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Abstract

   The IETF Routing Area director has chartered a design team to look at
   common issues for the different data plane encapsulations being
   discussed in the NVO3 and SFC working groups and also in the BIER
   BoF, and also to look at the relationship between such encapsulations
   in the case that they might be used at the same time.  The purpose of
   this design team is to discover, discuss and document considerations
   across the different encapsulations in the different WGs/BoFs so that
   we can reduce the number of wheels that need to be reinvented in the
   future.

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
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   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 10, 2015.

Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
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1.  Design Team Charter

   There have been multiple efforts over the years that have resulted in
   new or modified data plane behaviors involving encapsulations.  That
   includes IETF efforts like MPLS, LISP, and TRILL but also industry
   efforts like VXLAN and NVGRE.  These collectively can be seen as a
   source of insight into the properties that data planes need to meet.
   The IETF is currently working on potentially new encapsulations in
   NVO3 and SFC and considering working on BIER.  In addition there is
   work on tunneling in the INT area.

   This is a short term design team chartered to collect and construct
   useful advice to parties working on new or modified data plane
   behaviors that include additional encapsulations.  The goal is for
   the group to document useful advice gathered from interacting with
   ongoing efforts.  An Internet Draft will be produced for IETF92 to
   capture that advice, which will be discussed in RTGWG.

   Data plane encapsulations face a set of common issues such as:
   o  How to provide entropy for ECMP
   o  Issues around packet size and fragmentation/reassembly
   o  OAM - what support is needed in an encapsulation format?
   o  Security and privacy.
   o  QoS
   o  Congestion Considerations
   o  IPv6 header protection (zero UDP checksum over IPv6 issue)
   o  Extensibility - e.g., for evolving OAM, security, and/or
      congestion control
   o  Layering of multiple encapsulations e.g., SFC over NVO3 over BIER
   The design team will provide advice on those issues.  The intention
   is that even where we have different encapsulations for different
   purposes carrying different information, each such encapsulation
   doesn't have to reinvent the wheel for the above common issues.

   The design team will look across the routing area in particular at
   SFC, NVO3 and BIER.  It will not be involved in comparing or
   analyzing any particular encapsulation formats proposed in those WGs
   and BoFs but instead focus on common advice.

2.  Overview

   The references provide background information on NVO3, SFC, and BIER.
   In particular, NVO3 is introduced in [RFC7364], [RFC7365], and
   [I-D.ietf-nvo3-arch].  SFC is introduced in
   [I-D.ietf-sfc-architecture] and [I-D.ietf-sfc-problem-statement].
   Finally, the information on BIER is in
   [I-D.shepherd-bier-problem-statement],

https://datatracker.ietf.org/doc/html/rfc7364
https://datatracker.ietf.org/doc/html/rfc7365


Nordmark (ed), et al.  Expires September 10, 2015               [Page 4]



Internet-Draft            Encaps Considerations               March 2015

   [I-D.wijnands-bier-architecture], and
   [I-D.wijnands-mpls-bier-encapsulation].  We assume the reader has
   some basic familiarity with those proposed encapsulations.  The
   Related Work section points at some prior work that relates to the
   encapsulation considerations in this document.

   Encapsulation protocols typically have some unique information that
   they need to carry.  In some cases that information might be modified
   along the path and in other cases it is constant.  The in-flight
   modifications has impacts on what it means to provide security for
   the encapsulation headers.
   o  NVO3 carries a VNI Identifier edge to edge which is not modified.
      There has been OAM discussions in the WG and it isn't clear
      whether some of the OAM information might be modified in flight.
   o  SFC carries service meta-data which might be modified or
      unmodified as the packets follow the service path.  SFC talks of
      some loop avoidance mechanism which is likely to result in
      modifications for for each hop in the service chain even if the
      meta-data is unmodified.
   o  BIER carries a bitmap of egress ports to which a packet should be
      delivered, and as the packet is forwarded down different paths
      different bits are cleared in that bitmap.

   Even if information isn't modified in flight there might be devices
   that wish to inspect that information.  For instance, one can
   envision future NVO3 security devices which filter based on the
   virtual network identifier.

   The need for extensibility is different across the protocols
   o  NVO3 might need some extensions for OAM and security.
   o  SFC is all about carrying service meta-data along a path, and
      different services might need different types and amount of meta-
      data.
   o  BIER might need variable number of bits in their bitmaps, or other
      future schemes to scale up to larger network.
   The extensibility needs and constraints might be different when
   considering hardware vs. software implementations of the
   encapsulation headers.  NIC hardware might have different constraints
   than switch hardware.

   As the IETF designs these encapsulations the different WGs solve the
   issues for their own encapsulation.  But there are likely to be
   future cases when the different encapsulations are combined in the
   same header.  For instance, NVO3 might be a "transport" used to carry
   SFC between the different hops in the service chain.

   Most of the issues discussed in this document are not new.  The IETF
   and industry as specified and deployed many different encapsulation
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   or tunneling protocols over time, ranging from simple IP-in-IP and
   GRE encapsulation, IPsec, pseudo-wires, session-based approached like
   L2TP, and the use of MPLS control and data planes.  IEEE 802 has also
   defined layered encapsulation for Provider Backbone Bridges (PBB) and
   IEEE 802.1Qbp (ECMP).  This document tries to leverage what we
   collectively have learned from that experience and summarize what
   would be relevant for new encapsulations like NVO3, SFC, and BIER.

3.  Common Issues

   [This section is mostly a repeat of the charter but with a few
   modifications and additions.]

   Any new encapsulation protocol would need to address a large set of
   issues that are not central to the new information that this protocol
   intends to carry.  The common issues explored in this document are:
   o  How to provide entropy for Equal Cost MultiPath (ECMP) routing
   o  Issues around packet size and fragmentation/reassembly
   o  Next header indication - each encapsulation might be able to carry
      different payloads
   o  OAM - what support is needed in an encapsulation format?
   o  Security and privacy
   o  QoS
   o  Congestion Considerations
   o  Header protection
   o  Extensibility - e.g., for evolving OAM, security, and/or
      congestion control
   o  Layering of multiple encapsulations e.g., SFC over NVO3 over BIER
   o  Importance of being friendly to hardware and software
      implementations

4.  Scope

   It is important to keep in mind what we are trying to cover and not
   cover in this document and effort.  This is
   o  A look across the three new encapsulations, while taking lots of
      previous work into account
   o  Focus on the class of encapsulations that would run over IP/UDP.
      That was done to avoid being distracted by the data-plane and
      control-plane interaction, which is more significant for protocols
      that are designed to run over "transports" that maintain session
      or path state.
   o  We later expanded the scope somewhat to consider how the
      encapsulations would play with MPLS "transport", which is
      important because SFC and BIER seem to target being independent of
      the underlying "transport"
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   However, this document and effort is NOT intended to:
   o  Design some new encapsulation header to rule them all
   o  Design yet another new NVO3 encapsulation header
   o  Try to select the best encapsulation header
   o  Evaluate any existing and proposed encapsulations

5.  Assumptions

   The design center for the new encapsulations is a well-managed
   network.  That network can be a datacenter network (plus datacenter
   interconnect) or a service provider network.  Based on the existing
   and proposed encapsulations in those environment it is reasonable to
   make these assumptions:
   o  The MTU is carefully managed and configured.  Hence an
      encapsulation protocol can make the packets bigger without
      resulting in a requirement for fragmentation and reassembly
      between ingress and egress.  (However, it might be useful to
      detecting MTU misconfigurations.)
   o  In general an encapsulation needs some approach for congestion
      management.  But the assumptions are different than for arbitrary
      Internet paths in that the underlay might be well-provisioned and
      better policed at the edge, and due to multi-tenancy, the
      congestion control in the endpoints might be even less trusted
      than on the Internet at large.

