUE_IS", except that it
 contains more than one property.

 This command SHOULD NOT be emitted asynchronously, or in response to
 any command other than "CMD_PROP_VALUE_MULTI_GET" or
 "CMD_PROP_VALUE_MULTI_SET".

 The arguments are a list of structures containing the emitted
 property and the associated value. These are presented in the same
 order as given in the associated initiating command. In cases where
 getting or setting a specific property resulted in an error, the
 associated slot in this command will describe "PROP_LAST_STATUS".

5. Properties

 Spinel is largely a property-based protocol, similar to
 representational state transfer (REST), with a property defined for
 every attribute that an OS needs to create, read, update or delete in
 the function of an IPv6 interface. The inspiration of this approach
 was memory-mapped hardware registers for peripherals. The goal is to
 avoid, as much as possible, the use of large complicated structures
 and/or method argument lists. The reason for avoiding these is
 because they have a tendency to change, especially early in
 development. Adding or removing a property from a structure can
 render the entire protocol incompatible. By using properties, you
 simply extend the protocol with an additional property.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 21]

Internet-Draft Spinel Protocol (Unified) May 2017

 Almost all features and capabilities are implemented using
 properties. Most new features that are initially proposed as
 commands can be adapted to be property-based instead. Notable
 exceptions include "Host Buffer Offload" (Section 9) and "Network
 Save" (Section 8).

 In Spinel, properties are keyed by an unsigned integer between 0 and
 2,097,151 (See Section 3.2).

5.1. Property Methods

 Properties may support one or more of the following methods:

 o "VALUE_GET" (Section 4.3)
 o "VALUE_SET" (Section 4.4)
 o "VALUE_INSERT" (Section 4.5)
 o "VALUE_REMOVE" (Section 4.6)

 Additionally, the NCP can send updates to the host (either
 synchronously or asynchronously) that inform the host about changes
 to specific properties:

 o "VALUE_IS" (Section 4.7)
 o "VALUE_INSERTED" (Section 4.8)
 o "VALUE_REMOVED" (Section 4.9)

5.2. Property Types

 Conceptually, there are three different types of properties:

 o Single-value properties
 o Multiple-value (Array) properties
 o Stream properties

5.2.1. Single-Value Properties

 Single-value properties are properties that have a simple
 representation of a single value. Examples would be:

 o Current radio channel (Represented as a unsigned 8-bit integer)
 o Network name (Represented as a UTF-8 encoded string)
 o 802.15.4 PAN ID (Represented as a unsigned 16-bit integer)

 The valid operations on these sorts of properties are "GET" and
 "SET".

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 22]

Internet-Draft Spinel Protocol (Unified) May 2017

5.2.2. Multiple-Value Properties

 Multiple-Value Properties have more than one value associated with
 them. Examples would be:

 o List of channels supported by the radio hardware.
 o List of IPv6 addresses assigned to the interface.
 o List of capabilities supported by the NCP.

 The valid operations on these sorts of properties are "VALUE_GET",
 "VALUE_SET", "VALUE_INSERT", and "VALUE_REMOVE".

 When the value is fetched using "VALUE_GET", the returned value is
 the concatenation of all of the individual values in the list. If
 the length of the value for an individual item in the list is not
 defined by the type then each item returned in the list is prepended
 with a length (See Section 3.5). The order of the returned items,
 unless explicitly defined for that specific property, is undefined.

 "VALUE_SET" provides a way to completely replace all previous values.
 Calling "VALUE_SET" with an empty value effectively instructs the NCP
 to clear the value of that property.

 "VALUE_INSERT" and "VALUE_REMOVE" provide mechanisms for the
 insertion or removal of individual items _by value_. The payload for
 these commands is a plain single value.

5.2.3. Stream Properties

 Stream properties are special properties representing streams of
 data. Examples would be:

 o Network packet stream (Section 5.6.3)
 o Raw packet stream (Section 5.6.2)
 o Debug message stream (Section 5.6.1)
 o Network Beacon stream (Section 5.8.4)

 All such properties emit changes asynchronously using the "VALUE_IS"
 command, sent from the NCP to the host. For example, as IPv6 traffic
 is received by the NCP, the IPv6 packets are sent to the host by way
 of asynchronous "VALUE_IS" notifications.

 Some of these properties also support the host send data back to the
 NCP. For example, this is how the host sends IPv6 traffic to the
 NCP.

 These types of properties generally do not support "VALUE_GET", as it
 is meaningless.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 23]

Internet-Draft Spinel Protocol (Unified) May 2017

5.3. Property Numbering

 While the majority of the properties that allow the configuration of
 network connectivity are network protocol specific, there are several
 properties that are required in all implementations.

 Future property allocations SHALL be made from the following
 allocation plan:

 +-----------------------+---+
 | Property ID Range | Description |
 +-----------------------+---+
 | 0 - 127 | Reserved for frequently-used properties |
 | 128 - 15,359 | Unallocated |
 | 15,360 - 16,383 | Vendor-specific |
 | 16,384 - 1,999,999 | Unallocated |
 | 2,000,000 - 2,097,151 | Experimental use only |
 +-----------------------+---+

 For an explanation of the data format encoding shorthand used
 throughout this document, see Section 3.

5.4. Property Sections

 The currently assigned properties are broken up into several
 sections, each with reserved ranges of property identifiers. These
 ranges are:

 +--------+------------------------------+---------------------+
 | Name | Range (Inclusive) | Documentation |
 +--------+------------------------------+---------------------+
 | Core | 0x00 - 0x1F, 0x1000 - 0x11FF | Section 5.5 |
 | PHY | 0x20 - 0x2F, 0x1200 - 0x12FF | Section 5.7 |
 | MAC | 0x30 - 0x3F, 0x1300 - 0x13FF | Section 5.8 |
 | NET | 0x40 - 0x4F, 0x1400 - 0x14FF | Section 5.9 |
 | Tech | 0x50 - 0x5F, 0x1500 - 0x15FF | Technology-specific |
 | IPv6 | 0x60 - 0x6F, 0x1600 - 0x16FF | Section 5.10 |
 | Stream | 0x70 - 0x7F, 0x1700 - 0x17FF | Section 5.5 |
 | Debug | 0x4000 - 0x4400 | Section 5.11 |
 +--------+------------------------------+---------------------+

 Note that some of the property sections have two reserved ranges: a
 primary range (which is encoded as a single byte) and an extended
 range (which is encoded as two bytes). properties which are used
 more frequently are generally allocated from the former range.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 24]

Internet-Draft Spinel Protocol (Unified) May 2017

5.5. Core Properties

5.5.1. PROP 0: PROP_LAST_STATUS

 o Type: Read-Only
 o Encoding: "i"

 +---------+-------------+
 | Octets: | 1-3 |
 +---------+-------------+
 | Fields: | LAST_STATUS |
 +---------+-------------+

 Describes the status of the last operation. Encoded as a packed
 unsigned integer.

 This property is emitted often to indicate the result status of
 pretty much any Host-to-NCP operation.

 It is emitted automatically at NCP startup with a value indicating
 the reset reason.

 See Section 6 for the complete list of status codes.

5.5.2. PROP 1: PROP_PROTOCOL_VERSION

 o Type: Read-Only
 o Encoding: "ii"

 +---------+---------------+---------------+
 | Octets: | 1-3 | 1-3 |
 +---------+---------------+---------------+
 | Fields: | MAJOR_VERSION | MINOR_VERSION |
 +---------+---------------+---------------+

 Describes the protocol version information. This property contains
 four fields, each encoded as a packed unsigned integer:

 o Major Version Number
 o Minor Version Number

 This document describes major version 4, minor version 1 of this
 protocol.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 25]

Internet-Draft Spinel Protocol (Unified) May 2017

5.5.2.1. Major Version Number

 The major version number is used to identify large and incompatible
 differences between protocol versions.

 The host MUST enter a FAULT state if it does not explicitly support
 the given major version number.

5.5.2.2. Minor Version Number

 The minor version number is used to identify small but otherwise
 compatible differences between protocol versions. A mismatch between
 the advertised minor version number and the minor version that is
 supported by the host SHOULD NOT be fatal to the operation of the
 host.

5.5.3. PROP 2: PROP_NCP_VERSION

 o Type: Read-Only
 o Packed-Encoding: "U"

 +---------+-------------------+
 | Octets: | n |
 +---------+-------------------+
 | Fields: | NCP_VESION_STRING |
 +---------+-------------------+

 Contains a string which describes the firmware currently running on
 the NCP. Encoded as a zero-terminated UTF-8 string.

 The format of the string is not strictly defined, but it is intended
 to present similarly to the "User-Agent" string from HTTP. The
 RECOMMENDED format of the string is as follows:

 STACK-NAME/STACK-VERSION[BUILD_INFO][; OTHER_INFO]; BUILD_DATE_AND_TIME

 Examples:

 o "OpenThread/1.0d26-25-gb684c7f; DEBUG; May 9 2016 18:22:04"
 o "ConnectIP/2.0b125 s1 ALPHA; Sept 24 2015 20:49:19"

5.5.4. PROP 3: PROP_INTERFACE_TYPE

 o Type: Read-Only
 o Encoding: "i"

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 26]

Internet-Draft Spinel Protocol (Unified) May 2017

 +---------+----------------+
 | Octets: | 1-3 |
 +---------+----------------+
 | Fields: | INTERFACE_TYPE |
 +---------+----------------+

 This integer identifies what the network protocol for this NCP.
 Currently defined values are:

 o 0: Bootloader
 o 2: ZigBee IP(TM)
 o 3: Thread(R)

 The host MUST enter a FAULT state if it does not recognize the
 protocol given by the NCP.

5.5.5. PROP 4: PROP_INTERFACE_VENDOR_ID

 o Type: Read-Only
 o Encoding: "i"

 +---------+-----------+
 | Octets: | 1-3 |
 +---------+-----------+
 | Fields: | VENDOR_ID |
 +---------+-----------+

 Vendor identifier.

5.5.6. PROP 5: PROP_CAPS

 o Type: Read-Only
 o Packed-Encoding: "A(i)"

 +---------+-------+-------+-----+
 | Octets: | 1-3 | 1-3 | ... |
 +---------+-------+-------+-----+
 | Fields: | CAP_1 | CAP_2 | ... |
 +---------+-------+-------+-----+

 Describes the supported capabilities of this NCP. Encoded as a list
 of packed unsigned integers.

 A capability is defined as a 21-bit integer that describes a subset
 of functionality which is supported by the NCP.

