
RTGWG E. Nordmark (ed)
Internet-Draft Arista Networks
Intended status: Informational A. Tian
Expires: September 10, 2015 Ericsson Inc.
 J. Gross
 VMware
 J. Hudson
 Brocade Communications Systems,
 Inc.
 L. Kreeger
 Cisco Systems, Inc.
 P. Garg
 Microsoft
 P. Thaler
 Broadcom Corporation
 T. Herbert
 Google
 March 9, 2015

Encapsulation Considerations
draft-rtg-dt-encap-01

Abstract

 The IETF Routing Area director has chartered a design team to look at
 common issues for the different data plane encapsulations being
 discussed in the NVO3 and SFC working groups and also in the BIER
 BoF, and also to look at the relationship between such encapsulations
 in the case that they might be used at the same time. The purpose of
 this design team is to discover, discuss and document considerations
 across the different encapsulations in the different WGs/BoFs so that
 we can reduce the number of wheels that need to be reinvented in the
 future.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference

Nordmark (ed), et al. Expires September 10, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Encaps Considerations March 2015

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 10, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Nordmark (ed), et al. Expires September 10, 2015 [Page 2]

Internet-Draft Encaps Considerations March 2015

Table of Contents

1. Design Team Charter . 4
2. Overview . 4
3. Common Issues . 6
4. Scope . 6
5. Assumptions . 7
6. Terminology . 7
7. Entropy . 7
8. Next-protocol indication 9
9. MTU and Fragmentation . 10
10. OAM . 10
11. Security Considerations 12
11.1. Encapsulation-specific considerations 12
11.2. Virtual network isolation 14
11.3. Packet level security 15

12. QoS . 15
13. Congestion Considerations 16
14. Header Protection . 18
15. Extensibility Considerations 19
15.1. Next-protocol . 22

16. Layering Considerations 22
17. Service model . 23
18. Hardware Friendly . 24
18.1. Considerations for NIC offload 26

19. Middlebox Considerations 29
20. Related Work . 30
21. Acknowledgements . 31
22. Open Issues . 31
23. References . 32
23.1. Normative References 32
23.2. Informative References 33

 Authors' Addresses . 36

Nordmark (ed), et al. Expires September 10, 2015 [Page 3]

Internet-Draft Encaps Considerations March 2015

1. Design Team Charter

 There have been multiple efforts over the years that have resulted in
 new or modified data plane behaviors involving encapsulations. That
 includes IETF efforts like MPLS, LISP, and TRILL but also industry
 efforts like VXLAN and NVGRE. These collectively can be seen as a
 source of insight into the properties that data planes need to meet.
 The IETF is currently working on potentially new encapsulations in
 NVO3 and SFC and considering working on BIER. In addition there is
 work on tunneling in the INT area.

 This is a short term design team chartered to collect and construct
 useful advice to parties working on new or modified data plane
 behaviors that include additional encapsulations. The goal is for
 the group to document useful advice gathered from interacting with
 ongoing efforts. An Internet Draft will be produced for IETF92 to
 capture that advice, which will be discussed in RTGWG.

 Data plane encapsulations face a set of common issues such as:
 o How to provide entropy for ECMP
 o Issues around packet size and fragmentation/reassembly
 o OAM - what support is needed in an encapsulation format?
 o Security and privacy.
 o QoS
 o Congestion Considerations
 o IPv6 header protection (zero UDP checksum over IPv6 issue)
 o Extensibility - e.g., for evolving OAM, security, and/or
 congestion control
 o Layering of multiple encapsulations e.g., SFC over NVO3 over BIER
 The design team will provide advice on those issues. The intention
 is that even where we have different encapsulations for different
 purposes carrying different information, each such encapsulation
 doesn't have to reinvent the wheel for the above common issues.

 The design team will look across the routing area in particular at
 SFC, NVO3 and BIER. It will not be involved in comparing or
 analyzing any particular encapsulation formats proposed in those WGs
 and BoFs but instead focus on common advice.

2. Overview

 The references provide background information on NVO3, SFC, and BIER.
 In particular, NVO3 is introduced in [RFC7364], [RFC7365], and
 [I-D.ietf-nvo3-arch]. SFC is introduced in
 [I-D.ietf-sfc-architecture] and [I-D.ietf-sfc-problem-statement].
 Finally, the information on BIER is in
 [I-D.shepherd-bier-problem-statement],

https://datatracker.ietf.org/doc/html/rfc7364
https://datatracker.ietf.org/doc/html/rfc7365

Nordmark (ed), et al. Expires September 10, 2015 [Page 4]

Internet-Draft Encaps Considerations March 2015

 [I-D.wijnands-bier-architecture], and
 [I-D.wijnands-mpls-bier-encapsulation]. We assume the reader has
 some basic familiarity with those proposed encapsulations. The
 Related Work section points at some prior work that relates to the
 encapsulation considerations in this document.

 Encapsulation protocols typically have some unique information that
 they need to carry. In some cases that information might be modified
 along the path and in other cases it is constant. The in-flight
 modifications has impacts on what it means to provide security for
 the encapsulation headers.
 o NVO3 carries a VNI Identifier edge to edge which is not modified.
 There has been OAM discussions in the WG and it isn't clear
 whether some of the OAM information might be modified in flight.
 o SFC carries service meta-data which might be modified or
 unmodified as the packets follow the service path. SFC talks of
 some loop avoidance mechanism which is likely to result in
 modifications for for each hop in the service chain even if the
 meta-data is unmodified.
 o BIER carries a bitmap of egress ports to which a packet should be
 delivered, and as the packet is forwarded down different paths
 different bits are cleared in that bitmap.

 Even if information isn't modified in flight there might be devices
 that wish to inspect that information. For instance, one can
 envision future NVO3 security devices which filter based on the
 virtual network identifier.

 The need for extensibility is different across the protocols
 o NVO3 might need some extensions for OAM and security.
 o SFC is all about carrying service meta-data along a path, and
 different services might need different types and amount of meta-
 data.
 o BIER might need variable number of bits in their bitmaps, or other
 future schemes to scale up to larger network.
 The extensibility needs and constraints might be different when
 considering hardware vs. software implementations of the
 encapsulation headers. NIC hardware might have different constraints
 than switch hardware.

 As the IETF designs these encapsulations the different WGs solve the
 issues for their own encapsulation. But there are likely to be
 future cases when the different encapsulations are combined in the
 same header. For instance, NVO3 might be a "transport" used to carry
 SFC between the different hops in the service chain.

 Most of the issues discussed in this document are not new. The IETF
 and industry as specified and deployed many different encapsulation

Nordmark (ed), et al. Expires September 10, 2015 [Page 5]

Internet-Draft Encaps Considerations March 2015

 or tunneling protocols over time, ranging from simple IP-in-IP and
 GRE encapsulation, IPsec, pseudo-wires, session-based approached like
 L2TP, and the use of MPLS control and data planes. IEEE 802 has also
 defined layered encapsulation for Provider Backbone Bridges (PBB) and
 IEEE 802.1Qbp (ECMP). This document tries to leverage what we
 collectively have learned from that experience and summarize what
 would be relevant for new encapsulations like NVO3, SFC, and BIER.

3. Common Issues

 [This section is mostly a repeat of the charter but with a few
 modifications and additions.]

 Any new encapsulation protocol would need to address a large set of
 issues that are not central to the new information that this protocol
 intends to carry. The common issues explored in this document are:
 o How to provide entropy for Equal Cost MultiPath (ECMP) routing
 o Issues around packet size and fragmentation/reassembly
 o Next header indication - each encapsulation might be able to carry
 different payloads
 o OAM - what support is needed in an encapsulation format?
 o Security and privacy
 o QoS
 o Congestion Considerations
 o Header protection
 o Extensibility - e.g., for evolving OAM, security, and/or
 congestion control
 o Layering of multiple encapsulations e.g., SFC over NVO3 over BIER
 o Importance of being friendly to hardware and software
 implementations

4. Scope

 It is important to keep in mind what we are trying to cover and not
 cover in this document and effort. This is
 o A look across the three new encapsulations, while taking lots of
 previous work into account
 o Focus on the class of encapsulations that would run over IP/UDP.
 That was done to avoid being distracted by the data-plane and
 control-plane interaction, which is more significant for protocols
 that are designed to run over "transports" that maintain session
 or path state.
 o We later expanded the scope somewhat to consider how the
 encapsulations would play with MPLS "transport", which is
 important because SFC and BIER seem to target being independent of
 the underlying "transport"

Nordmark (ed), et al. Expires September 10, 2015 [Page 6]

Internet-Draft Encaps Considerations March 2015

 However, this document and effort is NOT intended to:
 o Design some new encapsulation header to rule them all
 o Design yet another new NVO3 encapsulation header
 o Try to select the best encapsulation header
 o Evaluate any existing and proposed encapsulations

5. Assumptions

 The design center for the new encapsulations is a well-managed
 network. That network can be a datacenter network (plus datacenter
 interconnect) or a service provider network. Based on the existing
 and proposed encapsulations in those environment it is reasonable to
 make these assumptions:
 o The MTU is carefully managed and configured. Hence an
 encapsulation protocol can make the packets bigger without
 resulting in a requirement for fragmentation and reassembly
 between ingress and egress. (However, it might be useful to
 detecting MTU misconfigurations.)
 o In general an encapsulation needs some approach for congestion
 management. But the assumptions are different than for arbitrary
 Internet paths in that the underlay might be well-provisioned and
 better policed at the edge, and due to multi-tenancy, the
 congestion control in the endpoints might be even less trusted
 than on the Internet at large.

 The goal is to implement these encapsulations in hardware and
 software hence we can't assume that the needs of either
 implementation approach can trump the needs of the other. In
 particular, around extensibility the needs and constraints might be
 quite different.