   The goal is to implement these encapsulations in hardware and
   software hence we can't assume that the needs of either
   implementation approach can trump the needs of the other.  In
   particular, around extensibility the needs and constraints might be
   quite different.

6.  Terminology

   The capitalized keyword MUST is used as defined in
http://en.wikipedia.org/wiki/Julmust

   TBD: Refer to existing documents for at least NVO3 and SFC
   terminology.  We use at least the VNI ID in this document.

7.  Entropy

   In many cases the encapsulation format needs to enable ECMP in
   unmodified routers.  Those routers might use different fields in TCP/
   UDP packets to do ECMP without a risk of reordering a flow.

http://en.wikipedia.org/wiki/Julmust
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   The common way to do ECMP-enabled encapsulation over IP today is to
   add a UDP header and to use UDP with the UDP source port carrying
   entropy from the inner/original packet headers as in LISP [RFC6830].
   The total entropy consists of 14 bits in the UDP source port (using
   the ephemeral port range) plus the outer IP addresses which seems to
   be sufficient for entropy; using outer IPv6 headers would give the
   option for more entropy should it be needed in the future.

   In some environments it might be fine to use all 16 bits of the port
   range.  However, middleboxes might make assumptions about the system
   ports or user ports.  But they should not make any assumptions about
   the ports in the Dynamic and/or Private Port range, which have the
   two MSBs set to 11b.

   The UDP source port might change over the lifetime of an encapsulated
   flow, for instance for DoS mitigation or re-balancing load across
   ECMP.

   There is some interaction between entropy and OAM and extensibility
   mechanism.  It is desirable to be able to send OAM packets to follow
   the same path as network packets.  Hence OAM packets should use the
   same entropy mechanism as data packets.  While routers might use
   information in addition the entropy field and outer IP header, they
   can not use arbitrary parts of the encapsulation header since that
   might result in OAM frames taking a different path.  Likewise if
   routers look past the encapsulation header they need to be aware of
   the extensibility mechanism(s) in the encapsulation format to be able
   to find the inner headers in the presence of extensions; OAM frames
   might use some extensions e.g. for timestamps.

   Architecturally the entropy and the next header field are really part
   of enclosing delivery header.  UDP with entropy goes hand-in-hand
   with the outer IP header.  Thus the UDP entropy is present for the
   underlay IP routers the same way that an MPLS entropy label is
   present for LSRs.  The entropy above is all about providing entropy
   for the outer delivery of the encapsulated packets.

   It has been suggested that when IPv6 is used it would not be
   necessary to add a UDP header for entropy, since the IPv6 flow label
   can be used for entropy.  (This assumes that there is an IP protocol
   number for the encaps in addition to a UDP destination port number
   since UDP would be used with IPv4 underlay.  And any use of UDP
   checksums would need to be replaced by an encaps-specific checksum or
   secure hash.)  While such an approach would save 8 bytes of headers
   when the underlay is IPv6, it does assume that the underlay routers
   use the flow label for ECMP, and it also would make the IPv6 approach
   different than the IPv4 approach.  Currently the leaning is towards
   recommending using the UDP encaps for both IPv4 and IPv6 underlay.

https://datatracker.ietf.org/doc/html/rfc6830
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   The IPv6 flow label can be used for additional entropy if need be.

   Note that in the proposed BIER encapsulation
   [I-D.wijnands-mpls-bier-encapsulation], there is an an 8-bit field
   which specifies an entropy value that can be used for load balancing
   purposes.  This entropy is for the BIER forwarding decisions, which
   is independent of any outer delivery ECMP between BIER routers.  Thus
   it is not part of the delivery ECMP discussed in this section.
      [Note: For any given bit in BIER (that identifies an exit from the
      BIER domain) there might be multiple immediate next hops.  The
      BIER entropy field is used to select that next hop as part of BIER
      processing.  The BIER forwarding process may do equal cost load
      balancing, but the load balancing procedure MUST choose the same
      path for any two packets have the same entropy value.]

8.  Next-protocol indication

   The transport delivery mechanism for the encapsulations we discuss in
   this document need some way to indicate which encapsulation header
   (or other payload) comes next in the packet.  Some encapsulations
   might be identified by a UDP port; others might be identified by an
   Ethernet type or IP protocol number.  Which approach is used is a
   function of the preceding header the same was as IPv4 being
   identified by both an Ethernet type and an IP protocol number (for
   IP-in-IP).  In some cases the header type is implicit in some session
   (L2TP) or path (MPLS) setup.  But this is largely beyond the control
   of the encapsulation protocol.  For instance, if there is a
   requirement to carry the encapsulation after an Ethernet header, then
   an Ethernet type is needed.  If required to be carried after an IP/
   UDP header, then a UDP port number is needed.

   The encapsulation needs to indicate the type of its payload, which is
   in scope for the design of the encapsulation.  We have existing
   protocols which use Ethernet types (such as GRE).  Here each
   encapsulation header can potentially makes its own choices between:
   o  Reuse Ethernet types - makes it easy to carry existing L2 and L3
      protocols
   o  Reuse IP protocol numbers - makes it easy to carry e.g., ESP but
      brings in all existing protocol numbers many of which would never
      be used directly on top of the encapsulation protocol.
   o  Define their own next-protocol number space, which can use fewer
      bits than an Ethernet type and give more flexibility, but at the
      cost of administering that numbering space.

   If the IETF ends up defining multiple encapsulations at about the
   same time, and there is some chance that multiple such encapsulations
   can be combined in the same packet, there is a question whether it
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   makes sense to use a common approach and numbering space for the
   encapsulation across the different protocols.  A common approach
   might not be beneficial as long as there is only one way to indicate
   e.g., SFC inside NVO3.

9.  MTU and Fragmentation

   A common approach today is to assume that the underlay have
   sufficient MTU to carry the encapsulated packets without any
   fragmentation and reassembly at the tunnel endpoints.  That is
   sufficient when the operator of the ingress and egress have full
   control of the paths between those endpoints.  And it makes for
   simpler (hardware) implementations if fragmentation and reassembly
   can be avoided.

   However, even under that assumption it would be beneficial to be able
   to detect when there is some misconfiguration causing packets to be
   dropped due to MTU issues.  One way to do this is to have the
   encapsulator set the don't-fragment (DF) flag in the outer IPv4
   header and receive and log any received ICMP "packet too big" (PTB)
   errors.  Note that no flag needs to be set in an outer IPv6 header
   [RFC2460].

   Encapsulations could also define an optional tunnel fragmentation and
   reassembly mechanism which would be useful in the case when the
   operator doesn't have full control of the path.  Such a mechanism
   would be required if the underlay might have a path MTU which makes
   it impossible to carry at least 1518 bytes (if offering Ethernet
   service), or at least 1280 (if offering IPv6 service).  The use of
   such a protocol mechanism could be triggered by receiving a PTB.  But
   such a mechanism might not be implemented by all encaps and decaps
   nodes.  [Aerolink is one example of such a protocol.]

   Depending on the payload carried by the encapsulation there are some
   additional possibilities:
   o  If payload is IPv4/6 then the underlay path MTU could be used to
      report end-to-end path MTU.
   o  If the payload service is Ethernet/L2, then there is no such per
      destination reporting mechanism.  However, there is a LLDP TLV for
      reporting max frame size; might be useful to report minimum to end
      stations, but unmodified end stations would do nothing with that
      TLV since they assume that the MTU is at least 1518.