 Currently defined values are:

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 27]

Internet-Draft Spinel Protocol (Unified) May 2017

 o 1: "CAP_LOCK"
 o 2: "CAP_NET_SAVE"
 o 3: "CAP_HBO": Host Buffer Offload. See Section 9.
 o 4: "CAP_POWER_SAVE"
 o 5: "CAP_COUNTERS"
 o 6: "CAP_JAM_DETECT": Jamming detection. See Section 10
 o 7: "CAP_PEEK_POKE": PEEK/POKE debugging commands.
 o 8: "CAP_WRITABLE_RAW_STREAM": "PROP_STREAM_RAW" is writable.
 o 9: "CAP_GPIO": Support for GPIO access. See Section 11.
 o 10: "CAP_TRNG": Support for true random number generation. See

Section 12.
 o 11: "CAP_CMD_MULTI": Support for "CMD_PROP_VALUE_MULTI_GET"
 (Section 4.13), "CMD_PROP_VALUE_MULTI_SET" (Section 4.14, and
 "CMD_PROP_VALUES_ARE" (Section 4.15).
 o 16: "CAP_802_15_4_2003"
 o 17: "CAP_802_15_4_2006"
 o 18: "CAP_802_15_4_2011"
 o 21: "CAP_802_15_4_PIB"
 o 24: "CAP_802_15_4_2450MHZ_OQPSK"
 o 25: "CAP_802_15_4_915MHZ_OQPSK"
 o 26: "CAP_802_15_4_868MHZ_OQPSK"
 o 27: "CAP_802_15_4_915MHZ_BPSK"
 o 28: "CAP_802_15_4_868MHZ_BPSK"
 o 29: "CAP_802_15_4_915MHZ_ASK"
 o 30: "CAP_802_15_4_868MHZ_ASK"
 o 48: "CAP_ROLE_ROUTER"
 o 49: "CAP_ROLE_SLEEPY"
 o 52: "CAP_NET_THREAD_1_0"
 o 512: "CAP_MAC_WHITELIST"
 o 513: "CAP_MAC_RAW"
 o 514: "CAP_OOB_STEERING_DATA"
 o 1024: "CAP_THREAD_COMMISSIONER"
 o 1025: "CAP_THREAD_BA_PROXY"

 Additionally, future capability allocations SHALL be made from the
 following allocation plan:

 +-----------------------+--------------------------------+
 | Capability Range | Description |
 +-----------------------+--------------------------------+
 | 0 - 127 | Reserved for core capabilities |
 | 128 - 15,359 | _UNALLOCATED_ |
 | 15,360 - 16,383 | Vendor-specific |
 | 16,384 - 1,999,999 | _UNALLOCATED_ |
 | 2,000,000 - 2,097,151 | Experimental use only |
 +-----------------------+--------------------------------+

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 28]

Internet-Draft Spinel Protocol (Unified) May 2017

5.5.7. PROP 6: PROP_INTERFACE_COUNT

 o Type: Read-Only
 o Packed-Encoding: "C"

 +---------+-------------------+
 | Octets: | 1 |
 +---------+-------------------+
 | Fields: | "INTERFACE_COUNT" |
 +---------+-------------------+

 Describes the number of concurrent interfaces supported by this NCP.
 Since the concurrent interface mechanism is still TBD, this value
 MUST always be one.

 This value is encoded as an unsigned 8-bit integer.

5.5.8. PROP 7: PROP_POWER_STATE

 o Type: Read-Write
 o Packed-Encoding: "C"

 +---------+-------------+
 | Octets: | 1 |
 +---------+-------------+
 | Fields: | POWER_STATE |
 +---------+-------------+

 Describes the current power state of the NCP. By writing to this
 property you can manage the lower state of the NCP. Enumeration is
 encoded as a single unsigned byte.

 Defined values are:

 o 0: "POWER_STATE_OFFLINE": NCP is physically powered off.
 (Enumerated for completeness sake, not expected on the wire)
 o 1: "POWER_STATE_DEEP_SLEEP": Almost everything on the NCP is shut
 down, but can still be resumed via a command or interrupt.
 o 2: "POWER_STATE_STANDBY": NCP is in the lowest power state that
 can still be awoken by an event from the radio (e.g. waiting for
 alarm)
 o 3: "POWER_STATE_LOW_POWER": NCP is responsive (and possibly
 connected), but using less power. (e.g. "Sleepy" child node)
 o 4: "POWER_STATE_ONLINE": NCP is fully powered. (e.g. "Parent"
 node)

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 29]

Internet-Draft Spinel Protocol (Unified) May 2017

5.5.9. PROP 8: PROP_HWADDR

 o Type: Read-Only*
 o Packed-Encoding: "E"

 +---------+--------+
 | Octets: | 8 |
 +---------+--------+
 | Fields: | HWADDR |
 +---------+--------+

 The static EUI64 address of the device, used as a serial number.
 This value is read-only, but may be writable under certain vendor-
 defined circumstances.

5.5.10. PROP 9: PROP_LOCK

 o Type: Read-Write
 o Packed-Encoding: "b"

 +---------+------+
 | Octets: | 1 |
 +---------+------+
 | Fields: | LOCK |
 +---------+------+

 Property lock. Used for grouping changes to several properties to
 take effect at once, or to temporarily prevent the automatic updating
 of property values. When this property is set, the execution of the
 NCP is effectively frozen until it is cleared.

 This property is only supported if the "CAP_LOCK" capability is
 present.

 Unlike most other properties, setting this property to true when the
 value of the property is already true MUST fail with a last status of
 "STATUS_ALREADY".

5.6. Stream Properties

5.6.1. PROP 112: PROP_STREAM_DEBUG

 o Type: Read-Only-Stream
 o Packed-Encoding: "D"

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 30]

Internet-Draft Spinel Protocol (Unified) May 2017

 +---------+-----------+
 | Octets: | n |
 +---------+-----------+
 | Fields: | UTF8_DATA |
 +---------+-----------+

 This property is a streaming property, meaning that you cannot
 explicitly fetch the value of this property. The stream provides
 human-readable debugging output which may be displayed in the host
 logs.

 The location of newline characters is not assumed by the host: it is
 the NCP's responsibility to insert newline characters where needed,
 just like with any other text stream.

 To receive the debugging stream, you wait for "CMD_PROP_VALUE_IS"
 commands for this property from the NCP.

5.6.2. PROP 113: PROP_STREAM_RAW

 o Type: Read-Write-Stream
 o Packed-Encoding: "dD"

 +---------+----------------+------------+----------------+
 | Octets: | 2 | n | n |
 +---------+----------------+------------+----------------+
 | Fields: | FRAME_DATA_LEN | FRAME_DATA | FRAME_METADATA |
 +---------+----------------+------------+----------------+

 This stream provides the capability of sending and receiving raw
 packets to and from the radio. The exact format of the frame
 metadata and data is dependent on the MAC and PHY being used.

 This property is a streaming property, meaning that you cannot
 explicitly fetch the value of this property. To receive traffic, you
 wait for "CMD_PROP_VALUE_IS" commands with this property id from the
 NCP.

 Implementations may OPTIONALLY support the ability to transmit
 arbitrary raw packets. Support for this feature is indicated by the
 presence of the "CAP_WRITABLE_RAW_STREAM" capability.

 If the capability "CAP_WRITABLE_RAW_STREAM" is set, then packets
 written to this stream with "CMD_PROP_VALUE_SET" will be sent out
 over the radio. This allows the caller to use the radio directly,
 with the stack being implemented on the host instead of the NCP.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 31]

Internet-Draft Spinel Protocol (Unified) May 2017

5.6.2.1. Frame Metadata Format

 Any data past the end of "FRAME_DATA_LEN" is considered metadata and
 is OPTIONAL. Frame metadata MAY be empty or partially specified.
 Partially specified metadata MUST be accepted. Default values are
 used for all unspecified fields.

 The same general format is used for "PROP_STREAM_RAW",
 "PROP_STREAM_NET", and "PROP_STREAM_NET_INSECURE". It can be used
 for frames sent from the NCP to the host as well as frames sent from
 the host to the NCP.

 The frame metadata field consists of the following fields:

 +----------+-----------------------+------------+-----+---------+
 | Field | Description | Type | Len | Default |
 +----------+-----------------------+------------+-----+---------+
 | MD_POWER | (dBm) RSSI/TX-Power | "c" int8 | 1 | -128 |
 | MD_NOISE | (dBm) Noise floor | "c" int8 | 1 | -128 |
 | MD_FLAG | Flags (defined below) | "S" uint16 | 2 | |
 | MD_PHY | PHY-specific data | "d" data | >=2 | |
 | MD_VEND | Vendor-specific data | "d" data | >=2 | |
 +----------+-----------------------+------------+-----+---------+

 The following fields are ignored by the NCP for packets sent to it
 from the host:

 o MD_NOISE
 o MD_FLAG

 When specifying "MD_POWER" for a packet to be transmitted, the actual
 transmit power is never larger than the current value of
 "PROP_PHY_TX_POWER" (Section 5.7.6). When left unspecified (or set
 to the value -128), an appropriate transmit power will be chosen by
 the NCP.

 The bit values in "MD_FLAG" are defined as follows:

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 32]

Internet-Draft Spinel Protocol (Unified) May 2017

 +---------+--------+------------------+-----------------------------+
 | Bit | Mask | Name | Description if set |
 +---------+--------+------------------+-----------------------------+
15	0x0001	MD_FLAG_TX	Packet was transmitted, not
			received.
13	0x0004	MD_FLAG_BAD_FCS	Packet was received with
			bad FCS
12	0x0008	MD_FLAG_DUPE	Packet seems to be a
			duplicate
0-11,	0xFFF2	MD_FLAG_RESERVED	Flags reserved for future
14			use.
 +---------+--------+------------------+-----------------------------+

 The format of "MD_PHY" is specified by the PHY layer currently in
 use, and may contain information such as the channel, LQI, antenna,
 or other pertainent information.

5.6.3. PROP 114: PROP_STREAM_NET

 o Type: Read-Write-Stream
 o Packed-Encoding: "dD"

 +---------+----------------+------------+----------------+
 | Octets: | 2 | n | n |
 +---------+----------------+------------+----------------+
 | Fields: | FRAME_DATA_LEN | FRAME_DATA | FRAME_METADATA |
 +---------+----------------+------------+----------------+

 This stream provides the capability of sending and receiving data
 packets to and from the currently attached network. The exact format
 of the frame metadata and data is dependent on the network protocol
 being used.

 This property is a streaming property, meaning that you cannot
 explicitly fetch the value of this property. To receive traffic, you
 wait for "CMD_PROP_VALUE_IS" commands with this property id from the
 NCP.

 To send network packets, you call "CMD_PROP_VALUE_SET" on this
 property with the value of the packet.

 Any data past the end of "FRAME_DATA_LEN" is considered metadata, the
 format of which is described in Section 5.6.2.1.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 33]

Internet-Draft Spinel Protocol (Unified) May 2017

5.6.4. PROP 114: PROP_STREAM_NET_INSECURE

 o Type: Read-Write-Stream
 o Packed-Encoding: "dD"

 +---------+----------------+------------+----------------+
 | Octets: | 2 | n | n |
 +---------+----------------+------------+----------------+
 | Fields: | FRAME_DATA_LEN | FRAME_DATA | FRAME_METADATA |
 +---------+----------------+------------+----------------+

 This stream provides the capability of sending and receiving
 unencrypted and unauthenticated data packets to and from nearby
 devices for the purposes of device commissioning. The exact format
 of the frame metadata and data is dependent on the network protocol
 being used.

 This property is a streaming property, meaning that you cannot
 explicitly fetch the value of this property. To receive traffic, you
 wait for "CMD_PROP_VALUE_IS" commands with this property id from the
 NCP.

 To send network packets, you call "CMD_PROP_VALUE_SET" on this
 property with the value of the packet.

 Any data past the end of "FRAME_DATA_LEN" is considered metadata, the
 format of which is described in Section 5.6.2.1.

5.7. PHY Properties

5.7.1. PROP 32: PROP_PHY_ENABLED

 o Type: Read-Write
 o Packed-Encoding: "b" (bool8)

 Set to 1 if the PHY is enabled, set to 0 otherwise. May be directly
 enabled to bypass higher-level packet processing in order to
 implement things like packet sniffers.

5.7.2. PROP 33: PROP_PHY_CHAN

 o Type: Read-Write
 o Packed-Encoding: "C" (uint8)

 Value is the current channel. Must be set to one of the values
 contained in "PROP_PHY_CHAN_SUPPORTED".

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 34]

Internet-Draft Spinel Protocol (Unified) May 2017

5.7.3. PROP 34: PROP_PHY_CHAN_SUPPORTED

 o Type: Read-Only
 o Packed-Encoding: "A(C)" (array of uint8)
 o Unit: List of channels

 Value is a list of channel values that are supported by the hardware.

5.7.4. PROP 35: PROP_PHY_FREQ

 o Type: Read-Only
 o Packed-Encoding: "L" (uint32)
 o Unit: Kilohertz

 Value is the radio frequency (in kilohertz) of the current channel.

5.7.5. PROP 36: PROP_PHY_CCA_THRESHOLD

 o Type: Read-Write
 o Packed-Encoding: "c" (int8)
 o Unit: dBm

 Value is the CCA (clear-channel assessment) threshold. Set to -128
 to disable.