6. Terminology

 The capitalized keyword MUST is used as defined in
http://en.wikipedia.org/wiki/Julmust

 TBD: Refer to existing documents for at least NVO3 and SFC
 terminology. We use at least the VNI ID in this document.

7. Entropy

 In many cases the encapsulation format needs to enable ECMP in
 unmodified routers. Those routers might use different fields in TCP/
 UDP packets to do ECMP without a risk of reordering a flow.

http://en.wikipedia.org/wiki/Julmust

Nordmark (ed), et al. Expires September 10, 2015 [Page 7]

Internet-Draft Encaps Considerations March 2015

 The common way to do ECMP-enabled encapsulation over IP today is to
 add a UDP header and to use UDP with the UDP source port carrying
 entropy from the inner/original packet headers as in LISP [RFC6830].
 The total entropy consists of 14 bits in the UDP source port (using
 the ephemeral port range) plus the outer IP addresses which seems to
 be sufficient for entropy; using outer IPv6 headers would give the
 option for more entropy should it be needed in the future.

 In some environments it might be fine to use all 16 bits of the port
 range. However, middleboxes might make assumptions about the system
 ports or user ports. But they should not make any assumptions about
 the ports in the Dynamic and/or Private Port range, which have the
 two MSBs set to 11b.

 The UDP source port might change over the lifetime of an encapsulated
 flow, for instance for DoS mitigation or re-balancing load across
 ECMP.

 There is some interaction between entropy and OAM and extensibility
 mechanism. It is desirable to be able to send OAM packets to follow
 the same path as network packets. Hence OAM packets should use the
 same entropy mechanism as data packets. While routers might use
 information in addition the entropy field and outer IP header, they
 can not use arbitrary parts of the encapsulation header since that
 might result in OAM frames taking a different path. Likewise if
 routers look past the encapsulation header they need to be aware of
 the extensibility mechanism(s) in the encapsulation format to be able
 to find the inner headers in the presence of extensions; OAM frames
 might use some extensions e.g. for timestamps.

 Architecturally the entropy and the next header field are really part
 of enclosing delivery header. UDP with entropy goes hand-in-hand
 with the outer IP header. Thus the UDP entropy is present for the
 underlay IP routers the same way that an MPLS entropy label is
 present for LSRs. The entropy above is all about providing entropy
 for the outer delivery of the encapsulated packets.

 It has been suggested that when IPv6 is used it would not be
 necessary to add a UDP header for entropy, since the IPv6 flow label
 can be used for entropy. (This assumes that there is an IP protocol
 number for the encaps in addition to a UDP destination port number
 since UDP would be used with IPv4 underlay. And any use of UDP
 checksums would need to be replaced by an encaps-specific checksum or
 secure hash.) While such an approach would save 8 bytes of headers
 when the underlay is IPv6, it does assume that the underlay routers
 use the flow label for ECMP, and it also would make the IPv6 approach
 different than the IPv4 approach. Currently the leaning is towards
 recommending using the UDP encaps for both IPv4 and IPv6 underlay.

https://datatracker.ietf.org/doc/html/rfc6830

Nordmark (ed), et al. Expires September 10, 2015 [Page 8]

Internet-Draft Encaps Considerations March 2015

 The IPv6 flow label can be used for additional entropy if need be.

 Note that in the proposed BIER encapsulation
 [I-D.wijnands-mpls-bier-encapsulation], there is an an 8-bit field
 which specifies an entropy value that can be used for load balancing
 purposes. This entropy is for the BIER forwarding decisions, which
 is independent of any outer delivery ECMP between BIER routers. Thus
 it is not part of the delivery ECMP discussed in this section.
 [Note: For any given bit in BIER (that identifies an exit from the
 BIER domain) there might be multiple immediate next hops. The
 BIER entropy field is used to select that next hop as part of BIER
 processing. The BIER forwarding process may do equal cost load
 balancing, but the load balancing procedure MUST choose the same
 path for any two packets have the same entropy value.]

8. Next-protocol indication

 The transport delivery mechanism for the encapsulations we discuss in
 this document need some way to indicate which encapsulation header
 (or other payload) comes next in the packet. Some encapsulations
 might be identified by a UDP port; others might be identified by an
 Ethernet type or IP protocol number. Which approach is used is a
 function of the preceding header the same was as IPv4 being
 identified by both an Ethernet type and an IP protocol number (for
 IP-in-IP). In some cases the header type is implicit in some session
 (L2TP) or path (MPLS) setup. But this is largely beyond the control
 of the encapsulation protocol. For instance, if there is a
 requirement to carry the encapsulation after an Ethernet header, then
 an Ethernet type is needed. If required to be carried after an IP/
 UDP header, then a UDP port number is needed.

 The encapsulation needs to indicate the type of its payload, which is
 in scope for the design of the encapsulation. We have existing
 protocols which use Ethernet types (such as GRE). Here each
 encapsulation header can potentially makes its own choices between:
 o Reuse Ethernet types - makes it easy to carry existing L2 and L3
 protocols
 o Reuse IP protocol numbers - makes it easy to carry e.g., ESP but
 brings in all existing protocol numbers many of which would never
 be used directly on top of the encapsulation protocol.
 o Define their own next-protocol number space, which can use fewer
 bits than an Ethernet type and give more flexibility, but at the
 cost of administering that numbering space.

 If the IETF ends up defining multiple encapsulations at about the
 same time, and there is some chance that multiple such encapsulations
 can be combined in the same packet, there is a question whether it

Nordmark (ed), et al. Expires September 10, 2015 [Page 9]

Internet-Draft Encaps Considerations March 2015

 makes sense to use a common approach and numbering space for the
 encapsulation across the different protocols. A common approach
 might not be beneficial as long as there is only one way to indicate
 e.g., SFC inside NVO3.

9. MTU and Fragmentation

 A common approach today is to assume that the underlay have
 sufficient MTU to carry the encapsulated packets without any
 fragmentation and reassembly at the tunnel endpoints. That is
 sufficient when the operator of the ingress and egress have full
 control of the paths between those endpoints. And it makes for
 simpler (hardware) implementations if fragmentation and reassembly
 can be avoided.

 However, even under that assumption it would be beneficial to be able
 to detect when there is some misconfiguration causing packets to be
 dropped due to MTU issues. One way to do this is to have the
 encapsulator set the don't-fragment (DF) flag in the outer IPv4
 header and receive and log any received ICMP "packet too big" (PTB)
 errors. Note that no flag needs to be set in an outer IPv6 header
 [RFC2460].

 Encapsulations could also define an optional tunnel fragmentation and
 reassembly mechanism which would be useful in the case when the
 operator doesn't have full control of the path. Such a mechanism
 would be required if the underlay might have a path MTU which makes
 it impossible to carry at least 1518 bytes (if offering Ethernet
 service), or at least 1280 (if offering IPv6 service). The use of
 such a protocol mechanism could be triggered by receiving a PTB. But
 such a mechanism might not be implemented by all encaps and decaps
 nodes. [Aerolink is one example of such a protocol.]

 Depending on the payload carried by the encapsulation there are some
 additional possibilities:
 o If payload is IPv4/6 then the underlay path MTU could be used to
 report end-to-end path MTU.
 o If the payload service is Ethernet/L2, then there is no such per
 destination reporting mechanism. However, there is a LLDP TLV for
 reporting max frame size; might be useful to report minimum to end
 stations, but unmodified end stations would do nothing with that
 TLV since they assume that the MTU is at least 1518.

10. OAM

 The OAM area is seeing active development in the IETF with

https://datatracker.ietf.org/doc/html/rfc2460

Nordmark (ed), et al. Expires September 10, 2015 [Page 10]

Internet-Draft Encaps Considerations March 2015

 discussions (at least) in NVO3 and SFC working groups, plus the new
 LIME WG looking at architecture and YANG models.

 The design team has take a narrow view of OAM to explore the
 potential OAM implications on the encapsulation format.

 In terms of what we have heard from the various working groups there
 seem to be needs to:
 o Be able to send out-of-band OAM messages - that potentially should
 follow the same path through the network as some flow of data
 packets.
 * Such OAM messages should not accidentally be decapsulated and
 forwarded to the end stations.
 * Be able to add OAM information to data packets that are
 encapsulated. Discussions have been around
 * Using a bit in the OAM to synchronize sampling of counters
 between the encapsulator and decapsulator.
 * Optional timestamps, sequence numbers, etc for more detailed
 measurements between encapsulator and decapsulator.
 o Usable for both proactive monitoring (akin to BFD) and reactive
 checks (akin to traceroute to pin-point a failure)

 To ensure that the OAM messages can follow the same path the OAM
 messages need to get the same ECMP (and LAG hashing) results as a
 given data flow. An encaps can choose between one of:
 o Limit ECMP hashing to not look past the UDP header i.e. the
 entropy needs to be in the source/destination IP and UDP ports
 o Make OAM packets look the same as data packets i.e. the initial
 part of the OAM payload has the inner Ethernet, IP, TCP/UDP
 headers as a payload. (This approach was taken in TRILL out of
 necessity since there is no UDP header.) OAM bit in encaps must
 in any case be excluded from the entropy.

 There can be several ways to prevent OAM packets from accidentally
 being forwarded to hosts using:
 o A bit in the frame (as in TRILL) indicating OAM
 o A next protocol indication with a designated value for "none" or
 "oam".
 This assumes that the bit or next protocol, respectively, would not
 affect entropy/ECMP in the underlay.

 There has been suggestions that one (or more) marker bits in the
 encaps header would be useful in order to delineate measurement
 epochs on the encapsulator and decapsulator and use that to compare
 counters to determine packet loss.