10.  OAM

   The OAM area is seeing active development in the IETF with

https://datatracker.ietf.org/doc/html/rfc2460
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   discussions (at least) in NVO3 and SFC working groups, plus the new
   LIME WG looking at architecture and YANG models.

   The design team has take a narrow view of OAM to explore the
   potential OAM implications on the encapsulation format.

   In terms of what we have heard from the various working groups there
   seem to be needs to:
   o  Be able to send out-of-band OAM messages - that potentially should
      follow the same path through the network as some flow of data
      packets.
      *  Such OAM messages should not accidentally be decapsulated and
         forwarded to the end stations.
      *  Be able to add OAM information to data packets that are
         encapsulated.  Discussions have been around
      *  Using a bit in the OAM to synchronize sampling of counters
         between the encapsulator and decapsulator.
      *  Optional timestamps, sequence numbers, etc for more detailed
         measurements between encapsulator and decapsulator.
   o  Usable for both proactive monitoring (akin to BFD) and reactive
      checks (akin to traceroute to pin-point a failure)

   To ensure that the OAM messages can follow the same path the OAM
   messages need to get the same ECMP (and LAG hashing) results as a
   given data flow.  An encaps can choose between one of:
   o  Limit ECMP hashing to not look past the UDP header i.e. the
      entropy needs to be in the source/destination IP and UDP ports
   o  Make OAM packets look the same as data packets i.e. the initial
      part of the OAM payload has the inner Ethernet, IP, TCP/UDP
      headers as a payload.  (This approach was taken in TRILL out of
      necessity since there is no UDP header.)  OAM bit in encaps must
      in any case be excluded from the entropy.

   There can be several ways to prevent OAM packets from accidentally
   being forwarded to hosts using:
   o  A bit in the frame (as in TRILL) indicating OAM
   o  A next protocol indication with a designated value for "none" or
      "oam".
   This assumes that the bit or next protocol, respectively, would not
   affect entropy/ECMP in the underlay.

   There has been suggestions that one (or more) marker bits in the
   encaps header would be useful in order to delineate measurement
   epochs on the encapsulator and decapsulator and use that to compare
   counters to determine packet loss.

   A result of the above is that OAM is likely to evolve and needs some
   degree of extensibility from the encapsulation format; a bit or two
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   plus the ability to define additional larger extensions.

   An open question is how to handle error messages or other reports
   relating to OAM.  One can think if such reporting as being associated
   with the encaps the same way ICMP is associated with IP.  Would it
   make sense for the IETF to develop a common Encaps Error Reporting
   Protocol as part of OAM, which can be used for different
   encapsulations?  And if so, what are the technical challenges.  For
   instance, how to avoid it being filtered as ICMP often is?

   A potential additional consideration for OAM is the possible future
   existence of gateways that "stitch" together different dataplane
   encapsulations and might want to carry OAM end-to-end across the
   different encapsulations.

11.  Security Considerations

   Different encapsulation use cases will have different requirements
   around security.  For instance, when encapsulation is used to build
   overlay networks for network virtualization, isolation between
   virtual networks may be paramount.  BIER support of multicast may
   entail different security requirements than encapsulation for
   unicast.

   In real deployment, the security of the underlying network may be
   considered for determining the level of security needed in the
   encapsulation layer.  However for the purposes of this discussion, we
   assume that network security is out of scope and that the underlying
   network does not itself provide adequate or as least uniform security
   mechanisms for encapsulation.

   There are at least three considerations for security:
   o  Anti-spoofing/virtual network isolation
   o  Interaction with packet level security such as IPsec
   o  Privacy (e.g., VNI ID confidentially for NVO3)

   This section uses a VNI ID in NVO3 as an example.  A SFC or BIER
   encapsulation is likely to have fields with similar security and
   privacy requirements.

11.1.  Encapsulation-specific considerations

   Some of these considerations appear for a new encapsulation, and
   others are more specific to network virtualization in datacenters.
   o  New attack vectors:
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      *  DDOS on specific queued/paths by attempting to reproduce the
         5-tuple hash for targeted connections.
      *  Entropy in outer 5-tuple may be too little or predictable.
      *  Leakage of identifying information in the encapsulation header
         for an encrypted payload.
      *  Vulnerabilities of using global values in fields like VNI ID.
   o  Trusted versus untrusted tenants in network virtualization:
      *  The criticality of virtual network isolation depends on whether
         tenants are trusted or untrusted.  In the most extreme cases,
         tenants might not only be untrusted but may be considered
         hostile.
      *  For a trusted set of users (e.g. a private cloud) it may be
         sufficient to have just a virtual network identifier to provide
         isolation.  Packets inadvertently crossing virtual networks
         should be dropped similar to a TCP packet with a corrupted port
         being received on the wrong connection.
      *  In the presence of untrusted users (e.g. a public cloud) the
         virtual network identifier must be adequately protected against
         corruption and verified for integrity.  This case may warrant
         keyed integrity.
   o  Different forms of isolation:
      *  Isolation could be blocking all traffic between tenants (or
         except as allowed by some firewall)
      *  Could also be about performance isolation i.e. one tenant can
         overload the network in a way that affects other tenants
      *  Physical isolation of traffic for different tenants in network
         may be required, as well as required restrictions that tenants
         may have on where their packets may be routed.
   o  New attack vectors from untrusted tenants:
      *  Third party VMs with untrusted tenants allows internally borne
         attacks within data centers
      *  Hostile VMs inside the system may exist (e.g. public cloud)
      *  Internally launched DDOS
      *  Passive snooping for mis-delivered packets
      *  Mitigate damage and detection in event that a VM is able to
         circumvent isolation mechanisms
   o  Tenant-provider relationship:
      *  Tenant might not trust provider, hypervisors, network
      *  Provider likely will need to provide SLA or a least a statement
         on security
      *  Tenant may implement their own additional layers of security
      *  Regulation and certification consuderations
   o  Trend towards tighter security:
      *  Tenants' data in network increases in volume and value, attacks
         become more sophisticated
      *  Large DCs already encrypt everything on disk
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      *  DCs likely to encrypt inter-DC traffic at this point, use TLS
         to Internet.
      *  Encryption within DC is becoming more commonplace, becomes
         ubiquitous when cost is low enough.
      *  Cost/performance considerations.  Cost of support for strong
         security has made strong network security in DCs prohibitive.
      *  Are there lessons from MacSec?

11.2.  Virtual network isolation

   The first requirement is isolation between virtual networks.  Packets
   sent in one virtual network should never be illegitimately received
   by a node in another virtual network.  Isolation should be protected
   in the presence of malicious attacks or inadvertent packet
   corruption.

   The second requirement is sender authentication.  Sender identity is
   authenticated to prevent anti-spoofing.  Even if an attacker has
   access to the packets in the network, they cannot send packets into a
   virtual network.  This may have two possibilities:
   o  Pairwise sender authentication.  Any two communicating hosts
      negotiate a shared key.
   o  Group authentication.  A group of hosts share a key (this may be
      more appropriate for multicast of encapsulation).

   Possible security solutions:
   o  Security cookie: This is similar to L2TP cookie mechanism
      [RFC3931].  A shared plain text cookie is shared between
      encapsulator and decapsulator.  A receiver validates a packet by
      evaluating if the cookie is correct for the virtual network and
      address of a sender.  Validation function is F(cookie, VNI ID,
      source addr).  If cookie matches, accept packet, else drop.  Since
      cookie is plain text this method does not protect against an
      eavesdropping.  Cookies are set and may be rotated out of band.
   o  Secure hash: This is a stronger mechanism than simple cookies that
      borrows from IPsec and PPP authentication methods.  In this model
      security field contains a secure hash of some fields in the packet
      using a shared key.  Hash function may be something like H(key,
      VNI ID, addrs, salt).  The salt ensures the hash is not the same
      for every packet, and if it includes a sequence number may also
      protect against replay attacks.