 When setting, the value will be rounded down to a value that is
 supported by the underlying radio hardware.

5.7.6. PROP 37: PROP_PHY_TX_POWER

 o Type: Read-Write
 o Packed-Encoding: "c" (int8)
 o Unit: dBm

 Value is the transmit power of the radio.

 When setting, the value will be rounded down to a value that is
 supported by the underlying radio hardware.

5.7.7. PROP 38: PROP_PHY_RSSI

 o Type: Read-Only
 o Packed-Encoding: "c" (int8)
 o Unit: dBm

 Value is the current RSSI (Received signal strength indication) from
 the radio. This value can be used in energy scans and for
 determining the ambient noise floor for the operating environment.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 35]

Internet-Draft Spinel Protocol (Unified) May 2017

5.7.8. PROP 39: PROP_PHY_RX_SENSITIVITY

 o Type: Read-Only
 o Packed-Encoding: "c" (int8)
 o Unit: dBm

 Value is the radio receive sensitivity. This value can be used as
 lower bound noise floor for link metrics computation.

5.8. MAC Properties

5.8.1. PROP 48: PROP_MAC_SCAN_STATE

 o Type: Read-Write
 o Packed-Encoding: "C"
 o Unit: Enumeration

 Possible Values:

 o 0: "SCAN_STATE_IDLE"
 o 1: "SCAN_STATE_BEACON"
 o 2: "SCAN_STATE_ENERGY"
 o 3: "SCAN_STATE_DISCOVER"

 Set to "SCAN_STATE_BEACON" to start an active scan. Beacons will be
 emitted from "PROP_MAC_SCAN_BEACON".

 Set to "SCAN_STATE_ENERGY" to start an energy scan. Channel energy
 result will be reported by emissions of "PROP_MAC_ENERGY_SCAN_RESULT"
 (per channel).

 Set to "SCAN_STATE_DISOVER" to start a Thread MLE discovery scan
 operation. Discovery scan result will be emitted from
 "PROP_MAC_SCAN_BEACON".

 Value switches to "SCAN_STATE_IDLE" when scan is complete.

5.8.2. PROP 49: PROP_MAC_SCAN_MASK

 o Type: Read-Write
 o Packed-Encoding: "A(C)"
 o Unit: List of channels to scan

5.8.3. PROP 50: PROP_MAC_SCAN_PERIOD

 o Type: Read-Write
 o Packed-Encoding: "S" (uint16)
 o Unit: milliseconds per channel

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 36]

Internet-Draft Spinel Protocol (Unified) May 2017

5.8.4. PROP 51: PROP_MAC_SCAN_BEACON

 o Type: Read-Only-Stream
 o Packed-Encoding: "Ccdd" (or "Cct(ESSc)t(iCUdd)")

 +---------+----+------+---------+----------+---------+----------+
 | Octets: | 1 | 1 | 2 | n | 2 | n |
 +---------+----+------+---------+----------+---------+----------+
 | Fields: | CH | RSSI | MAC_LEN | MAC_DATA | NET_LEN | NET_DATA |
 +---------+----+------+---------+----------+---------+----------+

 Scan beacons have two embedded structures which contain information
 about the MAC layer and the NET layer. Their format depends on the
 MAC and NET layer currently in use. The format below is for an
 802.15.4 MAC with Thread:

 o "C": Channel
 o "c": RSSI of the beacon
 o "t": MAC layer properties (802.15.4 layer shown below for
 convenience)

 * "E": Long address
 * "S": Short address
 * "S": PAN-ID
 * "c": LQI
 o NET layer properties (Standard net layer shown below for
 convenience)

 * "i": Protocol Number
 * "C": Flags
 * "U": Network Name
 * "d": XPANID
 * "d": Steering data

 Extra parameters may be added to each of the structures in the
 future, so care should be taken to read the length that prepends each
 structure.

5.8.5. PROP 52: PROP_MAC_15_4_LADDR

 o Type: Read-Write
 o Packed-Encoding: "E"

 The 802.15.4 long address of this node.

 This property is only present on NCPs which implement 802.15.4

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 37]

Internet-Draft Spinel Protocol (Unified) May 2017

5.8.6. PROP 53: PROP_MAC_15_4_SADDR

 o Type: Read-Write
 o Packed-Encoding: "S"

 The 802.15.4 short address of this node.

 This property is only present on NCPs which implement 802.15.4

5.8.7. PROP 54: PROP_MAC_15_4_PANID

 o Type: Read-Write
 o Packed-Encoding: "S"

 The 802.15.4 PANID this node is associated with.

 This property is only present on NCPs which implement 802.15.4

5.8.8. PROP 55: PROP_MAC_RAW_STREAM_ENABLED

 o Type: Read-Write
 o Packed-Encoding: "b"

 Set to true to enable raw MAC frames to be emitted from
 "PROP_STREAM_RAW". See Section 5.6.2.

5.8.9. PROP 56: PROP_MAC_PROMISCUOUS_MODE

 o Type: Read-Write
 o Packed-Encoding: "C"

 Possible Values:

 +----+--------------------------------+-----------------------------+
 | Id | Name | Description |
 +----+--------------------------------+-----------------------------+
0	"MAC_PROMISCUOUS_MODE_OFF"	Normal MAC filtering is in
		place.
1	"MAC_PROMISCUOUS_MODE_NETWORK"	All MAC packets matching
		network are passed up the
		stack.
2	"MAC_PROMISCUOUS_MODE_FULL"	All decoded MAC packets are
		passed up the stack.
 +----+--------------------------------+-----------------------------+

 See Section 5.6.2.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 38]

Internet-Draft Spinel Protocol (Unified) May 2017

5.8.10. PROP 57: PROP_MAC_ENERGY_SCAN_RESULT

 o Type: Read-Only-Stream
 o Packed-Encoding: "Cc"

 This property is emitted during energy scan operation per scanned
 channel with following format:

 o "C": Channel
 o "c": RSSI (in dBm)

5.8.11. PROP 4864: PROP_MAC_WHITELIST

 o Type: Read-Write
 o Packed-Encoding: "A(T(Ec))"
 o OPTIONAL

 Structure Parameters:

 o "E": EUI64 address of node
 o "c": Optional RSSI-override value. The value 127 indicates that
 the RSSI-override feature is not enabled for this address. If
 this value is omitted when setting or inserting, it is assumed to
 be 127. This parameter is ignored when removing.

5.8.12. PROP 4865: PROP_MAC_WHITELIST_ENABLED

 o Type: Read-Write
 o Packed-Encoding: "b"

5.9. NET Properties

5.9.1. PROP 64: PROP_NET_SAVED

 o Type: Read-Only
 o Packed-Encoding: "b"

 Returns true if there is a network state stored/saved.

5.9.2. PROP 65: PROP_NET_IF_UP

 o Type: Read-Write
 o Packed-Encoding: "b"

 Network interface up/down status. Non-zero (set to 1) indicates up,
 zero indicates down.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 39]

Internet-Draft Spinel Protocol (Unified) May 2017

5.9.3. PROP 66: PROP_NET_STACK_UP

 o Type: Read-Write
 o Packed-Encoding: "b"
 o Unit: Enumeration

 Thread stack operational status. Non-zero (set to 1) indicates up,
 zero indicates down.

5.9.4. PROP 67: PROP_NET_ROLE

 o Type: Read-Write
 o Packed-Encoding: "C"
 o Unit: Enumeration

 Values:

 o 0: "NET_ROLE_DETACHED"
 o 1: "NET_ROLE_CHILD"
 o 2: "NET_ROLE_ROUTER"
 o 3: "NET_ROLE_LEADER"

5.9.5. PROP 68: PROP_NET_NETWORK_NAME

 o Type: Read-Write
 o Packed-Encoding: "U"

5.9.6. PROP 69: PROP_NET_XPANID

 o Type: Read-Write
 o Packed-Encoding: "D"

5.9.7. PROP 70: PROP_NET_MASTER_KEY

 o Type: Read-Write
 o Packed-Encoding: "D"

5.9.8. PROP 71: PROP_NET_KEY_SEQUENCE_COUNTER

 o Type: Read-Write
 o Packed-Encoding: "L"

5.9.9. PROP 72: PROP_NET_PARTITION_ID

 o Type: Read-Write
 o Packed-Encoding: "L"

 The partition ID of the partition that this node is a member of.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 40]

Internet-Draft Spinel Protocol (Unified) May 2017

5.9.10. PROP 73: PROP_NET_REQUIRE_JOIN_EXISTING

 o Type: Read-Write
 o Packed-Encoding: "b"

5.9.11. PROP 74: PROP_NET_KEY_SWITCH_GUARDTIME

 o Type: Read-Write
 o Packed-Encoding: "L"

5.9.12. PROP 75: PROP_NET_PSKC

 o Type: Read-Write
 o Packed-Encoding: "D"

5.10. IPv6 Properties

5.10.1. PROP 96: PROP_IPV6_LL_ADDR

 o Type: Read-Only
 o Packed-Encoding: "6"

 IPv6 Address

5.10.2. PROP 97: PROP_IPV6_ML_ADDR

 o Type: Read-Only
 o Packed-Encoding: "6"

 IPv6 Address + Prefix Length

5.10.3. PROP 98: PROP_IPV6_ML_PREFIX

 o Type: Read-Write
 o Packed-Encoding: "6C"

 IPv6 Prefix + Prefix Length

5.10.4. PROP 99: PROP_IPV6_ADDRESS_TABLE

 o Type: Read-Write
 o Packed-Encoding: "A(t(6CLLC))"

 Array of structures containing:

 o "6": IPv6 Address
 o "C": Network Prefix Length
 o "L": Valid Lifetime

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 41]

Internet-Draft Spinel Protocol (Unified) May 2017

 o "L": Preferred Lifetime
 o "C": Flags

5.10.5. PROP 101: PROP_IPv6_ICMP_PING_OFFLOAD

 o Type: Read-Write
 o Packed-Encoding: "b"

 Allow the NCP to directly respond to ICMP ping requests. If this is
 turned on, ping request ICMP packets will not be passed to the host.

 Default value is "false".

5.11. Debug Properties

5.11.1. PROP 16384: PROP_DEBUG_TEST_ASSERT

 o Type: Read-Only
 o Packed-Encoding: "b"

 Reading this property will cause an assert on the NCP. This is
 intended for testing the assert functionality of underlying platform/
 NCP. Assert should ideally cause the NCP to reset, but if "assert"
 is not supported or disabled boolean value of "false" is returned in
 response.

5.11.2. PROP 16385: PROP_DEBUG_NCP_LOG_LEVEL

 o Type: Read-Write
 o Packed-Encoding: "C"

 Provides access to the NCP log level. Currently defined values are
 (which follows the RFC 5424):

 o 0: Emergency (emerg).
 o 1: Alert (alert).
 o 2: Critical (crit).
 o 3: Error (err).
 o 4: Warning (warn).
 o 5: Notice (notice).
 o 6: Information (info).
 o 7: Debug (debug).

 If the NCP supports dynamic log level control, setting this property
 changes the log level accordingly. Getting the value returns the
 current log level. If the dynamic log level control is not
 supported, setting this property returns a "PROP_LAST_STATUS" with
 "STATUS_INVALID_COMMAND_FOR_PROP".

https://datatracker.ietf.org/doc/html/rfc5424

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 42]

Internet-Draft Spinel Protocol (Unified) May 2017

6. Status Codes

 Status codes are sent from the NCP to the host via "PROP_LAST_STATUS"
 using the "CMD_VALUE_IS" command to indicate the return status of a
 previous command. As with any response, the TID field of the FLAG
 byte is used to correlate the response with the request.