 A result of the above is that OAM is likely to evolve and needs some
 degree of extensibility from the encapsulation format; a bit or two

Nordmark (ed), et al. Expires September 10, 2015 [Page 11]

Internet-Draft Encaps Considerations March 2015

 plus the ability to define additional larger extensions.

 An open question is how to handle error messages or other reports
 relating to OAM. One can think if such reporting as being associated
 with the encaps the same way ICMP is associated with IP. Would it
 make sense for the IETF to develop a common Encaps Error Reporting
 Protocol as part of OAM, which can be used for different
 encapsulations? And if so, what are the technical challenges. For
 instance, how to avoid it being filtered as ICMP often is?

 A potential additional consideration for OAM is the possible future
 existence of gateways that "stitch" together different dataplane
 encapsulations and might want to carry OAM end-to-end across the
 different encapsulations.

11. Security Considerations

 Different encapsulation use cases will have different requirements
 around security. For instance, when encapsulation is used to build
 overlay networks for network virtualization, isolation between
 virtual networks may be paramount. BIER support of multicast may
 entail different security requirements than encapsulation for
 unicast.

 In real deployment, the security of the underlying network may be
 considered for determining the level of security needed in the
 encapsulation layer. However for the purposes of this discussion, we
 assume that network security is out of scope and that the underlying
 network does not itself provide adequate or as least uniform security
 mechanisms for encapsulation.

 There are at least three considerations for security:
 o Anti-spoofing/virtual network isolation
 o Interaction with packet level security such as IPsec
 o Privacy (e.g., VNI ID confidentially for NVO3)

 This section uses a VNI ID in NVO3 as an example. A SFC or BIER
 encapsulation is likely to have fields with similar security and
 privacy requirements.

11.1. Encapsulation-specific considerations

 Some of these considerations appear for a new encapsulation, and
 others are more specific to network virtualization in datacenters.
 o New attack vectors:

Nordmark (ed), et al. Expires September 10, 2015 [Page 12]

Internet-Draft Encaps Considerations March 2015

 * DDOS on specific queued/paths by attempting to reproduce the
 5-tuple hash for targeted connections.
 * Entropy in outer 5-tuple may be too little or predictable.
 * Leakage of identifying information in the encapsulation header
 for an encrypted payload.
 * Vulnerabilities of using global values in fields like VNI ID.
 o Trusted versus untrusted tenants in network virtualization:
 * The criticality of virtual network isolation depends on whether
 tenants are trusted or untrusted. In the most extreme cases,
 tenants might not only be untrusted but may be considered
 hostile.
 * For a trusted set of users (e.g. a private cloud) it may be
 sufficient to have just a virtual network identifier to provide
 isolation. Packets inadvertently crossing virtual networks
 should be dropped similar to a TCP packet with a corrupted port
 being received on the wrong connection.
 * In the presence of untrusted users (e.g. a public cloud) the
 virtual network identifier must be adequately protected against
 corruption and verified for integrity. This case may warrant
 keyed integrity.
 o Different forms of isolation:
 * Isolation could be blocking all traffic between tenants (or
 except as allowed by some firewall)
 * Could also be about performance isolation i.e. one tenant can
 overload the network in a way that affects other tenants
 * Physical isolation of traffic for different tenants in network
 may be required, as well as required restrictions that tenants
 may have on where their packets may be routed.
 o New attack vectors from untrusted tenants:
 * Third party VMs with untrusted tenants allows internally borne
 attacks within data centers
 * Hostile VMs inside the system may exist (e.g. public cloud)
 * Internally launched DDOS
 * Passive snooping for mis-delivered packets
 * Mitigate damage and detection in event that a VM is able to
 circumvent isolation mechanisms
 o Tenant-provider relationship:
 * Tenant might not trust provider, hypervisors, network
 * Provider likely will need to provide SLA or a least a statement
 on security
 * Tenant may implement their own additional layers of security
 * Regulation and certification consuderations
 o Trend towards tighter security:
 * Tenants' data in network increases in volume and value, attacks
 become more sophisticated
 * Large DCs already encrypt everything on disk

Nordmark (ed), et al. Expires September 10, 2015 [Page 13]

Internet-Draft Encaps Considerations March 2015

 * DCs likely to encrypt inter-DC traffic at this point, use TLS
 to Internet.
 * Encryption within DC is becoming more commonplace, becomes
 ubiquitous when cost is low enough.
 * Cost/performance considerations. Cost of support for strong
 security has made strong network security in DCs prohibitive.
 * Are there lessons from MacSec?

11.2. Virtual network isolation

 The first requirement is isolation between virtual networks. Packets
 sent in one virtual network should never be illegitimately received
 by a node in another virtual network. Isolation should be protected
 in the presence of malicious attacks or inadvertent packet
 corruption.

 The second requirement is sender authentication. Sender identity is
 authenticated to prevent anti-spoofing. Even if an attacker has
 access to the packets in the network, they cannot send packets into a
 virtual network. This may have two possibilities:
 o Pairwise sender authentication. Any two communicating hosts
 negotiate a shared key.
 o Group authentication. A group of hosts share a key (this may be
 more appropriate for multicast of encapsulation).

 Possible security solutions:
 o Security cookie: This is similar to L2TP cookie mechanism
 [RFC3931]. A shared plain text cookie is shared between
 encapsulator and decapsulator. A receiver validates a packet by
 evaluating if the cookie is correct for the virtual network and
 address of a sender. Validation function is F(cookie, VNI ID,
 source addr). If cookie matches, accept packet, else drop. Since
 cookie is plain text this method does not protect against an
 eavesdropping. Cookies are set and may be rotated out of band.
 o Secure hash: This is a stronger mechanism than simple cookies that
 borrows from IPsec and PPP authentication methods. In this model
 security field contains a secure hash of some fields in the packet
 using a shared key. Hash function may be something like H(key,
 VNI ID, addrs, salt). The salt ensures the hash is not the same
 for every packet, and if it includes a sequence number may also
 protect against replay attacks.

 In any use of a shared key, periodic re-keying should be allowed.
 This could include use of techniques like generation numbers, key
 windows, etc. See [I-D.farrelll-mpls-opportunistic-encrypt] for an
 example application.

 We might see firewalls that are aware of the encaps and can provide

https://datatracker.ietf.org/doc/html/rfc3931

Nordmark (ed), et al. Expires September 10, 2015 [Page 14]

Internet-Draft Encaps Considerations March 2015

 some defense in depth combined with the above example anti-spoofing
 approaches. An example would be an NVO3-aware firewall being able to
 check the VNI ID.

 Separately and in addition to such filtering, there might be a desire
 to completely block an encapsulation protocol at certain places in
 the network, e.g., at the edge of a datacenter. Using a fixed
 standard UDP destination port number for each encapsulation protocol
 would facilitate such blocking.

11.3. Packet level security

 An encapsulated packet may itself be encapsulated in IPsec (e.g.
 ESP). This should be straightforward and in fact is what would
 happen today in security gateways. In this case, there is no special
 consideration for the fact that packet is encapsulated, however since
 the encapsulation layer headers are included (part of encrypted data
 for instance) we lose visibility in the network of the encapsulation.

 The more interesting case is when security is applied to the
 encapsulation payload. This will keep the encapsulation headers in
 the outer header and visible to the network (for instance in nvo3 we
 may want to firewall based on VNI ID even if packet is encrypted).
 In this model protocol stack may be something like
 IP|UDP|Encap|ESP|IP in tunnel mode, but there's nothing that prevents
 using transport mode (this looks a lot like ESP/UDP [RFC3948]). The
 encapsulation and security are probably done together at encapsulator
 and resolved at decapsulator. Since the encapsulation header is
 outside of the security coverage, this may itself require security
 also (like described above).

 In both of the above the security associations (SAs) may be between
 physical hosts, so for instance in nvo3 we can have packets of
 different virtual networks using the same SA-- this should not be an
 issue since it is the VNI ID that ensures isolation (which needs to
 be secured also). In this case of security applied to encap payload,
 this does present a bit of protocol layer inversion in the header
 (encapsulation refers to overlay, but ESP operates on underlay), but
 this should be okay as long as semantics are clear and processing is
 deterministic.

12. QoS

 In the Internet architecture we support QoS using the Differentiated
 Services Code Points (DSCP) in the formerly named Type-of-Service
 field in the IPv4 header, and in the Traffic-Class field in the IPv6
 header. The ToS and TC fields also contain the two ECN bits.

https://datatracker.ietf.org/doc/html/rfc3948

Nordmark (ed), et al. Expires September 10, 2015 [Page 15]

Internet-Draft Encaps Considerations March 2015

 We have existing specifications how to process those bits. See
 [RFC2983] for diffserv handling, which specifies how the received
 DSCP value is used to set the DSCP value in an outer IP header when
 encapsulating. (There are also existing specifications how DSCP can
 be mapped to layer2 priorities.)

 Those specifications apply whether or not there is some intervening
 headers (e.g., for NVO3 or SFC) between the inner and outer IP
 headers. Thus the encapsulation considerations in this area are
 mainly about applying the framework in [RFC2983].

 There are some other considerations specific to doing OAM for
 encapsulations. If OAM messages are used to measure latency, it
 would make sense to treat them the same as data payloads. Thus they
 need to have the same outer DSCP value as the data packets which they
 wish to measure.

 Due to OAM there are constraints on middleboxes in general. If
 middleboxes inspect the packet past the outer IP+UDP and encaps
 header and look for inner IP and TCP/UDP headers, that might violate
 the assumption that OAM packets will be handled the same as regular
 data packets. That issue is broader than just QoS - applies to
 firewall filters etc.