   In any use of a shared key, periodic re-keying should be allowed.
   This could include use of techniques like generation numbers, key
   windows, etc.  See [I-D.farrelll-mpls-opportunistic-encrypt] for an
   example application.

   We might see firewalls that are aware of the encaps and can provide

https://datatracker.ietf.org/doc/html/rfc3931
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   some defense in depth combined with the above example anti-spoofing
   approaches.  An example would be an NVO3-aware firewall being able to
   check the VNI ID.

   Separately and in addition to such filtering, there might be a desire
   to completely block an encapsulation protocol at certain places in
   the network, e.g., at the edge of a datacenter.  Using a fixed
   standard UDP destination port number for each encapsulation protocol
   would facilitate such blocking.

11.3.  Packet level security

   An encapsulated packet may itself be encapsulated in IPsec (e.g.
   ESP).  This should be straightforward and in fact is what would
   happen today in security gateways.  In this case, there is no special
   consideration for the fact that packet is encapsulated, however since
   the encapsulation layer headers are included (part of encrypted data
   for instance) we lose visibility in the network of the encapsulation.

   The more interesting case is when security is applied to the
   encapsulation payload.  This will keep the encapsulation headers in
   the outer header and visible to the network (for instance in nvo3 we
   may want to firewall based on VNI ID even if packet is encrypted).
   In this model protocol stack may be something like
   IP|UDP|Encap|ESP|IP in tunnel mode, but there's nothing that prevents
   using transport mode (this looks a lot like ESP/UDP [RFC3948]).  The
   encapsulation and security are probably done together at encapsulator
   and resolved at decapsulator.  Since the encapsulation header is
   outside of the security coverage, this may itself require security
   also (like described above).

   In both of the above the security associations (SAs) may be between
   physical hosts, so for instance in nvo3 we can have packets of
   different virtual networks using the same SA-- this should not be an
   issue since it is the VNI ID that ensures isolation (which needs to
   be secured also).  In this case of security applied to encap payload,
   this does present a bit of protocol layer inversion in the header
   (encapsulation refers to overlay, but ESP operates on underlay), but
   this should be okay as long as semantics are clear and processing is
   deterministic.

12.  QoS

   In the Internet architecture we support QoS using the Differentiated
   Services Code Points (DSCP) in the formerly named Type-of-Service
   field in the IPv4 header, and in the Traffic-Class field in the IPv6
   header.  The ToS and TC fields also contain the two ECN bits.

https://datatracker.ietf.org/doc/html/rfc3948


Nordmark (ed), et al.  Expires September 10, 2015              [Page 15]



Internet-Draft            Encaps Considerations               March 2015

   We have existing specifications how to process those bits.  See
   [RFC2983] for diffserv handling, which specifies how the received
   DSCP value is used to set the DSCP value in an outer IP header when
   encapsulating.  (There are also existing specifications how DSCP can
   be mapped to layer2 priorities.)

   Those specifications apply whether or not there is some intervening
   headers (e.g., for NVO3 or SFC) between the inner and outer IP
   headers.  Thus the encapsulation considerations in this area are
   mainly about applying the framework in [RFC2983].

   There are some other considerations specific to doing OAM for
   encapsulations.  If OAM messages are used to measure latency, it
   would make sense to treat them the same as data payloads.  Thus they
   need to have the same outer DSCP value as the data packets which they
   wish to measure.

   Due to OAM there are constraints on middleboxes in general.  If
   middleboxes inspect the packet past the outer IP+UDP and encaps
   header and look for inner IP and TCP/UDP headers, that might violate
   the assumption that OAM packets will be handled the same as regular
   data packets.  That issue is broader than just QoS - applies to
   firewall filters etc.

13.  Congestion Considerations

   Additional encapsulation headers does not introduce anything new for
   Explicit Congestion Notification.  It is just like IP-in-IP and IPsec
   tunnels which is specified in [RFC6040] in terms of how the ECN bits
   in the inner and outer header are handled when encapsulating and
   decapsulating packets.  Thus new encapsulations can more or less
   include that by reference.

   There are additional considerations around carrying non-congestion
   controlled traffic.  These details have been worked out in
   [I-D.ietf-mpls-in-udp].  As specified in [RFC5405]: "IP-based traffic
   is generally assumed to be congestion-controlled, i.e., it is assumed
   that the transport protocols generating IP-based traffic at the
   sender already employ mechanisms that are sufficient to address
   congestion on the path Consequently, a tunnel carrying IP-based
   traffic should already interact appropriately with other traffic
   sharing the path, and specific congestion control mechanisms for the
   tunnel are not necessary".

   For this reason, where an encaps is used to carry IP traffic that is
   known to be congestion controlled, the UDP tunnels does not create an
   additional need for congestion control.  Internet IP traffic is

https://datatracker.ietf.org/doc/html/rfc2983
https://datatracker.ietf.org/doc/html/rfc2983
https://datatracker.ietf.org/doc/html/rfc6040
https://datatracker.ietf.org/doc/html/rfc5405
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   generally assumed to be congestion-controlled.  Similarly, in general
   Layer 3 VPNs are carrying IP traffic that is similarly assumed to be
   congestion controlled.

   However, some of the encapsulations (at least NVO3) will be able to
   carry arbitrary Layer 2 packets to provide an L2 service, in which
   case one can not assume that the traffic is congestion controlled.

   One could handle this by adding some congestion control support to
   the encapsulation header (one instance of which would end up looking
   like DCCP).  However, if the underlay is well-provisioned and managed
   as opposed to being arbitrary Internet path, it might be sufficient
   to have a slower reaction to congestion induced by that traffic.
   There is work underway on a notion of "circuit breakers" for this
   purpose.  See See [I-D.ietf-tsvwg-circuit-breaker].  Encapsulations
   which carry arbitrary Layer 2 packets want to consider that ongoing
   work.

   If the underlay is provisioned in such a way that it can guarantee
   sufficient capacity for non-congestion controlled Layer 2 traffic,
   then such circuit breakers might not be needed.

   Two other considerations appear in the context of these
   encapsulations as applied to overlay networks:
   o  Protect against malicious end stations
   o  Ensure fairness and/or measure resource usage across multiple
      tenants
   Those issues are really orthogonal to the encapsulation, in that they
   are present even when no new encapsulation header is in use.
   However, the application of the new encapsulations are likely to be
   in environments where those issues are becoming more important.
   Hence it makes sense to consider them.

   One could make the encapsulation header be extensible to that it can
   carry sufficient information to be able to measure resource usage,
   delays, and congestion.  The suggestions in the OAM section about a
   single bit for counter synchronization, and optional timestamps
   and/or sequence numbers, could be part of such an approach.  There
   might also be additional congestion-control extensions to be carried
   in the encapsulation.  Overall this results in a consideration to be
   able to have sufficient extensibility in the encapsulation to be
   handle to handle potential future developments in this space.

   Coarse measurements are likely to suffice, at least for circuit-
   breaker-like purposes, see [I-D.wei-tsvwg-tunnel-congestion-feedback]
   and [I-D.briscoe-conex-data-centre] for examples on active work in
   this area via use of ECN.  [RFC6040] Appendix C is also relevant.
   The outer ECN bits seem sufficient (at least when everything uses

https://datatracker.ietf.org/doc/html/rfc6040#appendix-C
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   ECN) to do this course measurements.  Needs some more study for the
   case when there are also drops; might need to exchange counters
   between ingress and egress to handle drops.