 Note that most successfully executed commands do not indicate a last
 status of "STATUS_OK". The usual way the NCP indicates a successful
 command is to mirror the property change back to the host. For
 example, if you do a "CMD_VALUE_SET" on "PROP_PHY_ENABLED", the NCP
 would indicate success by responding with a "CMD_VALUE_IS" for
 "PROP_PHY_ENABLED". If the command failed, "PROP_LAST_STATUS" would
 be emitted instead.

 See Section 5.5.1 for more information on "PROP_LAST_STATUS".

 o 0: "STATUS_OK": Operation has completed successfully.
 o 1: "STATUS_FAILURE": Operation has failed for some undefined
 reason.
 o 2: "STATUS_UNIMPLEMENTED": The given operation has not been
 implemented.
 o 3: "STATUS_INVALID_ARGUMENT": An argument to the given operation
 is invalid.
 o 4: "STATUS_INVALID_STATE" : The given operation is invalid for the
 current state of the device.
 o 5: "STATUS_INVALID_COMMAND": The given command is not recognized.
 o 6: "STATUS_INVALID_INTERFACE": The given Spinel interface is not
 supported.
 o 7: "STATUS_INTERNAL_ERROR": An internal runtime error has
 occurred.
 o 8: "STATUS_SECURITY_ERROR": A security or authentication error has
 occurred.
 o 9: "STATUS_PARSE_ERROR": An error has occurred while parsing the
 command.
 o 10: "STATUS_IN_PROGRESS": The operation is in progress and will be
 completed asynchronously.
 o 11: "STATUS_NOMEM": The operation has been prevented due to memory
 pressure.
 o 12: "STATUS_BUSY": The device is currently performing a mutually
 exclusive operation.
 o 13: "STATUS_PROP_NOT_FOUND": The given property is not recognized.
 o 14: "STATUS_PACKET_DROPPED": The packet was dropped.
 o 15: "STATUS_EMPTY": The result of the operation is empty.
 o 16: "STATUS_CMD_TOO_BIG": The command was too large to fit in the
 internal buffer.
 o 17: "STATUS_NO_ACK": The packet was not acknowledged.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 43]

Internet-Draft Spinel Protocol (Unified) May 2017

 o 18: "STATUS_CCA_FAILURE": The packet was not sent due to a CCA
 failure.
 o 19: "STATUS_ALREADY": The operation is already in progress or the
 property was already set to the given value.
 o 20: "STATUS_ITEM_NOT_FOUND": The given item could not be found in
 the property.
 o 21: "STATUS_INVALID_COMMAND_FOR_PROP": The given command cannot be
 performed on this property.
 o 22-111: RESERVED
 o 112-127: Reset Causes

 * 112: "STATUS_RESET_POWER_ON"
 * 113: "STATUS_RESET_EXTERNAL"
 * 114: "STATUS_RESET_SOFTWARE"
 * 115: "STATUS_RESET_FAULT"
 * 116: "STATUS_RESET_CRASH"
 * 117: "STATUS_RESET_ASSERT"
 * 118: "STATUS_RESET_OTHER"
 * 119: "STATUS_RESET_UNKNOWN"
 * 120: "STATUS_RESET_WATCHDOG"
 * 121-127: RESERVED-RESET-CODES
 o 128 - 15,359: UNALLOCATED
 o 15,360 - 16,383: Vendor-specific
 o 16,384 - 1,999,999: UNALLOCATED
 o 2,000,000 - 2,097,151: Experimental Use Only (MUST NEVER be used
 in production!)

7. Technology: Thread(R)

 This section describes all of the properties and semantics required
 for managing a Thread(R) NCP.

 Thread(R) NCPs have the following requirements:

 o The property "PROP_INTERFACE_TYPE" must be 3.
 o The non-optional properties in the following sections MUST be
 implemented: CORE, PHY, MAC, NET, and IPV6.

 All serious implementations of an NCP SHOULD also support the network
 save feature (See Section 8).

7.1. Capabilities

 The Thread(R) technology defines the following capabilities:

 o "CAP_NET_THREAD_1_0" - Indicates that the NCP implements v1.0 of
 the Thread(R) standard.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 44]

Internet-Draft Spinel Protocol (Unified) May 2017

 o "CAP_NET_THREAD_1_1" - Indicates that the NCP implements v1.1 of
 the Thread(R) standard.

7.2. Properties

 Properties for Thread(R) are allocated out of the "Tech" property
 section (see Section 5.4).

7.2.1. PROP 80: PROP_THREAD_LEADER_ADDR

 o Type: Read-Only
 o Packed-Encoding: "6"

 The IPv6 address of the leader. (Note: May change to long and short
 address of leader)

7.2.2. PROP 81: PROP_THREAD_PARENT

 o Type: Read-Only
 o Packed-Encoding: "ES"
 o LADDR, SADDR

 The long address and short address of the parent of this node.

7.2.3. PROP 82: PROP_THREAD_CHILD_TABLE

 o Type: Read-Only
 o Packed-Encoding: "A(t(ES))"

 Table containing the long and short addresses of all the children of
 this node.

7.2.4. PROP 83: PROP_THREAD_LEADER_RID

 o Type: Read-Only
 o Packed-Encoding: "C"

 The router-id of the current leader.

7.2.5. PROP 84: PROP_THREAD_LEADER_WEIGHT

 o Type: Read-Only
 o Packed-Encoding: "C"

 The leader weight of the current leader.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 45]

Internet-Draft Spinel Protocol (Unified) May 2017

7.2.6. PROP 85: PROP_THREAD_LOCAL_LEADER_WEIGHT

 o Type: Read-Write
 o Packed-Encoding: "C"

 The leader weight for this node.

7.2.7. PROP 86: PROP_THREAD_NETWORK_DATA

 o Type: Read-Only
 o Packed-Encoding: "D"

 The local network data.

7.2.8. PROP 87: PROP_THREAD_NETWORK_DATA_VERSION

 o Type: Read-Only
 o Packed-Encoding: "S"

7.2.9. PROP 88: PROP_THREAD_STABLE_NETWORK_DATA

 o Type: Read-Only
 o Packed-Encoding: "D"

 The local stable network data.

7.2.10. PROP 89: PROP_THREAD_STABLE_NETWORK_DATA_VERSION

 o Type: Read-Only
 o Packed-Encoding: "S"

7.2.11. PROP 90: PROP_THREAD_ON_MESH_NETS

 o Type: Read-Write
 o Packed-Encoding: "A(t(6CbCb))"

 Data per item is:

 o "6": IPv6 Prefix
 o "C": Prefix length, in bits
 o "b": Stable flag
 o "C": TLV flags
 o "b": "Is defined locally" flag. Set if this network was locally
 defined. Assumed to be true for set, insert and replace. Clear
 if the on mesh network was defined by another node.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 46]

Internet-Draft Spinel Protocol (Unified) May 2017

7.2.12. PROP 91: PROP_THREAD_LOCAL_ROUTES

 o Type: Read-Write
 o Packed-Encoding: "A(t(6CbC))"

 Data per item is:

 o "6": IPv6 Prefix
 o "C": Prefix length, in bits
 o "b": Stable flag
 o "C": Other flags

7.2.13. PROP 92: PROP_THREAD_ASSISTING_PORTS

 o Type: Read-Write
 o Packed-Encoding: "A(S)"

7.2.14. PROP 93: PROP_THREAD_ALLOW_LOCAL_NET_DATA_CHANGE

 o Type: Read-Write
 o Packed-Encoding: "b"

 Set to true before changing local net data. Set to false when
 finished. This allows changes to be aggregated into single events.

7.2.15. PROP 94: PROP_THREAD_MODE

 o Type: Read-Write
 o Packed-Encoding: "C"

 This property contains the value of the mode TLV for this node. The
 meaning of the bits in this bitfield are defined by section 4.5.2 of
 the Thread(R) specification.

7.2.16. PROP 5376: PROP_THREAD_CHILD_TIMEOUT

 o Type: Read-Write
 o Packed-Encoding: "L"

 Used when operating in the Child role.

7.2.17. PROP 5377: PROP_THREAD_RLOC16

 o Type: Read-Write
 o Packed-Encoding: "S"

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 47]

Internet-Draft Spinel Protocol (Unified) May 2017

7.2.18. PROP 5378: PROP_THREAD_ROUTER_UPGRADE_THRESHOLD

 o Type: Read-Write
 o Packed-Encoding: "C"

7.2.19. PROP 5379: PROP_THREAD_CONTEXT_REUSE_DELAY

 o Type: Read-Write
 o Packed-Encoding: "L"

7.2.20. PROP 5380: PROP_THREAD_NETWORK_ID_TIMEOUT

 o Type: Read-Write
 o Packed-Encoding: "C"

 Allows you to get or set the Thread(R) "NETWORK_ID_TIMEOUT" constant,
 as defined by the Thread(R) specification.

7.2.21. PROP 5381: PROP_THREAD_ACTIVE_ROUTER_IDS

 o Type: Read-Write/Write-Only
 o Packed-Encoding: "A(C)" (List of active thread router ids)

 Note that some implementations may not support "CMD_GET_VALUE" router
 ids, but may support "CMD_REMOVE_VALUE" when the node is a leader.

7.2.22. PROP 5382: PROP_THREAD_RLOC16_DEBUG_PASSTHRU

 o Type: Read-Write
 o Packed-Encoding: "b"

 Allow the HOST to directly observe all IPv6 packets received by the
 NCP, including ones sent to the RLOC16 address.

 Default value is "false".

7.2.23. PROP 5383: PROP_THREAD_ROUTER_ROLE_ENABLED

 o Type: Read-Write
 o Packed-Encoding: "b"

 Allow the HOST to indicate whether or not the router role is enabled.
 If current role is a router, setting this property to "false" starts
 a re-attach process as an end-device.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 48]

Internet-Draft Spinel Protocol (Unified) May 2017

7.2.24. PROP 5384: PROP_THREAD_ROUTER_DOWNGRADE_THRESHOLD

 o Type: Read-Write
 o Packed-Encoding: "C"

7.2.25. PROP 5385: PROP_THREAD_ROUTER_SELECTION_JITTER

 o Type: Read-Write
 o Packed-Encoding: "C"

 Specifies the self imposed random delay in seconds a REED waits
 before registering to become an Active Router.

7.2.26. PROP 5386: PROP_THREAD_PREFERRED_ROUTER_ID

 o Type: Write-Only
 o Packed-Encoding: "C"

 Specifies the preferred Router Id. Upon becoming a router/leader the
 node attempts to use this Router Id. If the preferred Router Id is
 not set or if it can not be used, a randomly generated router id is
 picked. This property can be set only when the device role is either
 detached or disabled.

7.2.27. PROP 5387: PROP_THREAD_NEIGHBOR_TABLE

 o Type: Read-Only
 o Packed-Encoding: "A(t(ESLCcCbLL))"

 Data per item is:

 o "E": Extended/long address
 o "S": RLOC16
 o "L": Age
 o "C": Link Quality In
 o "c": Average RSS
 o "C": Mode (bit-flags)
 o "b": "true" if neighbor is a child, "false" otherwise.
 o "L": Link Frame Counter
 o "L": MLE Frame Counter

7.2.28. PROP 5388: PROP_THREAD_CHILD_COUNT_MAX

 o Type: Read-Write
 o Packed-Encoding: "C"

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 49]

Internet-Draft Spinel Protocol (Unified) May 2017

 Specifies the maximum number of children currently allowed. This
 parameter can only be set when Thread(R) protocol operation has been
 stopped.

7.2.29. PROP 5389: PROP_THREAD_LEADER_NETWORK_DATA

 o Type: Read-Only
 o Packed-Encoding: "D"

 The leader network data.

7.2.30. PROP 5390: PROP_THREAD_STABLE_LEADER_NETWORK_DATA

 o Type: Read-Only
 o Packed-Encoding: "D"

 The stable leader network data.