13. Congestion Considerations

 Additional encapsulation headers does not introduce anything new for
 Explicit Congestion Notification. It is just like IP-in-IP and IPsec
 tunnels which is specified in [RFC6040] in terms of how the ECN bits
 in the inner and outer header are handled when encapsulating and
 decapsulating packets. Thus new encapsulations can more or less
 include that by reference.

 There are additional considerations around carrying non-congestion
 controlled traffic. These details have been worked out in
 [I-D.ietf-mpls-in-udp]. As specified in [RFC5405]: "IP-based traffic
 is generally assumed to be congestion-controlled, i.e., it is assumed
 that the transport protocols generating IP-based traffic at the
 sender already employ mechanisms that are sufficient to address
 congestion on the path Consequently, a tunnel carrying IP-based
 traffic should already interact appropriately with other traffic
 sharing the path, and specific congestion control mechanisms for the
 tunnel are not necessary".

 For this reason, where an encaps is used to carry IP traffic that is
 known to be congestion controlled, the UDP tunnels does not create an
 additional need for congestion control. Internet IP traffic is

https://datatracker.ietf.org/doc/html/rfc2983
https://datatracker.ietf.org/doc/html/rfc2983
https://datatracker.ietf.org/doc/html/rfc6040
https://datatracker.ietf.org/doc/html/rfc5405

Nordmark (ed), et al. Expires September 10, 2015 [Page 16]

Internet-Draft Encaps Considerations March 2015

 generally assumed to be congestion-controlled. Similarly, in general
 Layer 3 VPNs are carrying IP traffic that is similarly assumed to be
 congestion controlled.

 However, some of the encapsulations (at least NVO3) will be able to
 carry arbitrary Layer 2 packets to provide an L2 service, in which
 case one can not assume that the traffic is congestion controlled.

 One could handle this by adding some congestion control support to
 the encapsulation header (one instance of which would end up looking
 like DCCP). However, if the underlay is well-provisioned and managed
 as opposed to being arbitrary Internet path, it might be sufficient
 to have a slower reaction to congestion induced by that traffic.
 There is work underway on a notion of "circuit breakers" for this
 purpose. See See [I-D.ietf-tsvwg-circuit-breaker]. Encapsulations
 which carry arbitrary Layer 2 packets want to consider that ongoing
 work.

 If the underlay is provisioned in such a way that it can guarantee
 sufficient capacity for non-congestion controlled Layer 2 traffic,
 then such circuit breakers might not be needed.

 Two other considerations appear in the context of these
 encapsulations as applied to overlay networks:
 o Protect against malicious end stations
 o Ensure fairness and/or measure resource usage across multiple
 tenants
 Those issues are really orthogonal to the encapsulation, in that they
 are present even when no new encapsulation header is in use.
 However, the application of the new encapsulations are likely to be
 in environments where those issues are becoming more important.
 Hence it makes sense to consider them.

 One could make the encapsulation header be extensible to that it can
 carry sufficient information to be able to measure resource usage,
 delays, and congestion. The suggestions in the OAM section about a
 single bit for counter synchronization, and optional timestamps
 and/or sequence numbers, could be part of such an approach. There
 might also be additional congestion-control extensions to be carried
 in the encapsulation. Overall this results in a consideration to be
 able to have sufficient extensibility in the encapsulation to be
 handle to handle potential future developments in this space.

 Coarse measurements are likely to suffice, at least for circuit-
 breaker-like purposes, see [I-D.wei-tsvwg-tunnel-congestion-feedback]
 and [I-D.briscoe-conex-data-centre] for examples on active work in
 this area via use of ECN. [RFC6040] Appendix C is also relevant.
 The outer ECN bits seem sufficient (at least when everything uses

https://datatracker.ietf.org/doc/html/rfc6040#appendix-C

Nordmark (ed), et al. Expires September 10, 2015 [Page 17]

Internet-Draft Encaps Considerations March 2015

 ECN) to do this course measurements. Needs some more study for the
 case when there are also drops; might need to exchange counters
 between ingress and egress to handle drops.

 Circuit breakers are not sufficient to make a network with different
 congestion control when the goal is to provide a predictable service
 to different tenants. The fallback would be to rate limit different
 traffic.

14. Header Protection

 Many UDP based encapsulations such as VXLAN [RFC7348] either
 discourage or explicitly disallow the use of UDP checksums. The
 reason is that the UDP checksum covers the entire payload of the
 packet and switching ASICs are typically optimized to look at only a
 small set of headers as the packet passes through the switch. In
 these case, computing a checksum over the packet is very expensive.
 (Software endpoints and the NICs used with them generally do not have
 the same issue as they need to look at the entire packet anyways.)

 The lack a header checksum creates the possibility that bit errors
 can be introduced into any information carried by the new headers.
 Specifically, in the case of IPv6, the assumption is that a transport
 layer checksum - UDP in this case - will protect the IP addresses
 through the inclusion of a pseudoheader in the calculation. This is
 different from IPv4 on which many of these encapsulation protocols
 are initially deployed which contains its own header checksum. In
 addition to IP addresses, the encapsulation header often contains its
 own information which is used for addressing packets or other high
 value network functions. Without a checksum, this information is
 potentially vulnerable - an issue regardless of whether the packet is
 carried over IPv4 or IPv6.

 Several protocols cite [RFC6935] and [RFC6936] as an exemption to the
 IPv6 checksum requirements. However, these are intended to be
 tailored to a fairly narrow set of circumstances - primarily relying
 on sparseness of the address space to detect invalid values and well
 managed networks - and are not a one size fits all solution. In
 these cases, an analysis should be performed of the intended
 environment, including the probability of errors being introduced and
 the use of ECC memory in routing equipment.

 Conceptually, the ideal solution to this problem is a checksum that
 covers only the newly added headers of interest. There is little
 value in the portion of the UDP checksum that covers the encapsulated
 packet because that would generally be protected by other checksums
 and this is the expensive portion to compute. In fact, this solution

https://datatracker.ietf.org/doc/html/rfc7348
https://datatracker.ietf.org/doc/html/rfc6935
https://datatracker.ietf.org/doc/html/rfc6936

Nordmark (ed), et al. Expires September 10, 2015 [Page 18]

Internet-Draft Encaps Considerations March 2015

 already exists in the form of UDP-Lite and UDP based encapsulations
 could be easily ported to run on top of it. Unfortunately, the main
 value in using UDP as part of the encapsulation header is that it is
 recognized by already deployed equipment for the purposes of ECMP,
 RSS, and middlebox operations. As UDP-Lite uses a different protocol
 number than UDP and it is not widely implemented in middleboxes, this
 value is lost. A possible solution is to incorporate the same
 partial-checksum concept as UDP-Lite or other header checksum
 protection into the encapsulation header and continue using UDP as
 the outer protocol. One potential challenge with this approach is
 the use of NAT or other form of translation on the outer header will
 result in an invalid checksum as the translator will not know to
 update the encapsulation header.

 The method chosen to protect headers is often related to the security
 needs of the encapsulation mechanism. On one hand, the impact of a
 poorly protected header is not limited to only data corruption but
 can also introduce a security vulnerability in the form of
 misdirected packets to an unauthorized recipient. Conversely, high
 security protocols that already include a secure hash over the
 valuable portion of the header (such as by encrypting the entire IP
 packet using IPsec, or some secure hash of the encap header) do not
 require additional checksum protection as the hash provides stronger
 assurance than a simple checksum.

15. Extensibility Considerations

 Protocol extensibility is the concept that a networking protocol may
 be extended to include new use cases or functionality that were not
 part of the original protocol specification. Extensibility may be
 used to add security, control, management, or performance features to
 a protocol. A solution may allow private extensions for
 customization or experimentation.

 Extending a protocol often implies that a protocol header must carry
 new information. There are two usual methods to accomplish this:
 1. Define or redefine the meaning of existing fields in a protocol
 header.
 2. Add new (optional) fields to the protocol header.
 It is also possible to create a new protocol version, but this is
 more associated with defining a protocol than extending it (IPv6
 being a successor to IPv4 is an example of protocol versioning).

 Many protocol definitions include some number of reserved fields or
 bits which can be used for future extension. VXLAN is an example of
 a protocol that includes reserved bits which are subsequently being
 allocated for new purposes. Another technique employed is to

Nordmark (ed), et al. Expires September 10, 2015 [Page 19]

Internet-Draft Encaps Considerations March 2015

 repurpose existing header fields with new meanings. A classic
 example of this is the definition of DSCP code point which redefines
 the ToS field originally specified in IPv4. When a field is
 redefined, some mechanism may be needed to ensure that all interested
 parties agree on the meaning of the field. The techniques of
 defining meaning for reserved bits or redefining existing fields have
 the advantage that a protocol header can be kept a fixed length. The
 disadvantage is that the extensibility is limited. For instance, the
 number reserved bits in a fixed protocol header is limited. For
 standard protocols the decision to commit to a definition for a field
 can be wrenching since it is difficult to retract later. Also, it is
 difficult to predict a priori how many reserved fields or bits to put
 into a protocol header to satisfy the extensions create over the
 lifetime of the protocol.