   Circuit breakers are not sufficient to make a network with different
   congestion control when the goal is to provide a predictable service
   to different tenants.  The fallback would be to rate limit different
   traffic.

14.  Header Protection

   Many UDP based encapsulations such as VXLAN [RFC7348] either
   discourage or explicitly disallow the use of UDP checksums.  The
   reason is that the UDP checksum covers the entire payload of the
   packet and switching ASICs are typically optimized to look at only a
   small set of headers as the packet passes through the switch.  In
   these case, computing a checksum over the packet is very expensive.
   (Software endpoints and the NICs used with them generally do not have
   the same issue as they need to look at the entire packet anyways.)

   The lack a header checksum creates the possibility that bit errors
   can be introduced into any information carried by the new headers.
   Specifically, in the case of IPv6, the assumption is that a transport
   layer checksum - UDP in this case - will protect the IP addresses
   through the inclusion of a pseudoheader in the calculation.  This is
   different from IPv4 on which many of these encapsulation protocols
   are initially deployed which contains its own header checksum.  In
   addition to IP addresses, the encapsulation header often contains its
   own information which is used for addressing packets or other high
   value network functions.  Without a checksum, this information is
   potentially vulnerable - an issue regardless of whether the packet is
   carried over IPv4 or IPv6.

   Several protocols cite [RFC6935] and [RFC6936] as an exemption to the
   IPv6 checksum requirements.  However, these are intended to be
   tailored to a fairly narrow set of circumstances - primarily relying
   on sparseness of the address space to detect invalid values and well
   managed networks - and are not a one size fits all solution.  In
   these cases, an analysis should be performed of the intended
   environment, including the probability of errors being introduced and
   the use of ECC memory in routing equipment.

   Conceptually, the ideal solution to this problem is a checksum that
   covers only the newly added headers of interest.  There is little
   value in the portion of the UDP checksum that covers the encapsulated
   packet because that would generally be protected by other checksums
   and this is the expensive portion to compute.  In fact, this solution

https://datatracker.ietf.org/doc/html/rfc7348
https://datatracker.ietf.org/doc/html/rfc6935
https://datatracker.ietf.org/doc/html/rfc6936
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   already exists in the form of UDP-Lite and UDP based encapsulations
   could be easily ported to run on top of it.  Unfortunately, the main
   value in using UDP as part of the encapsulation header is that it is
   recognized by already deployed equipment for the purposes of ECMP,
   RSS, and middlebox operations.  As UDP-Lite uses a different protocol
   number than UDP and it is not widely implemented in middleboxes, this
   value is lost.  A possible solution is to incorporate the same
   partial-checksum concept as UDP-Lite or other header checksum
   protection into the encapsulation header and continue using UDP as
   the outer protocol.  One potential challenge with this approach is
   the use of NAT or other form of translation on the outer header will
   result in an invalid checksum as the translator will not know to
   update the encapsulation header.

   The method chosen to protect headers is often related to the security
   needs of the encapsulation mechanism.  On one hand, the impact of a
   poorly protected header is not limited to only data corruption but
   can also introduce a security vulnerability in the form of
   misdirected packets to an unauthorized recipient.  Conversely, high
   security protocols that already include a secure hash over the
   valuable portion of the header (such as by encrypting the entire IP
   packet using IPsec, or some secure hash of the encap header) do not
   require additional checksum protection as the hash provides stronger
   assurance than a simple checksum.

15.  Extensibility Considerations

   Protocol extensibility is the concept that a networking protocol may
   be extended to include new use cases or functionality that were not
   part of the original protocol specification.  Extensibility may be
   used to add security, control, management, or performance features to
   a protocol.  A solution may allow private extensions for
   customization or experimentation.

   Extending a protocol often implies that a protocol header must carry
   new information.  There are two usual methods to accomplish this:
   1.  Define or redefine the meaning of existing fields in a protocol
       header.
   2.  Add new (optional) fields to the protocol header.
   It is also possible to create a new protocol version, but this is
   more associated with defining a protocol than extending it (IPv6
   being a successor to IPv4 is an example of protocol versioning).

   Many protocol definitions include some number of reserved fields or
   bits which can be used for future extension.  VXLAN is an example of
   a protocol that includes reserved bits which are subsequently being
   allocated for new purposes.  Another technique employed is to
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   repurpose existing header fields with new meanings.  A classic
   example of this is the definition of DSCP code point which redefines
   the ToS field originally specified in IPv4.  When a field is
   redefined, some mechanism may be needed to ensure that all interested
   parties agree on the meaning of the field.  The techniques of
   defining meaning for reserved bits or redefining existing fields have
   the advantage that a protocol header can be kept a fixed length.  The
   disadvantage is that the extensibility is limited.  For instance, the
   number reserved bits in a fixed protocol header is limited.  For
   standard protocols the decision to commit to a definition for a field
   can be wrenching since it is difficult to retract later.  Also, it is
   difficult to predict a priori how many reserved fields or bits to put
   into a protocol header to satisfy the extensions create over the
   lifetime of the protocol.

   Extending a protocol header with new fields can be done in several
   ways.
   o  TLVs are a very popular method used in such protocols as IP and
      TCP.  Depending on the type field size and structure, TLVs can
      offer a virtually unlimited range of extensions.  A disadvantage
      of TLVs is that processing them can be verbose, quite complicated,
      several validations must often be done for each TLV, and there is
      no deterministic ordering for a list of TLVs.  TCP serves as an
      example of a protocol where TLVs have been successfully used (i.e.
      required for protocol operation).  IP is an example of a protocol
      that allows TLVs but are rarely used in practice (router fast
      paths usually that assume no IP options).  Note that TCP TLVs are
      implemented in software as well as (NIC) hardware handling various
      forms of TCP offload.
   o  Extension headers are closely related to TLVs.  These also carry
      type/value information, but instead of being a list of TLVs within
      a single protocol header, each one is in its own protocol header.
      IPv6 extension headers and SFC NSH are examples of this technique.
      Similar to TLVs these offer a wide range of extensibility, but
      have similarly complex processing.  Another difference with TLVs
      is that each extension header is idempotent.  This is beneficial
      in cases where a protocol implements a push/pop model for header
      elements like service chaining, but makes it more difficult group
      correlated information within one protocol header.
   o  A particular form of extension headers are the tags used by IEEE
      802 protocols.  Those are similar to e.g., IPv6 extension headers
      but with the key difference that each tag is a fixed length header
      where the length is implicit in the tag value.  Thus as long as a
      receiver can be programmed with a tag value to length map, it can
      skip those new tags.
   o  Flag-fields are a non-TLV like method of extending a protocol
      header.  The basic idea is that the header contains a set of
      flags, where each set flags corresponds to optional field that is
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      present in the header.  GRE is an example of a protocol that
      employs this mechanism.  The fields are present in the header in
      the order of the flags, and the length of each field is fixed.
      Flag-fields are simpler to process compared to TLVs, having fewer
      validations and the order of the optional fields is deterministic.
      A disadvantage is that range of possible extensions with flag-
      fields is smaller than TLVs.

   The requirements for receiving unknown or unimplemented extensible
   elements in an encapsulation protocol (flags, TLVs, optional fields)
   need to be specified.  There are two parties to consider, middle
   boxes and terminal endpoints of encapsulation (at the decapsulator).

   A protocol may allow or expect nodes in a path to modify fields in an
   encapsulation (example use of this is BIER).  In this case, the
   middleboxes should follow the same requirements as nodes terminating
   the encapsulation.  In the case that middle boxes do not modify the
   encapsulation, we can assume that they may still inspect any fields
   of the encapsulation.  Missing or unknown fields should be accepted
   per protocol specification, however it is permissible for a site to
   implement a local policy otherwise (e.g. a firewall may drop packets
   with unknown options).