7.2.31. PROP 5391: PROP_THREAD_JOINERS

 o Type: Insert/Remove Only (optionally Read-Write)
 o Packed-Encoding: "A(t(ULE))"
 o Required capability: "CAP_THREAD_COMMISSIONER"

 Data per item is:

 o "U": PSKd
 o "L": Timeout in seconds
 o "E": Extended/long address (optional)

 Passess Pre-Shared Key for the Device to the NCP in the commissioning
 process. When the Extended address is ommited all Devices which
 provided a valid PSKd are allowed to join the Thread(R) Network.

7.2.32. PROP 5392: PROP_THREAD_COMMISSIONER_ENABLED

 o Type: Write only (optionally Read-Write)
 o Packed-Encoding: "b"
 o Required capability: "CAP_THREAD_COMMISSIONER"

 Set to true to enable the native commissioner. It is mandatory
 before adding the joiner to the network.

7.2.33. PROP 5393: PROP_THREAD_BA_PROXY_ENABLED

 o Type: Read-Write
 o Packed-Encoding: "b"
 o Required capability: "CAP_THREAD_BA_PROXY"

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 50]

Internet-Draft Spinel Protocol (Unified) May 2017

 Set to true to enable the border agent proxy.

7.2.34. PROP 5394: PROP_THREAD_BA_PROXY_STREAM

 o Type: Read-Write-Stream
 o Packed-Encoding: "dSS"
 o Required capability: "CAP_THREAD_BA_PROXY"

 Data per item is:

 o "d": CoAP frame
 o "S": source/destination RLOC/ALOC
 o "S": source/destination port

 +----------+--------+------+---------+------+
 | Octects: | 2 | n | 2 | 2 |
 +----------+--------+------+---------+------+
 | Fields: | Length | CoAP | locator | port |
 +----------+--------+------+---------+------+

 This property allows the host to send and receive border-agent-
 related CoAP requests/responses from the NCP's RLOC address. This
 allows the host driver to implement a Thread(R) border agent.

7.2.35. PROP 5395: PROP_THREAD_DISOVERY_SCAN_JOINER_FLAG

 o Type: Read-Write
 o Packed-Encoding:: "b"

 This property specifies the value used in Thread(R) MLE Discovery
 Request TLV during discovery scan operation. Default value is
 "false".

7.2.36. PROP 5396: PROP_THREAD_DISCOVERY_SCAN_ENABLE_FILTERING

 o Type: Read-Write
 o Packed-Encoding:: "b"

 This property is used to enable/disable EUI64 filtering during
 discovery scan operation. Default value is "false".

7.2.37. PROP 5397: PROP_THREAD_DISCOVERY_SCAN_PANID

 o Type: Read-write
 o Packed-Encoding:: "S"

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 51]

Internet-Draft Spinel Protocol (Unified) May 2017

 This property specifies the PANID used for filtering during discovery
 scan operation. Default value is "0xffff" (broadcast PANID) which
 disables PANID filtering.

7.2.38. PROP 5398: PROP_THREAD_STEERING_DATA

 o Type: Write-Only
 o Packed-Encoding: "E"
 o Required capability: "CAP_OOB_STEERING_DATA"

 This property can be used to set the steering data for MLE Discovery
 Response messages.

 o All zeros to clear the steering data (indicating no steering
 data).
 o All 0xFFs to set the steering data (bloom filter) to accept/allow
 all.
 o A specific EUI64 which is then added to steering data/bloom
 filter.

8. Feature: Network Save

 The network save/recall feature is an optional NCP capability that,
 when present, allows the host to save and recall network credentials
 and state to and from nonvolatile storage.

 The presence of the save/recall feature can be detected by checking
 for the presence of the "CAP_NET_SAVE" capability in "PROP_CAPS".

 Network clear feature allows host to erase all network credentials
 and state from non-volatile memory.

8.1. Commands

8.1.1. CMD 9: (Host->NCP) CMD_NET_SAVE

 +---------+--------+--------------+
 | Octets: | 1 | 1 |
 +---------+--------+--------------+
 | Fields: | HEADER | CMD_NET_SAVE |
 +---------+--------+--------------+

 Save network state command. Saves any current network credentials
 and state necessary to reconnect to the current network to non-
 volatile memory.

 This operation affects non-volatile memory only. The current network
 information stored in volatile memory is unaffected.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 52]

Internet-Draft Spinel Protocol (Unified) May 2017

 The response to this command is always a "CMD_PROP_VALUE_IS" for
 "PROP_LAST_STATUS", indicating the result of the operation.

 This command is only available if the "CAP_NET_SAVE" capability is
 set.

8.1.2. CMD 10: (Host->NCP) CMD_NET_CLEAR

 +---------+--------+---------------+
 | Octets: | 1 | 1 |
 +---------+--------+---------------+
 | Fields: | HEADER | CMD_NET_CLEAR |
 +---------+--------+---------------+

 Clear saved network settings command. Erases all network credentials
 and state from non-volatile memory. The erased settings include any
 data saved automatically by the network stack firmware and/or data
 saved by "CMD_NET_SAVE" operation.

 This operation affects non-volatile memory only. The current network
 information stored in volatile memory is unaffected.

 The response to this command is always a "CMD_PROP_VALUE_IS" for
 "PROP_LAST_STATUS", indicating the result of the operation.

 This command is always available independent of the value of
 "CAP_NET_SAVE" capability.

8.1.3. CMD 11: (Host->NCP) CMD_NET_RECALL

 +---------+--------+----------------+
 | Octets: | 1 | 1 |
 +---------+--------+----------------+
 | Fields: | HEADER | CMD_NET_RECALL |
 +---------+--------+----------------+

 Recall saved network state command. Recalls any previously saved
 network credentials and state previously stored by "CMD_NET_SAVE"
 from non-volatile memory.

 This command will typically generated several unsolicited property
 updates as the network state is loaded. At the conclusion of
 loading, the authoritative response to this command is always a
 "CMD_PROP_VALUE_IS" for "PROP_LAST_STATUS", indicating the result of
 the operation.

 This command is only available if the "CAP_NET_SAVE" capability is
 set.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 53]

Internet-Draft Spinel Protocol (Unified) May 2017

9. Feature: Host Buffer Offload

 The memory on an NCP may be much more limited than the memory on the
 host processor. In such situations, it is sometimes useful for the
 NCP to offload buffers to the host processor temporarily so that it
 can perform other operations.

 Host buffer offload is an optional NCP capability that, when present,
 allows the NCP to store data buffers on the host processor that can
 be recalled at a later time.

 The presence of this feature can be detected by the host by checking
 for the presence of the "CAP_HBO" capability in "PROP_CAPS".

9.1. Commands

9.1.1. CMD 12: (NCP->Host) CMD_HBO_OFFLOAD

 o Argument-Encoding: "LscD"

 * "OffloadId": 32-bit unique block identifier
 * "Expiration": In seconds-from-now
 * "Priority": Critical, High, Medium, Low
 * "Data": Data to offload

9.1.2. CMD 13: (NCP->Host) CMD_HBO_RECLAIM

 o Argument-Encoding: "Lb"

 * "OffloadId": 32-bit unique block identifier
 * "KeepAfterReclaim": If not set to true, the block will be
 dropped by the host after it is sent to the NCP.

9.1.3. CMD 14: (NCP->Host) CMD_HBO_DROP

 o Argument-Encoding: "L"

 * "OffloadId": 32-bit unique block identifier

9.1.4. CMD 15: (Host->NCP) CMD_HBO_OFFLOADED

 o Argument-Encoding: "Li"

 * "OffloadId": 32-bit unique block identifier
 * "Status": Status code for the result of the operation.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 54]

Internet-Draft Spinel Protocol (Unified) May 2017

9.1.5. CMD 16: (Host->NCP) CMD_HBO_RECLAIMED

 o Argument-Encoding: "LiD"

 * "OffloadId": 32-bit unique block identifier
 * "Status": Status code for the result of the operation.
 * "Data": Data that was previously offloaded (if any)

9.1.6. CMD 17: (Host->NCP) CMD_HBO_DROPPED

 o Argument-Encoding: "Li"

 * "OffloadId": 32-bit unique block identifier
 * "Status": Status code for the result of the operation.

9.2. Properties

9.2.1. PROP 10: PROP_HBO_MEM_MAX

 o Type: Read-Write
 o Packed-Encoding: "L"

 +---------+--------------------+
 | Octets: | 4 |
 +---------+--------------------+
 | Fields: | "PROP_HBO_MEM_MAX" |
 +---------+--------------------+

 Describes the number of bytes that may be offloaded from the NCP to
 the host. Default value is zero, so this property must be set by the
 host to a non-zero value before the NCP will begin offloading blocks.

 This value is encoded as an unsigned 32-bit integer.

 This property is only available if the "CAP_HBO" capability is
 present in "PROP_CAPS".

9.2.2. PROP 11: PROP_HBO_BLOCK_MAX

 o Type: Read-Write
 o Packed-Encoding: "S"

 +---------+----------------------+
 | Octets: | 2 |
 +---------+----------------------+
 | Fields: | "PROP_HBO_BLOCK_MAX" |
 +---------+----------------------+

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 55]

Internet-Draft Spinel Protocol (Unified) May 2017

 Describes the number of blocks that may be offloaded from the NCP to
 the host. Default value is 32. Setting this value to zero will
 cause host block offload to be effectively disabled.

 This value is encoded as an unsigned 16-bit integer.

 This property is only available if the "CAP_HBO" capability is
 present in "PROP_CAPS".

10. Feature: Jam Detection

 Jamming detection is a feature that allows the NCP to report when it
 detects high levels of interference that are characteristic of
 intentional signal jamming.

 The presence of this feature can be detected by checking for the
 presence of the "CAP_JAM_DETECT" (value 6) capability in "PROP_CAPS".

10.1. Properties

10.1.1. PROP 4608: PROP_JAM_DETECT_ENABLE

 o Type: Read-Write
 o Packed-Encoding: "b"
 o Default Value: false
 o REQUIRED for "CAP_JAM_DETECT"

 +---------+--------------------------+
 | Octets: | 1 |
 +---------+--------------------------+
 | Fields: | "PROP_JAM_DETECT_ENABLE" |
 +---------+--------------------------+

 Indicates if jamming detection is enabled or disabled. Set to true
 to enable jamming detection.

 This property is only available if the "CAP_JAM_DETECT" capability is
 present in "PROP_CAPS".

10.1.2. PROP 4609: PROP_JAM_DETECTED

 o Type: Read-Only
 o Packed-Encoding: "b"
 o REQUIRED for "CAP_JAM_DETECT"

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 56]

Internet-Draft Spinel Protocol (Unified) May 2017

 +---------+---------------------+
 | Octets: | 1 |
 +---------+---------------------+
 | Fields: | "PROP_JAM_DETECTED" |
 +---------+---------------------+

 Set to true if radio jamming is detected. Set to false otherwise.

 When jamming detection is enabled, changes to the value of this
 property are emitted asynchronously via "CMD_PROP_VALUE_IS".

 This property is only available if the "CAP_JAM_DETECT" capability is
 present in "PROP_CAPS".

10.1.3. PROP 4610: PROP_JAM_DETECT_RSSI_THRESHOLD

 o Type: Read-Write
 o Packed-Encoding: "c"
 o Units: dBm
 o Default Value: Implementation-specific
 o RECOMMENDED for "CAP_JAM_DETECT"

 This parameter describes the threshold RSSI level (measured in dBm)
 above which the jamming detection will consider the channel blocked.

10.1.4. PROP 4611: PROP_JAM_DETECT_WINDOW

 o Type: Read-Write
 o Packed-Encoding: "c"
 o Units: Seconds (1-64)
 o Default Value: Implementation-specific
 o RECOMMENDED for "CAP_JAM_DETECT"

 This parameter describes the window period for signal jamming
 detection.