 Extending a protocol header with new fields can be done in several
 ways.
 o TLVs are a very popular method used in such protocols as IP and
 TCP. Depending on the type field size and structure, TLVs can
 offer a virtually unlimited range of extensions. A disadvantage
 of TLVs is that processing them can be verbose, quite complicated,
 several validations must often be done for each TLV, and there is
 no deterministic ordering for a list of TLVs. TCP serves as an
 example of a protocol where TLVs have been successfully used (i.e.
 required for protocol operation). IP is an example of a protocol
 that allows TLVs but are rarely used in practice (router fast
 paths usually that assume no IP options). Note that TCP TLVs are
 implemented in software as well as (NIC) hardware handling various
 forms of TCP offload.
 o Extension headers are closely related to TLVs. These also carry
 type/value information, but instead of being a list of TLVs within
 a single protocol header, each one is in its own protocol header.
 IPv6 extension headers and SFC NSH are examples of this technique.
 Similar to TLVs these offer a wide range of extensibility, but
 have similarly complex processing. Another difference with TLVs
 is that each extension header is idempotent. This is beneficial
 in cases where a protocol implements a push/pop model for header
 elements like service chaining, but makes it more difficult group
 correlated information within one protocol header.
 o A particular form of extension headers are the tags used by IEEE
 802 protocols. Those are similar to e.g., IPv6 extension headers
 but with the key difference that each tag is a fixed length header
 where the length is implicit in the tag value. Thus as long as a
 receiver can be programmed with a tag value to length map, it can
 skip those new tags.
 o Flag-fields are a non-TLV like method of extending a protocol
 header. The basic idea is that the header contains a set of
 flags, where each set flags corresponds to optional field that is

Nordmark (ed), et al. Expires September 10, 2015 [Page 20]

Internet-Draft Encaps Considerations March 2015

 present in the header. GRE is an example of a protocol that
 employs this mechanism. The fields are present in the header in
 the order of the flags, and the length of each field is fixed.
 Flag-fields are simpler to process compared to TLVs, having fewer
 validations and the order of the optional fields is deterministic.
 A disadvantage is that range of possible extensions with flag-
 fields is smaller than TLVs.

 The requirements for receiving unknown or unimplemented extensible
 elements in an encapsulation protocol (flags, TLVs, optional fields)
 need to be specified. There are two parties to consider, middle
 boxes and terminal endpoints of encapsulation (at the decapsulator).

 A protocol may allow or expect nodes in a path to modify fields in an
 encapsulation (example use of this is BIER). In this case, the
 middleboxes should follow the same requirements as nodes terminating
 the encapsulation. In the case that middle boxes do not modify the
 encapsulation, we can assume that they may still inspect any fields
 of the encapsulation. Missing or unknown fields should be accepted
 per protocol specification, however it is permissible for a site to
 implement a local policy otherwise (e.g. a firewall may drop packets
 with unknown options).

 For handling unknown options at terminal nodes, there are two
 possibilities: drop packet or accept while ignoring the unknown
 options. Many Internet protocols specify that reserved flags must be
 set to zero on transmission and ignored on reception. L2TP is
 example data protocol that has such flags. GRE is a notable
 exception to this rule, reserved flag bits 1-5 cannot be ignored
 [RFC2890]. For TCP and IPv4, implementations must ignore optional
 TLVs with unknown type; however in IPv6 if a packet contains an
 unknown extension header (unrecognized next header type) the packet
 must be dropped with an ICMP error message returned. The IPv6
 options themselves (encoded inside the destinations options or hop-
 by-hop options extension header) have more flexibility. There bits
 in the option code are used to instruct the receiver whether to
 ignore, silently drop, or drop and send error if the option is
 unknown. Some protocols define a "mandatory bit" that can is set
 with TLVs to indicate that an option must not be ignored.
 Conceptually, optional data elements can only be ignored if they are
 idempotent and do not alter how the rest of the packet is parsed or
 processed.

 Depending on what type of protocol evolution one can predict, it
 might make sense to have an way for a sender to express that the
 packet should be dropped by a terminal node which does not understand
 the new information. In other cases it would make sense to have the
 receiver silently ignore the new info. The former can be expressed

https://datatracker.ietf.org/doc/html/rfc2890

Nordmark (ed), et al. Expires September 10, 2015 [Page 21]

Internet-Draft Encaps Considerations March 2015

 by having a version field in the encapsulation, or a notion of
 "mandatory bit" as discussed above.

 A security mechanism which use some form secure hash over the encaps
 header would need to be able to know which extensions can be changed
 in flight.

15.1. Next-protocol

 [Note that there is editorial duplication between this section and
 the Next Protocol Indication section earlier in the document]

 Choices:
 o Payload type implied (by UDP port for instance). ESP, L2TP, MPLS,
 over UDP are example, Linux Foo-Over-UDP is example
 implementation. This model is simple, however allocating a port
 for every possible protocol might be difficult given the trend
 towards port conservation as described in
 [I-D.ietf-tsvwg-port-use].
 o Encapsulation contains a next header field. Possibilities:
 * EtherType: GRE protocol field is example. Allows encapsulation
 of any EtherType (including IPv4, IPv6, end Ethernet).
 Disadvantages are that it is 16 bits for less than 100 needed
 values, and the number space is controlled by the IEEE 802 RAC.
 * IP protocol: IPv6 extension headers, ESP are examples. Allows
 encapsulation of any IP protocol including Ethernet via
 ETHERIP, IPv4, IPv6, IPsec protocols, UDP (transport mode
 considerations needed). IANA managed eight bit values,
 presumably more difficult to get an assigned number than to get
 a transport port assignment.
 * Protocol specific number space. Example PPP. Could be 8 or 16
 bits and would be IANA controlled. Primary advantage is that
 it might be easier to define protocols for encapsulation that
 are not defined in other number spaces (802.11 for instance).
 Disadvantage is that it represents yet another number space to
 be managed and doesn't leverage existing ones.

16. Layering Considerations

 One can envision that SFC might use NVO3 as a delivery/transport
 mechanism. With more imagination that in turn might be delivered
 using BIER. Thus it is useful to think about what things look like
 when we have BIER+NVO3+SFC+payload. Also, if NVO3 is widely deployed
 there might be cases of NVO3 nesting where a customer uses NVO3 to
 provide network virtualization e.g., across departments. That
 customer uses a service provider which happens to use NVO3 to provide
 transport for their customers.Thus NVO3 in NVO3 might happen.

Nordmark (ed), et al. Expires September 10, 2015 [Page 22]

Internet-Draft Encaps Considerations March 2015

 A key question we set out to answer is what the packets might look
 like in such a case, and in particular whether we would end up with
 multiple UDP headers for entropy.

 Based on the discussion in the Entropy section, the entropy is
 associated with the outer delivery IP header. Thus if there are
 multiple IP headers there would be a UDP header for each one of the
 IP headers. But SFC does not require its own IP header. So a case
 of NVO3+SFC would be IP+UDP+NVO3+SFC. A nested NVO3 encapsulation
 would have independent IP+UDP headers.

 The layering also has some implications for middleboxes.
 o A device on the path between the ingress and egress is allowed to
 transparently inspect all layers of the protocol stack and drop or
 forward, but not transparently modify anything but the layer in
 which they operate. What this means is that an IP router is
 allowed modify the outer IP ttl and ECN bits, but not the encaps
 header or inner headers and payload. And a BIER router is allowed
 to modify the BIER header.
 o Alternatively such a device can become visible at a higher layer.
 E.g., a middlebox could become an decaps + function + encaps which
 means it will generate a new encaps header.

 The design team asked itself some additional questions:
 o Would it make sense to have a common encaps base header (for OAM,
 security?, etc) and then followed by the specific information for
 NVO3, SFC, BIER? Given that there are separate proposals and the
 set of information needing to be carried differs, and the
 extensibility needs might be different, it would be difficult and
 not that useful to have a common base header.
 o With a base header in place, one could view the different
 functions (NVO3, SFC, and BIER) as different extensions to that
 base header resulting in encodings which are more space optimal by
 not repeating the same base header. The base header would only be
 repeated when there is an additional IP (and hence UDP) header.
 That could mean a single length field (to skip to get to the
 payload after all the encaps headers). That might be technically
 feasible, but it would create a lot of dependencies between
 different WGs making it harder to make progress. Compare with the
 potential savings in packet size.

17. Service model

 The IP service is lossy and subject to reordering. In order to avoid
 a performance impact on transports like TCP the handling of packets
 is designed to avoid reordering packets that are in the same
 transport flow (which is typically identified by the 5-tuple). But

Nordmark (ed), et al. Expires September 10, 2015 [Page 23]

Internet-Draft Encaps Considerations March 2015

 across such flows the receiver can see different ordering for a given
 sender. That is the case for a unicast vs. a multicast flow from the
 same sender.

 There is a general tussle between the desire for high capacity
 utilization across a multipath network and the import on packet
 ordering within the same flow (which results in lower transport
 protocol performance). That isn't affected by the introduction of an
 encapsulation. However, the encapsulation comes with some entropy,
 and there might be cases where folks want to change that in response
 to overload or failures. For instance, might want to change UDP
 source port to try different ECMP route. Such changes can result in
 packet reordering within a flow, hence would need to be done
 infrequently and with care e.g., by identifying packet trains.

 There might be some applications/services which are not able to
 handle reordering across flows. The IETF has defined pseudo-wires
 [RFC3985] which provides the ability to ensure ordering (implemented
 using sequence numbers and/or timestamps).

 Architectural such services would make sense, but as a separate layer
 on top of an encapsulation protocol. They could be deployed between
 ingress and egress of a tunnel which uses some encaps. Potentially
 the tunnel control points in the form of an ingress and egress will
 become a platform for fixing suboptimal behavior elsewhere in the
 network. For example, this document suggests that some congestion
 handling might be needed to handle non-congestion controlled traffic
 that gets tunneled, and also that fairness/QoS policing can be
 deployed on those devices. Others have suggested that tunnels is one
 way to deploy ECN without having to add ECN support in the endpoints
 [I-D.briscoe-conex-data-centre].

 But the tunnels could potentially do more like increase reliability
 (retransmissions, FEC) or load spreading using e.g. MP-TCP between
 ingress and egress.

18. Hardware Friendly

 Hosts, switches and routers often leverage capabilities in the
 hardware to accelerate packet encapsulation, decapsulation and
 forwarding.