   For handling unknown options at terminal nodes, there are two
   possibilities: drop packet or accept while ignoring the unknown
   options.  Many Internet protocols specify that reserved flags must be
   set to zero on transmission and ignored on reception.  L2TP is
   example data protocol that has such flags.  GRE is a notable
   exception to this rule, reserved flag bits 1-5 cannot be ignored
   [RFC2890].  For TCP and IPv4, implementations must ignore optional
   TLVs with unknown type; however in IPv6 if a packet contains an
   unknown extension header (unrecognized next header type) the packet
   must be dropped with an ICMP error message returned.  The IPv6
   options themselves (encoded inside the destinations options or hop-
   by-hop options extension header) have more flexibility.  There bits
   in the option code are used to instruct the receiver whether to
   ignore, silently drop, or drop and send error if the option is
   unknown.  Some protocols define a "mandatory bit" that can is set
   with TLVs to indicate that an option must not be ignored.
   Conceptually, optional data elements can only be ignored if they are
   idempotent and do not alter how the rest of the packet is parsed or
   processed.

   Depending on what type of protocol evolution one can predict, it
   might make sense to have an way for a sender to express that the
   packet should be dropped by a terminal node which does not understand
   the new information.  In other cases it would make sense to have the
   receiver silently ignore the new info.  The former can be expressed

https://datatracker.ietf.org/doc/html/rfc2890
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   by having a version field in the encapsulation, or a notion of
   "mandatory bit" as discussed above.

   A security mechanism which use some form secure hash over the encaps
   header would need to be able to know which extensions can be changed
   in flight.

15.1.  Next-protocol

   [Note that there is editorial duplication between this section and
   the Next Protocol Indication section earlier in the document]

   Choices:
   o  Payload type implied (by UDP port for instance).  ESP, L2TP, MPLS,
      over UDP are example, Linux Foo-Over-UDP is example
      implementation.  This model is simple, however allocating a port
      for every possible protocol might be difficult given the trend
      towards port conservation as described in
      [I-D.ietf-tsvwg-port-use].
   o  Encapsulation contains a next header field.  Possibilities:
      *  EtherType: GRE protocol field is example.  Allows encapsulation
         of any EtherType (including IPv4, IPv6, end Ethernet).
         Disadvantages are that it is 16 bits for less than 100 needed
         values, and the number space is controlled by the IEEE 802 RAC.
      *  IP protocol: IPv6 extension headers, ESP are examples.  Allows
         encapsulation of any IP protocol including Ethernet via
         ETHERIP, IPv4, IPv6, IPsec protocols, UDP (transport mode
         considerations needed).  IANA managed eight bit values,
         presumably more difficult to get an assigned number than to get
         a transport port assignment.
      *  Protocol specific number space.  Example PPP.  Could be 8 or 16
         bits and would be IANA controlled.  Primary advantage is that
         it might be easier to define protocols for encapsulation that
         are not defined in other number spaces (802.11 for instance).
         Disadvantage is that it represents yet another number space to
         be managed and doesn't leverage existing ones.

16.  Layering Considerations

   One can envision that SFC might use NVO3 as a delivery/transport
   mechanism.  With more imagination that in turn might be delivered
   using BIER.  Thus it is useful to think about what things look like
   when we have BIER+NVO3+SFC+payload.  Also, if NVO3 is widely deployed
   there might be cases of NVO3 nesting where a customer uses NVO3 to
   provide network virtualization e.g., across departments.  That
   customer uses a service provider which happens to use NVO3 to provide
   transport for their customers.Thus NVO3 in NVO3 might happen.



Nordmark (ed), et al.  Expires September 10, 2015              [Page 22]



Internet-Draft            Encaps Considerations               March 2015

   A key question we set out to answer is what the packets might look
   like in such a case, and in particular whether we would end up with
   multiple UDP headers for entropy.

   Based on the discussion in the Entropy section, the entropy is
   associated with the outer delivery IP header.  Thus if there are
   multiple IP headers there would be a UDP header for each one of the
   IP headers.  But SFC does not require its own IP header.  So a case
   of NVO3+SFC would be IP+UDP+NVO3+SFC.  A nested NVO3 encapsulation
   would have independent IP+UDP headers.

   The layering also has some implications for middleboxes.
   o  A device on the path between the ingress and egress is allowed to
      transparently inspect all layers of the protocol stack and drop or
      forward, but not transparently modify anything but the layer in
      which they operate.  What this means is that an IP router is
      allowed modify the outer IP ttl and ECN bits, but not the encaps
      header or inner headers and payload.  And a BIER router is allowed
      to modify the BIER header.
   o  Alternatively such a device can become visible at a higher layer.
      E.g., a middlebox could become an decaps + function + encaps which
      means it will generate a new encaps header.

   The design team asked itself some additional questions:
   o  Would it make sense to have a common encaps base header (for OAM,
      security?, etc) and then followed by the specific information for
      NVO3, SFC, BIER?  Given that there are separate proposals and the
      set of information needing to be carried differs, and the
      extensibility needs might be different, it would be difficult and
      not that useful to have a common base header.
   o  With a base header in place, one could view the different
      functions (NVO3, SFC, and BIER) as different extensions to that
      base header resulting in encodings which are more space optimal by
      not repeating the same base header.  The base header would only be
      repeated when there is an additional IP (and hence UDP) header.
      That could mean a single length field (to skip to get to the
      payload after all the encaps headers).  That might be technically
      feasible, but it would create a lot of dependencies between
      different WGs making it harder to make progress.  Compare with the
      potential savings in packet size.

17.  Service model

   The IP service is lossy and subject to reordering.  In order to avoid
   a performance impact on transports like TCP the handling of packets
   is designed to avoid reordering packets that are in the same
   transport flow (which is typically identified by the 5-tuple).  But
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   across such flows the receiver can see different ordering for a given
   sender.  That is the case for a unicast vs. a multicast flow from the
   same sender.

   There is a general tussle between the desire for high capacity
   utilization across a multipath network and the import on packet
   ordering within the same flow (which results in lower transport
   protocol performance).  That isn't affected by the introduction of an
   encapsulation.  However, the encapsulation comes with some entropy,
   and there might be cases where folks want to change that in response
   to overload or failures.  For instance, might want to change UDP
   source port to try different ECMP route.  Such changes can result in
   packet reordering within a flow, hence would need to be done
   infrequently and with care e.g., by identifying packet trains.

   There might be some applications/services which are not able to
   handle reordering across flows.  The IETF has defined pseudo-wires
   [RFC3985] which provides the ability to ensure ordering (implemented
   using sequence numbers and/or timestamps).

   Architectural such services would make sense, but as a separate layer
   on top of an encapsulation protocol.  They could be deployed between
   ingress and egress of a tunnel which uses some encaps.  Potentially
   the tunnel control points in the form of an ingress and egress will
   become a platform for fixing suboptimal behavior elsewhere in the
   network.  For example, this document suggests that some congestion
   handling might be needed to handle non-congestion controlled traffic
   that gets tunneled, and also that fairness/QoS policing can be
   deployed on those devices.  Others have suggested that tunnels is one
   way to deploy ECN without having to add ECN support in the endpoints
   [I-D.briscoe-conex-data-centre].

   But the tunnels could potentially do more like increase reliability
   (retransmissions, FEC) or load spreading using e.g.  MP-TCP between
   ingress and egress.