10.1.5. PROP 4612: PROP_JAM_DETECT_BUSY

 o Type: Read-Write
 o Packed-Encoding: "i"
 o Units: Seconds (1-64)
 o Default Value: Implementation-specific
 o RECOMMENDED for "CAP_JAM_DETECT"

 This parameter describes the number of aggregate seconds within the
 detection window where the RSSI must be above
 "PROP_JAM_DETECT_RSSI_THRESHOLD" to trigger detection.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 57]

Internet-Draft Spinel Protocol (Unified) May 2017

 The behavior of the jamming detection feature when
 "PROP_JAM_DETECT_BUSY" is larger than "PROP_JAM_DETECT_WINDOW" is
 undefined.

10.1.6. PROP 4613: PROP_JAM_DETECT_HISTORY_BITMAP

 o Type: Read-Only
 o Packed-Encoding: "LL"
 o Default Value: Implementation-specific
 o RECOMMENDED for "CAP_JAM_DETECT"

 This value provides information about current state of jamming
 detection module for monitoring/debugging purpose. It returns a
 64-bit value where each bit corresponds to one second interval
 starting with bit 0 for the most recent interval and bit 63 for the
 oldest intervals (63 sec earlier). The bit is set to 1 if the
 jamming detection module observed/detected high signal level during
 the corresponding one second interval. The value is read-only and is
 encoded as two "L" (uint32) values in little-endian format (first "L"
 (uint32) value gives the lower bits corresponding to more recent
 history).

11. Feature: GPIO Access

 This feature allows the host to have control over some or all of the
 GPIO pins on the NCP. The host can determine which GPIOs are
 available by examining "PROP_GPIO_CONFIG", described below. This API
 supports a maximum of 256 individual GPIO pins.

 Support for this feature can be determined by the presence of
 "CAP_GPIO".

11.1. Properties

11.1.1. PROP 4096: PROP_GPIO_CONFIG

 o Argument-Encoding: "A(t(CCU))"
 o Type: Read-write (Writable only using "CMD_PROP_VALUE_INSERT",

Section 4.5)

 An array of structures which contain the following fields:

 o "C": GPIO Number
 o "C": GPIO Configuration Flags
 o "U": Human-readable GPIO name

 GPIOs which do not have a corresponding entry are not supported.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 58]

Internet-Draft Spinel Protocol (Unified) May 2017

 The configuration parameter contains the configuration flags for the
 GPIO:

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 |DIR|PUP|PDN|TRIGGER| RESERVED |
 +---+---+---+---+---+---+---+---+
 |O/D|
 +---+

 o "DIR": Pin direction. Clear (0) for input, set (1) for output.
 o "PUP": Pull-up enabled flag.
 o "PDN"/"O/D": Flag meaning depends on pin direction:

 * Input: Pull-down enabled.
 * Output: Output is an open-drain.
 o "TRIGGER": Enumeration describing how pin changes generate
 asynchronous notification commands (TBD) from the NCP to the host.

 * 0: Feature disabled for this pin
 * 1: Trigger on falling edge
 * 2: Trigger on rising edge
 * 3: Trigger on level change
 o "RESERVED": Bits reserved for future use. Always cleared to zero
 and ignored when read.

 As an optional feature, the configuration of individual pins may be
 modified using the "CMD_PROP_VALUE_INSERT" command. Only the GPIO
 number and flags fields MUST be present, the GPIO name (if present)
 would be ignored. This command can only be used to modify the
 configuration of GPIOs which are already exposed---it cannot be used
 by the host to add addional GPIOs.

11.1.2. PROP 4098: PROP_GPIO_STATE

 o Type: Read-Write

 Contains a bit field identifying the state of the GPIOs. The length
 of the data associated with these properties depends on the number of
 GPIOs. If you have 10 GPIOs, you'd have two bytes. GPIOs are
 numbered from most significant bit to least significant bit, so 0x80
 is GPIO 0, 0x40 is GPIO 1, etc.

 For GPIOs configured as inputs:

 o "CMD_PROP_VAUE_GET": The value of the associated bit describes the
 logic level read from the pin.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 59]

Internet-Draft Spinel Protocol (Unified) May 2017

 o "CMD_PROP_VALUE_SET": The value of the associated bit is ignored
 for these pins.

 For GPIOs configured as outputs:

 o "CMD_PROP_VAUE_GET": The value of the associated bit is
 implementation specific.
 o "CMD_PROP_VALUE_SET": The value of the associated bit determines
 the new logic level of the output. If this pin is configured as
 an open-drain, setting the associated bit to 1 will cause the pin
 to enter a Hi-Z state.

 For GPIOs which are not specified in "PROP_GPIO_CONFIG":

 o "CMD_PROP_VAUE_GET": The value of the associated bit is
 implementation specific.
 o "CMD_PROP_VALUE_SET": The value of the associated bit MUST be
 ignored by the NCP.

 When writing, unspecified bits are assumed to be zero.

11.1.3. PROP 4099: PROP_GPIO_STATE_SET

 o Type: Write-only

 Allows for the state of various output GPIOs to be set without
 affecting other GPIO states. Contains a bit field identifying the
 output GPIOs that should have their state set to 1.

 When writing, unspecified bits are assumed to be zero. The value of
 any bits for GPIOs which are not specified in "PROP_GPIO_CONFIG" MUST
 be ignored.

11.1.4. PROP 4100: PROP_GPIO_STATE_CLEAR

 o Type: Write-only

 Allows for the state of various output GPIOs to be cleared without
 affecting other GPIO states. Contains a bit field identifying the
 output GPIOs that should have their state cleared to 0.

 When writing, unspecified bits are assumed to be zero. The value of
 any bits for GPIOs which are not specified in "PROP_GPIO_CONFIG" MUST
 be ignored.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 60]

Internet-Draft Spinel Protocol (Unified) May 2017

12. Feature: True Random Number Generation

 This feature allows the host to have access to any strong hardware
 random number generator that might be present on the NCP, for things
 like key generation or seeding PRNGs.

 Support for this feature can be determined by the presence of
 "CAP_TRNG".

 Note well that implementing a cryptographically-strong software-based
 true random number generator (that is impervious to things like
 temperature changes, manufacturing differences across devices, or
 unexpected output correlations) is non-trivial without a well-
 designed, dedicated hardware random number generator. Implementors
 who have little or no experience in this area are encouraged to not
 advertise this capability.

12.1. Properties

12.1.1. PROP 4101: PROP_TRNG_32

 o Argument-Encoding: "L"
 o Type: Read-Only

 Fetching this property returns a strong random 32-bit integer that is
 suitable for use as a PRNG seed or for cryptographic use.

 While the exact mechanism behind the calculation of this value is
 implementation-specific, the implementation must satisfy the
 following requirements:

 o Data representing at least 32 bits of fresh entropy (extracted
 from the primary entropy source) MUST be consumed by the
 calculation of each query.
 o Each of the 32 bits returned MUST be free of bias and have no
 statistical correlation to any part of the raw data used for the
 calculation of any query.

 Support for this property is REQUIRED if "CAP_TRNG" is included in
 the device capabilities.

12.1.2. PROP 4102: PROP_TRNG_128

 o Argument-Encoding: "D"
 o Type: Read-Only

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 61]

Internet-Draft Spinel Protocol (Unified) May 2017

 Fetching this property returns 16 bytes of strong random data
 suitable for direct cryptographic use without further processing(For
 example, as an AES key).

 While the exact mechanism behind the calculation of this value is
 implementation-specific, the implementation must satisfy the
 following requirements:

 o Data representing at least 128 bits of fresh entropy (extracted
 from the primary entropy source) MUST be consumed by the
 calculation of each query.
 o Each of the 128 bits returned MUST be free of bias and have no
 statistical correlation to any part of the raw data used for the
 calculation of any query.

 Support for this property is REQUIRED if "CAP_TRNG" is included in
 the device capabilities.

12.1.3. PROP 4103: PROP_TRNG_RAW_32

 o Argument-Encoding: "D"
 o Type: Read-Only

 This property is primarily used to diagnose and debug the behavior of
 the entropy source used for strong random number generation.

 When queried, returns the raw output from the entropy source used to
 generate "PROP_TRNG_32", prior to any reduction/whitening and/or
 mixing with prior state.

 The length of the returned buffer is implementation specific and
 should be expected to be non-deterministic.

 Support for this property is RECOMMENDED if "CAP_TRNG" is included in
 the device capabilities.

13. Security Considerations

13.1. Raw Application Access

 Spinel MAY be used as an API boundary for allowing processes to
 configure the NCP. However, such a system MUST NOT give unprivileged
 processess the ability to send or receive arbitrary command frames to
 the NCP. Only the specific commands and properties that are required
 should be allowed to be passed, and then only after being checked for
 proper format.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 62]

Internet-Draft Spinel Protocol (Unified) May 2017

14. References

14.1. URIs

 [1] https://www.w3.org/TR/exi/#encodingUnsignedInteger

 [2] http://reveng.sourceforge.net/crc-catalogue/16.htm#crc.cat.kermit

 [3] https://github.com/miekg/mmark

 [4] http://xml2rfc.ietf.org/

Appendix A. Framing Protocol

 Since this NCP protocol is defined independently of the physical
 transport or framing, any number of transports and framing protocols
 could be used successfully. However, in the interests of
 compatibility, this document provides some recommendations.

A.1. UART Recommendations

 The recommended default UART settings are:

 o Bit rate: 115200
 o Start bits: 1
 o Data bits: 8
 o Stop bits: 1
 o Parity: None
 o Flow Control: Hardware

 These values may be adjusted depending on the individual needs of the
 application or product, but some sort of flow control MUST be used.
 Hardware flow control is preferred over software flow control. In
 the absence of hardware flow control, software flow control (XON/
 XOFF) MUST be used instead.

 We also *RECOMMEND* an Arduino-style hardware reset, where the DTR
 signal is coupled to the "R̅E̅S̅" pin through a
 0.01[micro]F capacitor. This causes the NCP to automatically reset
 whenever the serial port is opened. At the very least we *RECOMMEND*
 dedicating one of your host pins to controlling the
 "R̅E̅S̅" pin on the NCP, so that you can easily
 perform a hardware reset if necessary.

https://www.w3.org/TR/exi/#encodingUnsignedInteger
http://reveng.sourceforge.net/crc-catalogue/16.htm#crc.cat.kermit
https://github.com/miekg/mmark
http://xml2rfc.ietf.org/

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 63]

Internet-Draft Spinel Protocol (Unified) May 2017

A.1.1. UART Bit Rate Detection

 When using a UART, the issue of an appropriate bit rate must be
 considered. A bitrate of 115200 bits per second has become a defacto
 standard baud rate for many serial peripherals. This rate, however,
 is slower than the theoretical maximum bitrate of the 802.15.4 2.4GHz
 PHY (250kbit). In most circumstances this mismatch is not
 significant because the overall bitrate will be much lower than
 either of these rates, but there are circumstances where a faster
 UART bitrate is desirable. Thus, this document proposes a simple
 bitrate detection scheme that can be employed by the host to detect
 when the attached NCP is initially running at a higher bitrate.

 The algorithm is to send successive NOOP commands to the NCP at
 increasing bitrates. When a valid "CMD_LAST_STATUS" response has
 been received, we have identified the correct bitrate.

 In order to limit the time spent hunting for the appropriate bitrate,
 we RECOMMEND that only the following bitrates be checked:

 o 115200
 o 230400
 o 1000000 (1Mbit)

 The bitrate MAY also be changed programmatically by adjusting
 "PROP_UART_BITRATE", if implemented.

A.1.2. HDLC-Lite

 HDLC-Lite is the recommended framing protocol for transmitting
 Spinel frames over a UART. HDLC-Lite consists of only the framing,
 escaping, and CRC parts of the larger HDLC protocol---all other parts
 of HDLC are omitted. This protocol was chosen because it works well
 with software flow control and is widely implemented.

 To transmit a frame with HDLC-lite, the 16-bit CRC must first be
 appended to the frame. The CRC function is defined to be CRC-16/
 CCITT, otherwise known as the KERMIT CRC [2].