 Some design considerations in encapsulation that leverage these
 hardware capabilities may result in more efficiently packet
 processing and higher overall protocol throughput.

 While "hardware friendliness" can be viewed as unnecessary

https://datatracker.ietf.org/doc/html/rfc3985

Nordmark (ed), et al. Expires September 10, 2015 [Page 24]

Internet-Draft Encaps Considerations March 2015

 considerations for a design, part of the motivation for considering
 this is ease of deployment; being able to leverage existing NIC and
 switch chips for at least a useful subset of the functionality that
 the new encapsulation provides. The other part is the ease of
 implementing new NICs and switch/router chips that support the
 encapsulation at ever increasing line rates.

 [disclaimer] There are many different types of hardware in any given
 network, each maybe better at some tasks while worse at others. We
 would still recommend protocol designers to examine the specific
 hardware that are likely to be used in their networks and make
 decisions on a case by case basis.

 Some considerations are:
 o Keep the encap header small. Switches and routers usually only
 read the first small number of bytes into the fast memory for
 quick processing and easy manipulation. The bulk of the packets
 are usually stored in slow memory. A big encap header may not fit
 and additional read from the slow memory will hurt the overall
 performance and throughput.
 o Put important information at the beginning of the encapsulation
 header. The reasoning is similar as explained in the previous
 point. If important information are located at the beginning of
 the encapsulation header, the packet may be processed with smaller
 number of bytes to be read into the fast memory and improve
 performance.
 o Separation of NVO3 header from SFC header such that an encap can
 also be processed by forwarding hardware (who can only process
 network virtualization and pass the service chaining function to
 another device specialized in service offering)
 o Avoid full packet checksums in the encapsulation if possible.
 Most of the switch/router hardware make switching/forwarding
 decisions by reading and examining only the first certain number
 of bytes in the packet. Most of the body of the packet do not
 need to be processed normally. if we are concerned of preventing
 packet to be misdelivered due to memory errors, consider only
 perform header checksums. Note that NIC chips can typically
 already do full packet checksums for TCP/UDP, while adding a
 header checksum might require adding some hardware support.
 o Place important information at fixed offset in the encapsulation
 header. Packet processing hardware may be capable of parallel
 processing. If important information can be found at fixed
 offset, different part of the encapsulation header may be
 processed by different hardware units in parallel (for example
 multiple table lookups may be launched in parallel). Hardware can
 handle optional information as long as when the information is
 present it is found in one and only one place in the header.
 Typical TLV encoding of options does not have that property since

Nordmark (ed), et al. Expires September 10, 2015 [Page 25]

Internet-Draft Encaps Considerations March 2015

 the order of TLVs is unconstrained.
 o Limit the number of header combinations. In many cases the
 hardware can explore different combinations of headers in
 parallel, however there is some added cost for this.

18.1. Considerations for NIC offload

 This section provides guidelines to provide support of common
 offloads for encapsulation in Network Interface Cards (NICs).
 Offload mechanisms are techniques that are implemented separately
 from the normal protocol implementation of a host networking stack
 and are intended to optimize or speed up protocol processing.
 Hardware offload is performed within a NIC device on behalf of a
 host.

 There are three basic offload techniques of interest:
 o Receive multi queue
 o Checksum offload
 o Segmentation offload

18.1.1. Receive multi-queue

 Contemporary NICs support multiple receive descriptor queues (multi-
 queue). Multi-queue enables load balancing of network processing for
 a NIC across multiple CPUs. On packet reception, a NIC must select
 the appropriate queue for host processing. Receive Side Scaling
 (RSS) is a common method which uses the flow hash for a packet to
 index an indirection table where each entry stores a queue number.

 UDP encapsulation, where the source port is used for entropy, should
 be compatible with multi-queue NICs that support five-tuple hash
 calculation for UDP/IP packets as input to RSS. The source port
 ensures classification of the encapsulated flow even in the case that
 the outer source and destination addresses are the same for all flows
 (e.g. all flows are going over a single tunnel).

18.1.2. Checksum offload

 Many NICs provide capabilities to calculate standard ones complement
 payload checksum for packets in transmit or receive. When using
 encapsulation over UDP there are at least two checksums that may be
 of interest: the encapsulated packet's transport checksum, and the
 UDP checksum in the outer header.

18.1.2.1. Transmit checksum offload

 NICs may provide a protocol agnostic method to offload transmit
 checksum (NETIF_F_HW_CSUM in Linux parlance) that can be used with

Nordmark (ed), et al. Expires September 10, 2015 [Page 26]

Internet-Draft Encaps Considerations March 2015

 UDP encapsulation. In this method the host provides checksum related
 parameters in a transmit descriptor for a packet. These parameters
 include the starting offset of data to checksum, the length of data
 to checksum, and the offset in the packet where the computed checksum
 is to be written. The host initializes the checksum field to pseudo
 header checksum. In the case of encapsulated packet, the checksum
 for an encapsulated transport layer packet, a TCP packet for
 instance, can be offloaded by setting the appropriate checksum
 parameters.

 NICs typically can offload only one transmit checksum per packet, so
 simultaneously offloading both an inner transport packet's checksum
 and the outer UDP checksum is likely not possible. In this case
 setting UDP checksum to zero (per above discussion) and offloading
 the inner transport packet checksum might be acceptable.

 There is a proposal in [I-D.herbert-remotecsumoffload] to leverage
 NIC checksum offload when an encapsulator is co-resident with a host.

18.1.2.2. Receive checksum offload

 Protocol encapsulation is compatible with NICs that perform a
 protocol agnostic receive checksum (CHECKSUM_COMPLETE in Linux
 parlance). In this technique, a NIC computes a ones complement
 checksum over all (or some predefined portion) of a packet. The
 computed value is provided to the host stack in the packet's receive
 descriptor. The host driver can use this checksum to "patch up" and
 validate any inner packet transport checksum, as well as the outer
 UDP checksum if it is non-zero.

 Many legacy NICs don't provide checksum-complete but instead provide
 an indication that a checksum has been verified (CHECKSUM_UNNECESSARY
 in Linux). Usually, such validation is only done for simple TCP/IP
 or UDP/IP packets. If a NIC indicates that a UDP checksum is valid,
 the checksum-complete value for the UDP packet is the "not" of the
 pseudo header checksum. In this way, checksum-unnecessary can be
 converted to checksum-complete. So if the NIC provides checksum-
 unnecessary for the outer UDP header in an encapsulation, checksum
 conversion can be done so that the checksum-complete value is derived
 and can be used by the stack to validate an checksums in the
 encapsulated packet.

18.1.3. Segmentation offload

 Segmentation offload refers to techniques that attempt to reduce CPU
 utilization on hosts by having the transport layers of the stack
 operate on large packets. In transmit segmentation offload, a
 transport layer creates large packets greater than MTU size (Maximum

Nordmark (ed), et al. Expires September 10, 2015 [Page 27]

Internet-Draft Encaps Considerations March 2015

 Transmission Unit). It is only at much lower point in the stack, or
 possibly the NIC, that these large packets are broken up into MTU
 sized packet for transmission on the wire. Similarly, in receive
 segmentation offload, small packets are coalesced into large, greater
 than MTU size packets at a point low in the stack receive path or
 possibly in a device. The effect of segmentation offload is that the
 number of packets that need to be processed in various layers of the
 stack is reduced, and hence CPU utilization is reduced.

18.1.3.1. Transmit Segmentation Offload

 Transmit Segmentation Offload (TSO) is a NIC feature where a host
 provides a large (larger than MTU size) TCP packet to the NIC, which
 in turn splits the packet into separate segments and transmits each
 one. This is useful to reduce CPU load on the host.

 The process of TSO can be generalized as:
 o Split the TCP payload into segments which allow packets with size
 less than or equal to MTU.
 o For each created segment:
 1. Replicate the TCP header and all preceding headers of the
 original packet.
 2. Set payload length fields in any headers to reflect the length
 of the segment.
 3. Set TCP sequence number to correctly reflect the offset of the
 TCP data in the stream.
 4. Recompute and set any checksums that either cover the payload
 of the packet or cover header which was changed by setting a
 payload length.

 Following this general process, TSO can be extended to support TCP
 encapsulation UDP. For each segment the Ethernet, outer IP, UDP
 header, encapsulation header, inner IP header if tunneling, and TCP
 headers are replicated. Any packet length header fields need to be
 set properly (including the length in the outer UDP header), and
 checksums need to be set correctly (including the outer UDP checksum
 if being used).

 To facilitate TSO with encapsulation it is recommended that optional
 fields should not contain values that must be updated on a per
 segment basis-- for example an encapsulation header should not
 include checksums, lengths, or sequence numbers that refer to the
 payload. If the encapsulation header does not contain such fields
 then the TSO engine only needs to copy the bits in the encapsulation
 header when creating each segment and does not need to parse the
 encapsulation header.

Nordmark (ed), et al. Expires September 10, 2015 [Page 28]

Internet-Draft Encaps Considerations March 2015

18.1.3.2. Large Receive Offload

 Large Receive Offload (LRO) is a NIC feature where packets of a TCP
 connection are reassembled, or coalesced, in the NIC and delivered to
 the host as one large packet. This feature can reduce CPU
 utilization in the host.

 LRO requires significant protocol awareness to be implemented
 correctly and is difficult to generalize. Packets in the same flow
 need to be unambiguously identified. In the presence of tunnels or
 network virtualization, this may require more than a five-tuple match
 (for instance packets for flows in two different virtual networks may
 have identical five-tuples). Additionally, a NIC needs to perform
 validation over packets that are being coalesced, and needs to
 fabricate a single meaningful header from all the coalesced packets.