18.  Hardware Friendly

   Hosts, switches and routers often leverage capabilities in the
   hardware to accelerate packet encapsulation, decapsulation and
   forwarding.

   Some design considerations in encapsulation that leverage these
   hardware capabilities may result in more efficiently packet
   processing and higher overall protocol throughput.

   While "hardware friendliness" can be viewed as unnecessary

https://datatracker.ietf.org/doc/html/rfc3985
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   considerations for a design, part of the motivation for considering
   this is ease of deployment; being able to leverage existing NIC and
   switch chips for at least a useful subset of the functionality that
   the new encapsulation provides.  The other part is the ease of
   implementing new NICs and switch/router chips that support the
   encapsulation at ever increasing line rates.

   [disclaimer] There are many different types of hardware in any given
   network, each maybe better at some tasks while worse at others.  We
   would still recommend protocol designers to examine the specific
   hardware that are likely to be used in their networks and make
   decisions on a case by case basis.

   Some considerations are:
   o  Keep the encap header small.  Switches and routers usually only
      read the first small number of bytes into the fast memory for
      quick processing and easy manipulation.  The bulk of the packets
      are usually stored in slow memory.  A big encap header may not fit
      and additional read from the slow memory will hurt the overall
      performance and throughput.
   o  Put important information at the beginning of the encapsulation
      header.  The reasoning is similar as explained in the previous
      point.  If important information are located at the beginning of
      the encapsulation header, the packet may be processed with smaller
      number of bytes to be read into the fast memory and improve
      performance.
   o  Separation of NVO3 header from SFC header such that an encap can
      also be processed by forwarding hardware (who can only process
      network virtualization and pass the service chaining function to
      another device specialized in service offering)
   o  Avoid full packet checksums in the encapsulation if possible.
      Most of the switch/router hardware make switching/forwarding
      decisions by reading and examining only the first certain number
      of bytes in the packet.  Most of the body of the packet do not
      need to be processed normally. if we are concerned of preventing
      packet to be misdelivered due to memory errors, consider only
      perform header checksums.  Note that NIC chips can typically
      already do full packet checksums for TCP/UDP, while adding a
      header checksum might require adding some hardware support.
   o  Place important information at fixed offset in the encapsulation
      header.  Packet processing hardware may be capable of parallel
      processing.  If important information can be found at fixed
      offset, different part of the encapsulation header may be
      processed by different hardware units in parallel (for example
      multiple table lookups may be launched in parallel).  Hardware can
      handle optional information as long as when the information is
      present it is found in one and only one place in the header.
      Typical TLV encoding of options does not have that property since
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      the order of TLVs is unconstrained.
   o  Limit the number of header combinations.  In many cases the
      hardware can explore different combinations of headers in
      parallel, however there is some added cost for this.

18.1.  Considerations for NIC offload

   This section provides guidelines to provide support of common
   offloads for encapsulation in Network Interface Cards (NICs).
   Offload mechanisms are techniques that are implemented separately
   from the normal protocol implementation of a host networking stack
   and are intended to optimize or speed up protocol processing.
   Hardware offload is performed within a NIC device on behalf of a
   host.

   There are three basic offload techniques of interest:
   o  Receive multi queue
   o  Checksum offload
   o  Segmentation offload

18.1.1.  Receive multi-queue

   Contemporary NICs support multiple receive descriptor queues (multi-
   queue).  Multi-queue enables load balancing of network processing for
   a NIC across multiple CPUs.  On packet reception, a NIC must select
   the appropriate queue for host processing.  Receive Side Scaling
   (RSS) is a common method which uses the flow hash for a packet to
   index an indirection table where each entry stores a queue number.

   UDP encapsulation, where the source port is used for entropy, should
   be compatible with multi-queue NICs that support five-tuple hash
   calculation for UDP/IP packets as input to RSS.  The source port
   ensures classification of the encapsulated flow even in the case that
   the outer source and destination addresses are the same for all flows
   (e.g. all flows are going over a single tunnel).

18.1.2.  Checksum offload

   Many NICs provide capabilities to calculate standard ones complement
   payload checksum for packets in transmit or receive.  When using
   encapsulation over UDP there are at least two checksums that may be
   of interest: the encapsulated packet's transport checksum, and the
   UDP checksum in the outer header.

18.1.2.1.  Transmit checksum offload

   NICs may provide a protocol agnostic method to offload transmit
   checksum (NETIF_F_HW_CSUM in Linux parlance) that can be used with
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   UDP encapsulation.  In this method the host provides checksum related
   parameters in a transmit descriptor for a packet.  These parameters
   include the starting offset of data to checksum, the length of data
   to checksum, and the offset in the packet where the computed checksum
   is to be written.  The host initializes the checksum field to pseudo
   header checksum.  In the case of encapsulated packet, the checksum
   for an encapsulated transport layer packet, a TCP packet for
   instance, can be offloaded by setting the appropriate checksum
   parameters.

   NICs typically can offload only one transmit checksum per packet, so
   simultaneously offloading both an inner transport packet's checksum
   and the outer UDP checksum is likely not possible.  In this case
   setting UDP checksum to zero (per above discussion) and offloading
   the inner transport packet checksum might be acceptable.

   There is a proposal in [I-D.herbert-remotecsumoffload] to leverage
   NIC checksum offload when an encapsulator is co-resident with a host.

18.1.2.2.  Receive checksum offload

   Protocol encapsulation is compatible with NICs that perform a
   protocol agnostic receive checksum (CHECKSUM_COMPLETE in Linux
   parlance).  In this technique, a NIC computes a ones complement
   checksum over all (or some predefined portion) of a packet.  The
   computed value is provided to the host stack in the packet's receive
   descriptor.  The host driver can use this checksum to "patch up" and
   validate any inner packet transport checksum, as well as the outer
   UDP checksum if it is non-zero.

   Many legacy NICs don't provide checksum-complete but instead provide
   an indication that a checksum has been verified (CHECKSUM_UNNECESSARY
   in Linux).  Usually, such validation is only done for simple TCP/IP
   or UDP/IP packets.  If a NIC indicates that a UDP checksum is valid,
   the checksum-complete value for the UDP packet is the "not" of the
   pseudo header checksum.  In this way, checksum-unnecessary can be
   converted to checksum-complete.  So if the NIC provides checksum-
   unnecessary for the outer UDP header in an encapsulation, checksum
   conversion can be done so that the checksum-complete value is derived
   and can be used by the stack to validate an checksums in the
   encapsulated packet.

18.1.3.  Segmentation offload

   Segmentation offload refers to techniques that attempt to reduce CPU
   utilization on hosts by having the transport layers of the stack
   operate on large packets.  In transmit segmentation offload, a
   transport layer creates large packets greater than MTU size (Maximum
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   Transmission Unit).  It is only at much lower point in the stack, or
   possibly the NIC, that these large packets are broken up into MTU
   sized packet for transmission on the wire.  Similarly, in receive
   segmentation offload, small packets are coalesced into large, greater
   than MTU size packets at a point low in the stack receive path or
   possibly in a device.  The effect of segmentation offload is that the
   number of packets that need to be processed in various layers of the
   stack is reduced, and hence CPU utilization is reduced.

18.1.3.1.  Transmit Segmentation Offload

   Transmit Segmentation Offload (TSO) is a NIC feature where a host
   provides a large (larger than MTU size) TCP packet to the NIC, which
   in turn splits the packet into separate segments and transmits each
   one.  This is useful to reduce CPU load on the host.