 Individual frames are terminated with a frame delimiter octet called
 the 'flag' octet ("0x7E").

 The following octets values are considered _special_ and should be
 escaped when present in data frames:

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 64]

Internet-Draft Spinel Protocol (Unified) May 2017

 +-------------+------------------------+
 | Octet Value | Description |
 +-------------+------------------------+
 | 0x7E | Frame Delimiter (Flag) |
 | 0x7D | Escape Byte |
 | 0x11 | XON |
 | 0x13 | XOFF |
 | 0xF8 | Vendor-Specific |
 +-------------+------------------------+

 When present in a data frame, these octet values are escaped by
 prepending the escape octet ("0x7D") and XORing the value with
 "0x20".

 When receiving a frame, the CRC must be verified after the frame is
 unescaped. If the CRC value does not match what is calculated for
 the frame data, the frame MUST be discarded. The implementation MAY
 indicate the failure to higher levels to handle as they see fit, but
 MUST NOT attempt to process the deceived frame.

 Consecutive flag octets are entirely legal and MUST NOT be treated as
 a framing error. Consecutive flag octets MAY be used as a way to
 wake up a sleeping NCP.

 When first establishing a connection to the NCP, it is customary to
 send one or more flag octets to ensure that any previously received
 data is discarded.

A.2. SPI Recommendations

 We RECOMMEND the use of the following standard SPI signals:

 o "C̅S̅": (Host-to-NCP) Chip Select
 o "CLK": (Host-to-NCP) Clock
 o "MOSI": Master-Output/Slave-Input
 o "MISO": Master-Input/Slave-Output
 o "I̅N̅T̅": (NCP-to-Host) Host Interrupt
 o "R̅E̅S̅": (Host-to-NCP) NCP Hardware Reset

 The "I̅N̅T̅" signal is used by the NCP to indicate to
 the host that the NCP has frames pending to send to it. When
 asserted, the host SHOULD initiate a SPI transaction in a timely
 manner.

 We RECOMMEND the following SPI properties:

 o "C̅S̅" is active low.
 o "CLK" is active high.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 65]

Internet-Draft Spinel Protocol (Unified) May 2017

 o "CLK" speed is larger than 500 kHz.
 o Data is valid on leading edge of "CLK".
 o Data is sent in multiples of 8-bits (octets).
 o Octets are sent most-significant bit first.

 This recommended configuration may be adjusted depending on the
 individual needs of the application or product.

A.2.1. SPI Framing Protocol

 Each SPI frame starts with a 5-byte frame header:

 +---------+-----+----------+----------+
 | Octets: | 1 | 2 | 2 |
 +---------+-----+----------+----------+
 | Fields: | HDR | RECV_LEN | DATA_LEN |
 +---------+-----+----------+----------+

 o "HDR": The first byte is the header byte (defined below)
 o "RECV_LEN": The second and third bytes indicate the largest frame
 size that that device is ready to receive. If zero, then the
 other device must not send any data. (Little endian)
 o "DATA_LEN": The fourth and fifth bytes indicate the size of the
 pending data frame to be sent to the other device. If this value
 is equal-to or less-than the number of bytes that the other device
 is willing to receive, then the data of the frame is immediately
 after the header. (Little Endian)

 The "HDR" byte is defined as:

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 |RST|CRC|CCF| RESERVED |PATTERN|
 +---+---+---+---+---+---+---+---+

 o "RST": This bit is set when that device has been reset since the
 last time "C̅S̅" was asserted.
 o "CRC": This bit is set when that device supports writing a 16-bit
 CRC at the end of the data. The CRC length is NOT included in
 DATA_LEN.
 o "CCF": "CRC Check Failure". Set if the CRC check on the last
 received frame failed, cleared to zero otherwise. This bit is
 only used if both sides support CRC.
 o "RESERVED": These bits are all reserved for future used. They
 MUST be cleared to zero and MUST be ignored if set.
 o "PATTERN": These bits are set to a fixed value to help distinguish
 valid SPI frames from garbage (by explicitly making "0xFF" and
 "0x00" invalid values). Bit 6 MUST be set to be one and bit 7

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 66]

Internet-Draft Spinel Protocol (Unified) May 2017

 MUST be cleared (0). A frame received that has any other values
 for these bits MUST be dropped.

 Prior to a sending or receiving a frame, the master MAY send a
 5-octet frame with zeros for both the max receive frame size and the
 the contained frame length. This will induce the slave device to
 indicate the length of the frame it wants to send (if any) and
 indicate the largest frame it is capable of receiving at the moment.
 This allows the master to calculate the size of the next transaction.
 Alternatively, if the master has a frame to send it can just go ahead
 and send a frame of that length and determine if the frame was
 accepted by checking that the "RECV_LEN" from the slave frame is
 larger than the frame the master just tried to send. If the
 "RECV_LEN" is smaller then the frame wasn't accepted and will need to
 be transmitted again.

 This protocol can be used either unidirectionally or bidirectionally,
 determined by the behavior of the master and the slave.

 If the the master notices "PATTERN" is not set correctly, the master
 should consider the transaction to have failed and try again after 10
 milliseconds, retrying up to 200 times. After unsuccessfully trying
 200 times in a row, the master MAY take appropriate remedial action
 (like a NCP hardware reset, or indicating a communication failure to
 a user interface).

 At the end of the data of a frame is an optional 16-bit CRC, support
 for which is indicated by the "CRC" bit of the "HDR" byte being set.
 If these bits are set for both the master and slave frames, then CRC
 checking is enabled on both sides, effectively requiring that frame
 sizes be two bytes longer than would be otherwise required. The CRC
 is calculated using the same mechanism used for the CRC calculation
 in HDLC-Lite (See Appendix A.1.2). When both of the "CRC" bits are
 set, both sides must verify that the "CRC" is valid before accepting
 the frame. If not enough bytes were clocked out for the CRC to be
 read, then the frame must be ignored. If enough bytes were clocked
 out to perform a CRC check, but the CRC check fails, then the frame
 must be rejected and the "CRC_FAIL" bit on the next frame (and ONLY
 the next frame) MUST be set.

A.3. I^2C Recommendations

 TBD

 [CREF2]

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 67]

Internet-Draft Spinel Protocol (Unified) May 2017

A.4. Native USB Recommendations

 TBD

 [CREF3]

Appendix B. Test Vectors

B.1. Test Vector: Packed Unsigned Integer

 +---------------+-----------------------+
 | Decimal Value | Packet Octet Encoding |
 +---------------+-----------------------+
 | 0 | "00" |
 | 1 | "01" |
 | 127 | "7F" |
 | 128 | "80 01" |
 | 129 | "81 01" |
 | 1,337 | "B9 0A" |
 | 16,383 | "FF 7F" |
 | 16,384 | "80 80 01" |
 | 16,385 | "81 80 01" |
 | 2,097,151 | "FF FF 7F" |
 +---------------+-----------------------+

 [CREF4]

B.2. Test Vector: Reset Command

 o NLI: 0
 o TID: 0
 o CMD: 1 ("CMD_RESET")

 Frame:

 80 01

B.3. Test Vector: Reset Notification

 o NLI: 0
 o TID: 0
 o CMD: 6 ("CMD_VALUE_IS")
 o PROP: 0 ("PROP_LAST_STATUS")
 o VALUE: 114 ("STATUS_RESET_SOFTWARE")

 Frame:

 80 06 00 72

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 68]

Internet-Draft Spinel Protocol (Unified) May 2017

B.4. Test Vector: Scan Beacon

 o NLI: 0
 o TID: 0
 o CMD: 7 ("CMD_VALUE_INSERTED")
 o PROP: 51 ("PROP_MAC_SCAN_BEACON")
 o VALUE: Structure, encoded as "Cct(ESSc)t(iCUd)"

 * CHAN: 15
 * RSSI: -60dBm
 * MAC_DATA: (0D 00 B6 40 D4 8C E9 38 F9 52 FF FF D2 04 00)

 + Long address: B6:40:D4:8C:E9:38:F9:52
 + Short address: 0xFFFF
 + PAN-ID: 0x04D2
 + LQI: 0
 * NET_DATA: (13 00 03 20 73 70 69 6E 65 6C 00 08 00 DE AD 00 BE
 EF 00 CA FE)

 + Protocol Number: 3
 + Flags: 0x20
 + Network Name: "spinel"
 + XPANID: "DE AD 00 BE EF 00 CA FE"

 Frame:

 80 07 33 0F C4 0D 00 B6 40 D4 8C E9 38 F9 52 FF FF D2 04 00
 13 00 03 20 73 70 69 6E 65 6C 00 08 00 DE AD 00 BE EF 00 CA
 FE

B.5. Test Vector: Inbound IPv6 Packet

 CMD_VALUE_IS(PROP_STREAM_NET)

 [CREF5]

B.6. Test Vector: Outbound IPv6 Packet

 CMD_VALUE_SET(PROP_STREAM_NET)

 [CREF6]

B.7. Test Vector: Fetch list of on-mesh networks

 o NLI: 0
 o TID: 4
 o CMD: 2 ("CMD_VALUE_GET")
 o PROP: 90 ("PROP_THREAD_ON_MESH_NETS")

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 69]

Internet-Draft Spinel Protocol (Unified) May 2017

 Frame:

 84 02 5A

B.8. Test Vector: Returned list of on-mesh networks

 o NLI: 0
 o TID: 4
 o CMD: 6 ("CMD_VALUE_IS")
 o PROP: 90 ("PROP_THREAD_ON_MESH_NETS")
 o VALUE: Array of structures, encoded as "A(t(6CbC))"

 +--------------+---------------+-------------+-------------+
 | IPv6 Prefix | Prefix Length | Stable Flag | Other Flags |
 +--------------+---------------+-------------+-------------+
 | 2001:DB8:1:: | 64 | True | ?? |
 | 2001:DB8:2:: | 64 | False | ?? |
 +--------------+---------------+-------------+-------------+

 Frame:

 84 06 5A 13 00 20 01 0D B8 00 01 00 00 00 00 00 00 00 00 00
 00 40 01 ?? 13 00 20 01 0D B8 00 02 00 00 00 00 00 00 00 00
 00 00 40 00 ??