 The conservative approach to supporting LRO for encapsulation would
 be to assign packets to the same flow only if they have identical
 five-tuple and were encapsulated the same way. That is the outer IP
 addresses, the outer UDP ports, encapsulated protocol, encapsulation
 headers, and inner five tuple are all identical.

19. Middlebox Considerations

 This document has touched upon middleboxes in different section. The
 reason for this is as encapsulations get widely deployed one would
 expect different forms of middleboxes might become aware of the
 encapsulation protocol just as middleboxes have been made aware of
 other protocols where there are business and deployment
 opportunities. Such middleboxes are likely to do more than just drop
 packets based on the UDP port number used by an encapsulation
 protocol.

 We note that various forms of encapsulation gateways that stitch one
 encapsulation protocol together with another form of protocol could
 have similar effects.

 An example of a middlebox that could see some use would be an NVO3-
 aware firewall that would filter on the VNI IDs to provide some
 defense in depth inside or across NVO3 datacenters.

 A question for the IETF is whether we should document what to do or
 what not to do in such middleboxes. This document touches on areas
 of OAM and ECMP as it relates to middleboxes and it might make sense
 to document how encaps-aware middleboxes should avoid unintended
 consequences in those (and perhaps other) areas.

Nordmark (ed), et al. Expires September 10, 2015 [Page 29]

Internet-Draft Encaps Considerations March 2015

20. Related Work

 The IETF and industry has defined encapsulations for a long time,
 with examples like GRE [RFC2890], VXLAN [RFC7348], and NVGRE
 [I-D.sridharan-virtualization-nvgre] being able to carry arbitrary
 Ethernet payloads, and various forms of IP-in-IP and IPsec
 encapsulations that can carry IP packets. As part of NVO3 there has
 been additional proposals like Geneve [I-D.gross-geneve] and GUE
 [I-D.herbert-gue] which look at more extensibility. NSH
 [I-D.quinn-sfc-nsh] is an example of an encapsulation that tries to
 provide extensibility mechanisms which target both hardware and
 software implementations.

 There is also a large body of work around MPLS encapsulations
 [RFC3032]. The MPLS-in-UDP work [I-D.ietf-mpls-in-udp] and GRE over
 UDP [I-D.ietf-tsvwg-gre-in-udp-encap] have worked on some of the
 common issues around checksum and congestion control. MPLS also
 introduced a entropy label [RFC6790]. There is also a proposal for
 MPLS encryption [I-D.farrelll-mpls-opportunistic-encrypt].

 The idea to use a UDP encapsulation with a UDP source port for
 entropy for the underlay routers' ECMP dates back to LISP [RFC6830].

 The pseudo-wire work [RFC3985] is interesting in the notion of
 layering additional services/characteristics such as ordered delivery
 or timely deliver on top of an encapsulation. That layering approach
 might be useful for the new encapsulations as well. For instance,
 the control word [RFC4385].

 Both MPLS and L2TP [RFC3931] rely on some control or signaling to
 establish state (for the path/labels in the case of MPLS, and for the
 session in the case of L2TP). The NVO3, SFC, and BIER encapsulations
 will also have some separation between the data plane and control
 plane, but the type of separation appears to be different.

 IEEE 802.1 has defined encapsulations for L2 over L2, in the form of
 Provider backbone Bridging (PBB) [IEEE802.1Q-2014] and Equal Cost
 Multipath (ECMP) [IEEE802.1Q-2014]. The latter includes something
 very similar to the way the UDP source port is used as entropy: "The
 flow hash, carried in an F-TAG, serves to distinguish frames
 belonging to different flows and can be used in the forwarding
 process to distribute frames over equal cost paths"

 TRILL, which is also a L2 over L2 encapsulation, took a different
 approach to entropy but preserved the ability for OAM frames
 [RFC7174] to use the same entropy hence ECMP path as data frames. In
 [I-D.ietf-trill-oam-fm] there 96 bytes of headers for entropy in the
 OAM frames, followed by the actual OAM content. This ensures that

https://datatracker.ietf.org/doc/html/rfc2890
https://datatracker.ietf.org/doc/html/rfc7348
https://datatracker.ietf.org/doc/html/rfc3032
https://datatracker.ietf.org/doc/html/rfc6790
https://datatracker.ietf.org/doc/html/rfc6830
https://datatracker.ietf.org/doc/html/rfc3985
https://datatracker.ietf.org/doc/html/rfc4385
https://datatracker.ietf.org/doc/html/rfc3931
https://datatracker.ietf.org/doc/html/rfc7174

Nordmark (ed), et al. Expires September 10, 2015 [Page 30]

Internet-Draft Encaps Considerations March 2015

 any headers, which fit in those 96 bytes except the OAM bit in the
 TRILL header, can be used for ECMP hashing.

 As encapsulations evolve there might be a desire to fit multiple
 inner packets into one outer packet. The work in
 [I-D.saldana-tsvwg-simplemux] might be interesting for that purpose.

21. Acknowledgements

 The authors acknowledge the comments from David Black, Andy Malis,
 and Radia Perlman.

22. Open Issues

 o Middleboxes:
 * Due to OAM there are constraints on middleboxes in general. If
 middleboxes inspect the packet past the outer IP+UDP and encaps
 header and look for inner IP and TCP/UDP headers, that might
 violate the assumption that OAM packets will be handled the
 same as regular data packets. That issue is broader than just
 QoS - applies to firewall filters etc.
 * Firewalls looking at inner payload? How does that work for OAM
 frames? Even if it only drops ... TRILL approach might be an
 option? Would that encourage more middleboxes making the
 network more fragile?
 * Editorially perhaps we should pull the above two into a
 separate section about middlebox considerations?
 o Next protocol indication - should it be common across different
 encapsulation headers? We will have different ways to indicate
 the presence of the first encapsulation header in a packet (could
 be a UDP destination port, an Ethernet type, etc depending on the
 outer delivery header). But for the next protocol past an
 encapsulation header one could envision creating or adoption a
 common scheme. Such a would also need to be able to identify
 following headers like Ethernet, IPv4/IPv6, ESP, etc.
 o Common OAM error reporting protocol?
 o There is discussion about timestamps, sequence numbers, etc in
 three different parts of the document. OAM, Congestion
 Considerations, and Service Model, where the latter argues that a
 pseudo-wire service should really be layered on top of the encaps
 using its own header. Those recommendations seem to be at odds
 with each other. Do we envision sequence numbers, timestamps, etc
 as potential extensions for OAM and CC? If so, those extensions
 could be used to provide a service which doesn't reorder packets.

Nordmark (ed), et al. Expires September 10, 2015 [Page 31]

Internet-Draft Encaps Considerations March 2015

23. References

23.1. Normative References

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC2890] Dommety, G., "Key and Sequence Number Extensions to GRE",
RFC 2890, September 2000.

 [RFC2983] Black, D., "Differentiated Services and Tunnels",
RFC 2983, October 2000.

 [RFC3032] Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
 Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
 Encoding", RFC 3032, January 2001.

 [RFC3931] Lau, J., Townsley, M., and I. Goyret, "Layer Two Tunneling
 Protocol - Version 3 (L2TPv3)", RFC 3931, March 2005.

 [RFC3948] Huttunen, A., Swander, B., Volpe, V., DiBurro, L., and M.
 Stenberg, "UDP Encapsulation of IPsec ESP Packets",

RFC 3948, January 2005.

 [RFC3985] Bryant, S. and P. Pate, "Pseudo Wire Emulation Edge-to-
 Edge (PWE3) Architecture", RFC 3985, March 2005.

 [RFC4385] Bryant, S., Swallow, G., Martini, L., and D. McPherson,
 "Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for
 Use over an MPLS PSN", RFC 4385, February 2006.

 [RFC5405] Eggert, L. and G. Fairhurst, "Unicast UDP Usage Guidelines
 for Application Designers", BCP 145, RFC 5405,
 November 2008.

 [RFC6040] Briscoe, B., "Tunnelling of Explicit Congestion
 Notification", RFC 6040, November 2010.

 [RFC6790] Kompella, K., Drake, J., Amante, S., Henderickx, W., and
 L. Yong, "The Use of Entropy Labels in MPLS Forwarding",

RFC 6790, November 2012.

 [RFC6830] Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The
 Locator/ID Separation Protocol (LISP)", RFC 6830,
 January 2013.

 [RFC6935] Eubanks, M., Chimento, P., and M. Westerlund, "IPv6 and
 UDP Checksums for Tunneled Packets", RFC 6935, April 2013.

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc2890
https://datatracker.ietf.org/doc/html/rfc2983
https://datatracker.ietf.org/doc/html/rfc3032
https://datatracker.ietf.org/doc/html/rfc3931
https://datatracker.ietf.org/doc/html/rfc3948
https://datatracker.ietf.org/doc/html/rfc3985
https://datatracker.ietf.org/doc/html/rfc4385
https://datatracker.ietf.org/doc/html/bcp145
https://datatracker.ietf.org/doc/html/rfc5405
https://datatracker.ietf.org/doc/html/rfc6040
https://datatracker.ietf.org/doc/html/rfc6790
https://datatracker.ietf.org/doc/html/rfc6830
https://datatracker.ietf.org/doc/html/rfc6935

Nordmark (ed), et al. Expires September 10, 2015 [Page 32]

Internet-Draft Encaps Considerations March 2015

 [RFC6936] Fairhurst, G. and M. Westerlund, "Applicability Statement
 for the Use of IPv6 UDP Datagrams with Zero Checksums",

RFC 6936, April 2013.

 [RFC7174] Salam, S., Senevirathne, T., Aldrin, S., and D. Eastlake,
 "Transparent Interconnection of Lots of Links (TRILL)
 Operations, Administration, and Maintenance (OAM)
 Framework", RFC 7174, May 2014.