   The process of TSO can be generalized as:
   o  Split the TCP payload into segments which allow packets with size
      less than or equal to MTU.
   o  For each created segment:
      1.  Replicate the TCP header and all preceding headers of the
          original packet.
      2.  Set payload length fields in any headers to reflect the length
          of the segment.
      3.  Set TCP sequence number to correctly reflect the offset of the
          TCP data in the stream.
      4.  Recompute and set any checksums that either cover the payload
          of the packet or cover header which was changed by setting a
          payload length.

   Following this general process, TSO can be extended to support TCP
   encapsulation UDP.  For each segment the Ethernet, outer IP, UDP
   header, encapsulation header, inner IP header if tunneling, and TCP
   headers are replicated.  Any packet length header fields need to be
   set properly (including the length in the outer UDP header), and
   checksums need to be set correctly (including the outer UDP checksum
   if being used).

   To facilitate TSO with encapsulation it is recommended that optional
   fields should not contain values that must be updated on a per
   segment basis-- for example an encapsulation header should not
   include checksums, lengths, or sequence numbers that refer to the
   payload.  If the encapsulation header does not contain such fields
   then the TSO engine only needs to copy the bits in the encapsulation
   header when creating each segment and does not need to parse the
   encapsulation header.
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18.1.3.2.  Large Receive Offload

   Large Receive Offload (LRO) is a NIC feature where packets of a TCP
   connection are reassembled, or coalesced, in the NIC and delivered to
   the host as one large packet.  This feature can reduce CPU
   utilization in the host.

   LRO requires significant protocol awareness to be implemented
   correctly and is difficult to generalize.  Packets in the same flow
   need to be unambiguously identified.  In the presence of tunnels or
   network virtualization, this may require more than a five-tuple match
   (for instance packets for flows in two different virtual networks may
   have identical five-tuples).  Additionally, a NIC needs to perform
   validation over packets that are being coalesced, and needs to
   fabricate a single meaningful header from all the coalesced packets.

   The conservative approach to supporting LRO for encapsulation would
   be to assign packets to the same flow only if they have identical
   five-tuple and were encapsulated the same way.  That is the outer IP
   addresses, the outer UDP ports, encapsulated protocol, encapsulation
   headers, and inner five tuple are all identical.

19.  Middlebox Considerations

   This document has touched upon middleboxes in different section.  The
   reason for this is as encapsulations get widely deployed one would
   expect different forms of middleboxes might become aware of the
   encapsulation protocol just as middleboxes have been made aware of
   other protocols where there are business and deployment
   opportunities.  Such middleboxes are likely to do more than just drop
   packets based on the UDP port number used by an encapsulation
   protocol.

   We note that various forms of encapsulation gateways that stitch one
   encapsulation protocol together with another form of protocol could
   have similar effects.

   An example of a middlebox that could see some use would be an NVO3-
   aware firewall that would filter on the VNI IDs to provide some
   defense in depth inside or across NVO3 datacenters.

   A question for the IETF is whether we should document what to do or
   what not to do in such middleboxes.  This document touches on areas
   of OAM and ECMP as it relates to middleboxes and it might make sense
   to document how encaps-aware middleboxes should avoid unintended
   consequences in those (and perhaps other) areas.
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20.  Related Work

   The IETF and industry has defined encapsulations for a long time,
   with examples like GRE [RFC2890], VXLAN [RFC7348], and NVGRE
   [I-D.sridharan-virtualization-nvgre] being able to carry arbitrary
   Ethernet payloads, and various forms of IP-in-IP and IPsec
   encapsulations that can carry IP packets.  As part of NVO3 there has
   been additional proposals like Geneve [I-D.gross-geneve] and GUE
   [I-D.herbert-gue] which look at more extensibility.  NSH
   [I-D.quinn-sfc-nsh] is an example of an encapsulation that tries to
   provide extensibility mechanisms which target both hardware and
   software implementations.

   There is also a large body of work around MPLS encapsulations
   [RFC3032].  The MPLS-in-UDP work [I-D.ietf-mpls-in-udp] and GRE over
   UDP [I-D.ietf-tsvwg-gre-in-udp-encap] have worked on some of the
   common issues around checksum and congestion control.  MPLS also
   introduced a entropy label [RFC6790].  There is also a proposal for
   MPLS encryption [I-D.farrelll-mpls-opportunistic-encrypt].

   The idea to use a UDP encapsulation with a UDP source port for
   entropy for the underlay routers' ECMP dates back to LISP [RFC6830].

   The pseudo-wire work [RFC3985] is interesting in the notion of
   layering additional services/characteristics such as ordered delivery
   or timely deliver on top of an encapsulation.  That layering approach
   might be useful for the new encapsulations as well.  For instance,
   the control word [RFC4385].

   Both MPLS and L2TP [RFC3931] rely on some control or signaling to
   establish state (for the path/labels in the case of MPLS, and for the
   session in the case of L2TP).  The NVO3, SFC, and BIER encapsulations
   will also have some separation between the data plane and control
   plane, but the type of separation appears to be different.

   IEEE 802.1 has defined encapsulations for L2 over L2, in the form of
   Provider backbone Bridging (PBB) [IEEE802.1Q-2014] and Equal Cost
   Multipath (ECMP) [IEEE802.1Q-2014].  The latter includes something
   very similar to the way the UDP source port is used as entropy: "The
   flow hash, carried in an F-TAG, serves to distinguish frames
   belonging to different flows and can be used in the forwarding
   process to distribute frames over equal cost paths"

   TRILL, which is also a L2 over L2 encapsulation, took a different
   approach to entropy but preserved the ability for OAM frames
   [RFC7174] to use the same entropy hence ECMP path as data frames.  In
   [I-D.ietf-trill-oam-fm] there 96 bytes of headers for entropy in the
   OAM frames, followed by the actual OAM content.  This ensures that
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   any headers, which fit in those 96 bytes except the OAM bit in the
   TRILL header, can be used for ECMP hashing.

   As encapsulations evolve there might be a desire to fit multiple
   inner packets into one outer packet.  The work in
   [I-D.saldana-tsvwg-simplemux] might be interesting for that purpose.

21.  Acknowledgements

   The authors acknowledge the comments from David Black, Andy Malis,
   and Radia Perlman.

22.  Open Issues

   o  Middleboxes:
      *  Due to OAM there are constraints on middleboxes in general.  If
         middleboxes inspect the packet past the outer IP+UDP and encaps
         header and look for inner IP and TCP/UDP headers, that might
         violate the assumption that OAM packets will be handled the
         same as regular data packets.  That issue is broader than just
         QoS - applies to firewall filters etc.
      *  Firewalls looking at inner payload?  How does that work for OAM
         frames?  Even if it only drops ...  TRILL approach might be an
         option?  Would that encourage more middleboxes making the
         network more fragile?
      *  Editorially perhaps we should pull the above two into a
         separate section about middlebox considerations?
   o  Next protocol indication - should it be common across different
      encapsulation headers?  We will have different ways to indicate
      the presence of the first encapsulation header in a packet (could
      be a UDP destination port, an Ethernet type, etc depending on the
      outer delivery header).  But for the next protocol past an
      encapsulation header one could envision creating or adoption a
      common scheme.  Such a would also need to be able to identify
      following headers like Ethernet, IPv4/IPv6, ESP, etc.
   o  Common OAM error reporting protocol?
   o  There is discussion about timestamps, sequence numbers, etc in
      three different parts of the document.  OAM, Congestion
      Considerations, and Service Model, where the latter argues that a
      pseudo-wire service should really be layered on top of the encaps
      using its own header.  Those recommendations seem to be at odds
      with each other.  Do we envision sequence numbers, timestamps, etc
      as potential extensions for OAM and CC?  If so, those extensions
      could be used to provide a service which doesn't reorder packets.
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