B.9. Test Vector: Adding an on-mesh network

 o NLI: 0
 o TID: 5
 o CMD: 4 ("CMD_VALUE_INSERT")
 o PROP: 90 ("PROP_THREAD_ON_MESH_NETS")
 o VALUE: Structure, encoded as "6CbCb"

 +--------------+---------------+-------------+-------------+
 | IPv6 Prefix | Prefix Length | Stable Flag | Other Flags |
 +--------------+---------------+-------------+-------------+
 | 2001:DB8:3:: | 64 | True | ?? |
 +--------------+---------------+-------------+-------------+

 Frame:

 85 03 5A 20 01 0D B8 00 03 00 00 00 00 00 00 00 00 00 00 40
 01 ?? 01

 [CREF7]

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 70]

Internet-Draft Spinel Protocol (Unified) May 2017

B.10. Test Vector: Insertion notification of an on-mesh network

 o NLI: 0
 o TID: 5
 o CMD: 7 ("CMD_VALUE_INSERTED")
 o PROP: 90 ("PROP_THREAD_ON_MESH_NETS")
 o VALUE: Structure, encoded as "6CbCb"

 +--------------+---------------+-------------+-------------+
 | IPv6 Prefix | Prefix Length | Stable Flag | Other Flags |
 +--------------+---------------+-------------+-------------+
 | 2001:DB8:3:: | 64 | True | ?? |
 +--------------+---------------+-------------+-------------+

 Frame:

 85 07 5A 20 01 0D B8 00 03 00 00 00 00 00 00 00 00 00 00 40
 01 ?? 01

 [CREF8]

B.11. Test Vector: Removing a local on-mesh network

 o NLI: 0
 o TID: 6
 o CMD: 5 ("CMD_VALUE_REMOVE")
 o PROP: 90 ("PROP_THREAD_ON_MESH_NETS")
 o VALUE: IPv6 Prefix "2001:DB8:3::"

 Frame:

 86 05 5A 20 01 0D B8 00 03 00 00 00 00 00 00 00 00 00 00

B.12. Test Vector: Removal notification of an on-mesh network

 o NLI: 0
 o TID: 6
 o CMD: 8 ("CMD_VALUE_REMOVED")
 o PROP: 90 ("PROP_THREAD_ON_MESH_NETS")
 o VALUE: IPv6 Prefix "2001:DB8:3::"

 Frame:

 86 08 5A 20 01 0D B8 00 03 00 00 00 00 00 00 00 00 00 00

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 71]

Internet-Draft Spinel Protocol (Unified) May 2017

Appendix C. Example Sessions

C.1. NCP Initialization

 [CREF9]

 Check the protocol version to see if it is supported:

 o CMD_VALUE_GET:PROP_PROTOCOL_VERSION
 o CMD_VALUE_IS:PROP_PROTOCOL_VERSION

 Check the NCP version to see if a firmware update may be necessary:

 o CMD_VALUE_GET:PROP_NCP_VERSION
 o CMD_VALUE_IS:PROP_NCP_VERSION

 Check interface type to make sure that it is what we expect:

 o CMD_VALUE_GET:PROP_INTERFACE_TYPE
 o CMD_VALUE_IS:PROP_INTERFACE_TYPE

 If the host supports using vendor-specific commands, the vendor
 should be verified before using them:

 o CMD_VALUE_GET:PROP_VENDOR_ID
 o CMD_VALUE_IS:PROP_VENDOR_ID

 Fetch the capability list so that we know what features this NCP
 supports:

 o CMD_VALUE_GET:PROP_CAPS
 o CMD_VALUE_IS:PROP_CAPS

 If the NCP supports CAP_NET_SAVE, then we go ahead and recall the
 network:

 o CMD_NET_RECALL

C.2. Attaching to a network

 [CREF10]

 We make the assumption that the NCP is not currently associated with
 a network.

 Set the network properties, if they were not already set:

 o CMD_VALUE_SET:PROP_PHY_CHAN

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 72]

Internet-Draft Spinel Protocol (Unified) May 2017

 o CMD_VALUE_IS:PROP_PHY_CHAN
 o CMD_VALUE_SET:PROP_NET_XPANID
 o CMD_VALUE_IS:PROP_NET_XPANID
 o CMD_VALUE_SET:PROP_MAC_15_4_PANID
 o CMD_VALUE_IS:PROP_MAC_15_4_PANID
 o CMD_VALUE_SET:PROP_NET_NETWORK_NAME
 o CMD_VALUE_IS:PROP_NET_NETWORK_NAME
 o CMD_VALUE_SET:PROP_NET_MASTER_KEY
 o CMD_VALUE_IS:PROP_NET_MASTER_KEY
 o CMD_VALUE_SET:PROP_NET_KEY_SEQUENCE_COUNTER
 o CMD_VALUE_IS:PROP_NET_KEY_SEQUENCE_COUNTER
 o CMD_VALUE_SET:PROP_NET_KEY_SWITCH_GUARDTIME
 o CMD_VALUE_IS:PROP_NET_KEY_SWITCH_GUARDTIME

 Bring the network interface up:

 o CMD_VALUE_SET:PROP_NET_IF_UP:TRUE
 o CMD_VALUE_IS:PROP_NET_IF_UP:TRUE

 Bring the routing stack up:

 o CMD_VALUE_SET:PROP_NET_STACK_UP:TRUE
 o CMD_VALUE_IS:PROP_NET_STACK_UP:TRUE

 Some asynchronous events from the NCP:

 o CMD_VALUE_IS:PROP_NET_ROLE
 o CMD_VALUE_IS:PROP_NET_PARTITION_ID
 o CMD_VALUE_IS:PROP_THREAD_ON_MESH_NETS

C.3. Successfully joining a pre-existing network

 [CREF11]

 This example session is identical to the above session up to the
 point where we set PROP_NET_IF_UP to true. From there, the behavior
 changes.

 o CMD_VALUE_SET:PROP_NET_REQUIRE_JOIN_EXISTING:TRUE
 o CMD_VALUE_IS:PROP_NET_REQUIRE_JOIN_EXISTING:TRUE

 Bring the routing stack up:

 o CMD_VALUE_SET:PROP_NET_STACK_UP:TRUE
 o CMD_VALUE_IS:PROP_NET_STACK_UP:TRUE

 Some asynchronous events from the NCP:

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 73]

Internet-Draft Spinel Protocol (Unified) May 2017

 o CMD_VALUE_IS:PROP_NET_ROLE
 o CMD_VALUE_IS:PROP_NET_PARTITION_ID
 o CMD_VALUE_IS:PROP_THREAD_ON_MESH_NETS

 Now let's save the network settings to NVRAM:

 o CMD_NET_SAVE

C.4. Unsuccessfully joining a pre-existing network

 This example session is identical to the above session up to the
 point where we set PROP_NET_IF_UP to true. From there, the behavior
 changes.

 o CMD_VALUE_SET:PROP_NET_REQUIRE_JOIN_EXISTING:TRUE
 o CMD_VALUE_IS:PROP_NET_REQUIRE_JOIN_EXISTING:TRUE

 Bring the routing stack up:

 o CMD_VALUE_SET:PROP_NET_STACK_UP:TRUE
 o CMD_VALUE_IS:PROP_NET_STACK_UP:TRUE

 Some asynchronous events from the NCP:

 o CMD_VALUE_IS:PROP_LAST_STATUS:STATUS_JOIN_NO_PEERS
 o CMD_VALUE_IS:PROP_NET_STACK_UP:FALSE

C.5. Detaching from a network

 TBD

C.6. Attaching to a saved network

 [CREF12]

 Recall the saved network if you haven't already done so:

 o CMD_NET_RECALL

 Bring the network interface up:

 o CMD_VALUE_SET:PROP_NET_IF_UP:TRUE
 o CMD_VALUE_IS:PROP_NET_IF_UP:TRUE

 Bring the routing stack up:

 o CMD_VALUE_SET:PROP_NET_STACK_UP:TRUE
 o CMD_VALUE_IS:PROP_NET_STACK_UP:TRUE

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 74]

Internet-Draft Spinel Protocol (Unified) May 2017

 Some asynchronous events from the NCP:

 o CMD_VALUE_IS:PROP_NET_ROLE
 o CMD_VALUE_IS:PROP_NET_PARTITION_ID
 o CMD_VALUE_IS:PROP_THREAD_ON_MESH_NETS

C.7. NCP Software Reset

 [CREF13]

 o CMD_RESET
 o CMD_VALUE_IS:PROP_LAST_STATUS:STATUS_RESET_SOFTWARE

 Then jump to Appendix C.1.

C.8. Adding an on-mesh prefix

 TBD

C.9. Entering low-power modes

 TBD

C.10. Sniffing raw packets

 [CREF14]

 This assumes that the NCP has been initialized.

 Optionally set the channel:

 o CMD_VALUE_SET:PROP_PHY_CHAN:x
 o CMD_VALUE_IS:PROP_PHY_CHAN

 Set the filter mode:

 o CMD_VALUE_SET:PROP_MAC_PROMISCUOUS_MODE:MAC_PROMISCUOUS_MODE_MONIT
 OR
 o CMD_VALUE_IS:PROP_MAC_PROMISCUOUS_MODE:MAC_PROMISCUOUS_MODE_MONITO
 R

 Enable the raw stream:

 o CMD_VALUE_SET:PROP_MAC_RAW_STREAM_ENABLED:TRUE
 o CMD_VALUE_IS:PROP_MAC_RAW_STREAM_ENABLED:TRUE

 Enable the PHY directly:

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 75]

Internet-Draft Spinel Protocol (Unified) May 2017

 o CMD_VALUE_SET:PROP_PHY_ENABLED:TRUE
 o CMD_VALUE_IS:PROP_PHY_ENABLED:TRUE

 Now we will get raw 802.15.4 packets asynchronously on
 PROP_STREAM_RAW:

 o CMD_VALUE_IS:PROP_STREAM_RAW:...
 o CMD_VALUE_IS:PROP_STREAM_RAW:...
 o CMD_VALUE_IS:PROP_STREAM_RAW:...

 This mode may be entered even when associated with a network. In
 that case, you should set "PROP_MAC_PROMISCUOUS_MODE" to
 "MAC_PROMISCUOUS_MODE_PROMISCUOUS" or "MAC_PROMISCUOUS_MODE_NORMAL",
 so that you can avoid receiving packets from other networks or that
 are destined for other nodes.

Appendix D. Glossary

 [CREF15]

 FCS
 Final Checksum. Bytes added to the end of a packet to help
 determine if the packet was received without corruption.
 NCP
 Network Control Processor.
 NLI
 Network Link Identifier. May be a value between zero and three.
 See Section 2.1.2 for more information.
 OS
 Operating System, i.e. the IPv6 node using Spinel to control and
 manage one or more of its IPv6 network interfaces.
 PHY
 Physical layer. Refers to characteristics and parameters related
 to the physical implementation and operation of a networking
 medium.
 PUI
 Packed Unsigned Integer. A way to serialize an unsigned integer
 using one, two, or three bytes. Used throughout the Spinel
 protocol. See Section 3.2 for more information.
 TID
 Transaction Identifier. May be a value between zero and fifteen.
 See Section 2.1.3 for more information.

Appendix E. Acknowledgments

 Thread is a registered trademark of The Thread Group, Inc.

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 76]

Internet-Draft Spinel Protocol (Unified) May 2017

 Special thanks to Nick Banks, Jonathan Hui, Abtin Keshavarzian, Piotr
 Szkotak, Arjuna Sivasithambaresan and Martin Turon for their
 substantial contributions and feedback related to this document.

 This document was prepared using mmark [3] by (Miek Gieben) and
 xml2rfc (version 2) [4].

Editorial Comments

[CREF1] RQ: Eventually, when https://github.com/miekg/mmark/issues/95 is
 addressed, the above table should be swapped out with this: |
 0 | 1 | 2 | 3 | 4 | 5 | 6 |
 7 | |---|---|---|---|---|---|---|---| | FLG || NLI || TID ||||

[CREF2] RQ: It may make sense to have a look at what Bluetooth HCI is
 doing for native I^2C framing and go with that.

[CREF3] RQ: It may make sense to have a look at what Bluetooth HCI is
 doing for native USB framing and go with that.

[CREF4] RQ: The PUI test-vector encodings need to be verified.

[CREF5] RQ: FIXME: This test vector is incomplete.

[CREF6] RQ: FIXME: This test vector is incomplete.

[CREF7] RQ: FIXME: This test vector is incomplete.

[CREF8] RQ: FIXME: This test vector is incomplete.

[CREF9] RQ: FIXME: This example session is incomplete.

[CREF10] RQ: FIXME: This example session is incomplete.

[CREF11] RQ: FIXME: This example session is incomplete.

[CREF12] RQ: FIXME: This example session is incomplete.

[CREF13] RQ: FIXME: This example session is incomplete.

[CREF14] RQ: FIXME: This example session is incomplete.

[CREF15] RQ: Alphabetize before finalization.

https://github.com/miekg/mmark/issues/95

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 77]

Internet-Draft Spinel Protocol (Unified) May 2017

Authors' Addresses

 Robert S. Quattlebaum
 Nest Labs, Inc.
 3400 Hillview Ave.
 Palo Alto, California 94304
 USA

 Email: rquattle@nestlabs.com

 James Woodyatt
 Nest Labs, Inc.
 3400 Hillview Ave.
 Palo Alto, California 94304
 USA

 Email: jhw@nestlabs.com

Quattlebaum & Woodyatt Expires November 10, 2017 [Page 78]

