
Workgroup: Network Working Group

Internet-Draft:

draft-rransom-secsh-client-ntru-kex-00

Published: 6 December 2022

Intended Status: Informational

Expires: 9 June 2023

Authors: R. Ransom

Client-Side NTRU Key Exchange for Secure Shell (SSH)

Abstract

This document describes the specification for using NTRU keypairs

generated by the client for key exchange in the Secure Shell (SSH)

protocol.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 9 June 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document.

Table of Contents

1. Introduction

2. Notation

3. Key exchange methods

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

4. Security considerations

5. IANA considerations

6. References

Author's Address

1. Introduction

The Secure Shell (SSH) transport layer protocol specified in

[RFC4253] provides for extension to support new key exchange

methods. This document specifies key exchange methods which provide

post-quantum security based on the NTRU KEM [NTRU].

For ease of implementation in existing SSH software, this key

exchange method uses an ephemeral NTRU keypair generated by the

client, retains the same structure and pattern of messages as the

existing Diffie-Hellman and ECDH [RFC5656][RFC8731] key exchange

methods, and relies on a signature keypair to authenticate the

server.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

2. Notation

In this document, the concatenation of two strings a and b will be

denoted a || b.

3. Key exchange methods

The key exchange procedure follows the same general pattern as the

ECDH key exchange specified in section 4 of [RFC5656], and uses the

same message numbers; however, the contents differ, and the key

exchange is not symmetric as in ECDH.

Each key exchange method name specifies both an NTRU parameter set

and a hash function. NTRU operations Key_Pair, Encapsulate, and

Decapsulate are performed as in [NTRU] for the given parameter set,

except that its Hash is replaced with the hash function specified

for the key exchange method. The kem_public_key_bytes and

kem_ciphertext_bytes constants are also as specified in [NTRU] for

the given parameter set.

Let hash_bytes denote the length of the hash function's output.

The client generates a private key priv and a public key pub by

applying Key_Pair to the output of a random number generator. This

key may be stored by the client and used for more than one

connection. Each priv and pub MUST only be used with a single hash

function.

¶

¶

¶

¶

¶

¶

¶

¶

For each connection, the client generates a new random string nonce

of length hash_bytes. nonce MUST NOT be reused.

The client sends the following:

byte SSH_MSG_KEX_ECDH_INIT

string pub || nonce

Table 1

Both pub and nonce have fixed length for each key exchange method,

so the string pub || nonce can be uniquely parsed into pub and nonce

by the server. The server applies Encapsulate to pub, to produce a

shared secret key sk and a ciphertext ct.

The server responds with:

byte SSH_MSG_KEX_ECDH_REPLY

string ct

Table 2

The client applies Decapsulate to priv and ct, to recover sk.

Let pad denote the string containing the single byte 1. Both parties

compute K' as pad || Hash(sk || nonce), and compute K by

interpreting K' as a big-endian integer. Equivalently, the mpint K

specified by section 7.2 of the SSH transport layer protocol

[RFC4253] as the secret output of a key exchange method can be

replaced with the string K'.

The exchange hash H is computed as in section 4 of [RFC5656], with

Q_C = pub || nonce and Q_S = ct.

4. Security considerations

The exchange hash H is computed using the hash algorithm specified

by the key exchange method. This limits the security of

authentication in both directions to the second-preimage resistance

of the hash function specified by the weakest KEX accepted by both

parties.

Reuse of an NTRU keypair for more than one Decapsulate operation is

intended and believed to be safe, and the nonce sent by the client

is used to prevent a replay of the server's ciphertext from

producing the same exchange hash H or shared secret K. However,

reusing a keypair discloses that multiple connections originated

from the same client. Clients which support reuse of NTRU keypairs

MUST document this key reuse, and SHOULD provide a way to disable

it.

¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC4253]

[NTRU]

[RFC5656]

[RFC8731]

[RFC2119]

[IANA-KEX]

Section 7.2 of [RFC4253] specifies that the shared secret K is to be

encoded as an mpint, in which bytes must be removed or added at the

beginning to ensure certain conditions on the leading byte. As

section 4 of [RFC8731] points out, this is likely to introduce a

side-channel attack. This key exchange method prepends a fixed non-

zero padding byte, to eliminate that side-channel risk without

requiring extensive reworking of implementations which internally

handle K as an mpint.

5. IANA considerations

This document specifies the following names to be added to the "Key

Exchange Method Names" registry for SSH [IANA-KEX], as follows:

Key exchange method name Hash function NTRU parameter set

client-ntruhps4096821-sha3-512 SHA3-512 ntruhps4096821

client-ntruhps4096821-sha256 SHA-256 ntruhps4096821

Table 3: Key exchange method names

6. References

Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)

Transport Layer Protocol", RFC 4253, January 2006,

<https://www.rfc-editor.org/info/rfc4253>.

Chen, C., Danba, O., Hoffstein, J., Hülsing, A.,

Rijneveld, J., Schanck, J. M., Schwabe, P., Whyte, W.,

and Z. Zhang, "NTRU - Algorithm Specifications and

Supporting Documentation", NIST Post-Quantum Cryptography

project submission document, 30 March 2019.

Stebila, D. and J. Green, "Elliptic Curve Algorithm

Integration in the Secure Shell Transport Layer", RFC

5656, December 2009, <https://www.rfc-editor.org/info/

rfc5656>.

Adamantiadis, A., Josefsson, S., and M. Baushke, "Secure

Shell (SSH) Key Exchange Method Using Curve25519 and

Curve448", RFC 8731, February 2020, <https://www.rfc-

editor.org/info/rfc8731>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", RFC 2119, March 1997, <https://

www.rfc-editor.org/info/rfc2119>.

IANA, "Secure Shell (SSH) Protocol Parameters: Key

Exchange Method Names", <https://www.iana.org/

assignments/ssh-parameters/>.

¶

¶

https://www.rfc-editor.org/info/rfc4253
https://www.rfc-editor.org/info/rfc5656
https://www.rfc-editor.org/info/rfc5656
https://www.rfc-editor.org/info/rfc8731
https://www.rfc-editor.org/info/rfc8731
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.iana.org/assignments/ssh-parameters/
https://www.iana.org/assignments/ssh-parameters/

Author's Address

Robert Ransom

	Client-Side NTRU Key Exchange for Secure Shell (SSH)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Notation
	3. Key exchange methods
	4. Security considerations
	5. IANA considerations
	6. References
	Author's Address