 [RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger,
 L., Sridhar, T., Bursell, M., and C. Wright, "Virtual
 eXtensible Local Area Network (VXLAN): A Framework for
 Overlaying Virtualized Layer 2 Networks over Layer 3
 Networks", RFC 7348, August 2014.

 [RFC7364] Narten, T., Gray, E., Black, D., Fang, L., Kreeger, L.,
 and M. Napierala, "Problem Statement: Overlays for Network
 Virtualization", RFC 7364, October 2014.

 [RFC7365] Lasserre, M., Balus, F., Morin, T., Bitar, N., and Y.
 Rekhter, "Framework for Data Center (DC) Network
 Virtualization", RFC 7365, October 2014.

23.2. Informative References

 [I-D.briscoe-conex-data-centre]
 Briscoe, B. and M. Sridharan, "Network Performance
 Isolation in Data Centres using Congestion Policing",

draft-briscoe-conex-data-centre-02 (work in progress),
 February 2014.

 [I-D.farrelll-mpls-opportunistic-encrypt]
 Farrel, A. and S. Farrell, "Opportunistic Security in MPLS
 Networks", draft-farrelll-mpls-opportunistic-encrypt-04
 (work in progress), January 2015.

 [I-D.gross-geneve]
 Gross, J., Sridhar, T., Garg, P., Wright, C., Ganga, I.,
 Agarwal, P., Duda, K., Dutt, D., and J. Hudson, "Geneve:
 Generic Network Virtualization Encapsulation",

draft-gross-geneve-02 (work in progress), October 2014.

 [I-D.herbert-gue]
 Herbert, T., Yong, L., and O. Zia, "Generic UDP
 Encapsulation", draft-herbert-gue-03 (work in progress),
 March 2015.

 [I-D.herbert-remotecsumoffload]

https://datatracker.ietf.org/doc/html/rfc6936
https://datatracker.ietf.org/doc/html/rfc7174
https://datatracker.ietf.org/doc/html/rfc7348
https://datatracker.ietf.org/doc/html/rfc7364
https://datatracker.ietf.org/doc/html/rfc7365
https://datatracker.ietf.org/doc/html/draft-briscoe-conex-data-centre-02
https://datatracker.ietf.org/doc/html/draft-farrelll-mpls-opportunistic-encrypt-04
https://datatracker.ietf.org/doc/html/draft-gross-geneve-02
https://datatracker.ietf.org/doc/html/draft-herbert-gue-03

Nordmark (ed), et al. Expires September 10, 2015 [Page 33]

Internet-Draft Encaps Considerations March 2015

 Herbert, T., "Remote checksum offload for encapsulation",
draft-herbert-remotecsumoffload-01 (work in progress),

 November 2014.

 [I-D.ietf-mpls-in-udp]
 Xu, X., Sheth, N., Yong, L., Callon, R., and D. Black,
 "Encapsulating MPLS in UDP", draft-ietf-mpls-in-udp-11
 (work in progress), January 2015.

 [I-D.ietf-nvo3-arch]
 Black, D., Hudson, J., Kreeger, L., Lasserre, M., and T.
 Narten, "An Architecture for Overlay Networks (NVO3)",

draft-ietf-nvo3-arch-02 (work in progress), October 2014.

 [I-D.ietf-sfc-architecture]
 Halpern, J. and C. Pignataro, "Service Function Chaining
 (SFC) Architecture", draft-ietf-sfc-architecture-07 (work
 in progress), March 2015.

 [I-D.ietf-sfc-problem-statement]
 Quinn, P. and T. Nadeau, "Service Function Chaining
 Problem Statement", draft-ietf-sfc-problem-statement-13
 (work in progress), February 2015.

 [I-D.ietf-trill-oam-fm]
 Senevirathne, T., Finn, N., Salam, S., Kumar, D.,
 Eastlake, D., Aldrin, S., and L. Yizhou, "TRILL Fault
 Management", draft-ietf-trill-oam-fm-11 (work in
 progress), October 2014.

 [I-D.ietf-tsvwg-circuit-breaker]
 Fairhurst, G., "Network Transport Circuit Breakers",

draft-ietf-tsvwg-circuit-breaker-00 (work in progress),
 September 2014.

 [I-D.ietf-tsvwg-gre-in-udp-encap]
 Crabbe, E., Yong, L., Xu, X., and T. Herbert, "GRE-in-UDP
 Encapsulation", draft-ietf-tsvwg-gre-in-udp-encap-05 (work
 in progress), March 2015.

 [I-D.ietf-tsvwg-port-use]
 Touch, J., "Recommendations for Transport Port Number
 Uses", draft-ietf-tsvwg-port-use-07 (work in progress),
 January 2015.

 [I-D.quinn-sfc-nsh]
 Quinn, P., Guichard, J., Surendra, S., Smith, M.,
 Henderickx, W., Nadeau, T., Agarwal, P., Manur, R.,

https://datatracker.ietf.org/doc/html/draft-herbert-remotecsumoffload-01
https://datatracker.ietf.org/doc/html/draft-ietf-mpls-in-udp-11
https://datatracker.ietf.org/doc/html/draft-ietf-nvo3-arch-02
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-architecture-07
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-problem-statement-13
https://datatracker.ietf.org/doc/html/draft-ietf-trill-oam-fm-11
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-circuit-breaker-00
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-gre-in-udp-encap-05
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-port-use-07

Nordmark (ed), et al. Expires September 10, 2015 [Page 34]

Internet-Draft Encaps Considerations March 2015

 Chauhan, A., Halpern, J., Majee, S., Elzur, U., Melman,
 D., Garg, P., McConnell, B., Wright, C., and K. Kevin,
 "Network Service Header", draft-quinn-sfc-nsh-07 (work in
 progress), February 2015.

 [I-D.saldana-tsvwg-simplemux]
 Saldana, J., "Simplemux. A generic multiplexing protocol",

draft-saldana-tsvwg-simplemux-02 (work in progress),
 January 2015.

 [I-D.shepherd-bier-problem-statement]
 Shepherd, G., Dolganow, A., and a.
 arkadiy.gulko@thomsonreuters.com, "Bit Indexed Explicit
 Replication (BIER) Problem Statement",

draft-shepherd-bier-problem-statement-02 (work in
 progress), February 2015.

 [I-D.sridharan-virtualization-nvgre]
 Garg, P. and Y. Wang, "NVGRE: Network Virtualization using
 Generic Routing Encapsulation",

draft-sridharan-virtualization-nvgre-07 (work in
 progress), November 2014.

 [I-D.wei-tsvwg-tunnel-congestion-feedback]
 Wei, X., Zhu, L., and L. Deng, "Tunnel Congestion
 Feedback", draft-wei-tsvwg-tunnel-congestion-feedback-03
 (work in progress), October 2014.

 [I-D.wijnands-bier-architecture]
 Wijnands, I., Rosen, E., Dolganow, A., Przygienda, T., and
 S. Aldrin, "Multicast using Bit Index Explicit
 Replication", draft-wijnands-bier-architecture-05 (work in
 progress), March 2015.

 [I-D.wijnands-mpls-bier-encapsulation]
 Wijnands, I., Rosen, E., Dolganow, A., Tantsura, J., and
 S. Aldrin, "Encapsulation for Bit Index Explicit
 Replication in MPLS Networks",

draft-wijnands-mpls-bier-encapsulation-02 (work in
 progress), December 2014.

 [I-D.xu-bier-encapsulation]
 Xu, X., Somasundaram, S., Jacquenet, C., and R. Raszuk,
 "BIER Encapsulation", draft-xu-bier-encapsulation-02 (work
 in progress), February 2015.

 [IEEE802.1Q-2014]
 IEEE, "IEEE Standard for Local and metropolitan area

https://datatracker.ietf.org/doc/html/draft-quinn-sfc-nsh-07
https://datatracker.ietf.org/doc/html/draft-saldana-tsvwg-simplemux-02
https://datatracker.ietf.org/doc/html/draft-shepherd-bier-problem-statement-02
https://datatracker.ietf.org/doc/html/draft-sridharan-virtualization-nvgre-07
https://datatracker.ietf.org/doc/html/draft-wei-tsvwg-tunnel-congestion-feedback-03
https://datatracker.ietf.org/doc/html/draft-wijnands-bier-architecture-05
https://datatracker.ietf.org/doc/html/draft-wijnands-mpls-bier-encapsulation-02
https://datatracker.ietf.org/doc/html/draft-xu-bier-encapsulation-02

Nordmark (ed), et al. Expires September 10, 2015 [Page 35]

Internet-Draft Encaps Considerations March 2015

 networks--Bridges and Bridged Networks", IEEE Std 802.1Q-
 2014, 2014,
 <http://www.ieee802.org/1/pages/802.1Q-2014.html>.

 (Access Controlled link within page)

Authors' Addresses

 Erik Nordmark
 Arista Networks
 5453 Great America Parkway
 Santa Clara, CA 95054
 USA

 Email: nordmark@arista.com

 Albert Tian
 Ericsson Inc.
 300 Holger Way
 San Jose, California 95134
 USA

 Email: albert.tian@ericsson.com

 Jesse Gross
 VMware
 3401 Hillview Ave.
 Palo Alto, CA 94304
 USA

 Email: jgross@vmware.com

 Jon Hudson
 Brocade Communications Systems, Inc.
 130 Holger Way
 San Jose, CA 95134
 USA

 Email: jon.hudson@gmail.com

http://www.ieee802.org/1/pages/802.1Q-2014.html

Nordmark (ed), et al. Expires September 10, 2015 [Page 36]

Internet-Draft Encaps Considerations March 2015

 Lawrence Kreeger
 Cisco Systems, Inc.
 170 W. Tasman Avenue
 San Jose, CA 95134
 USA

 Email: kreeger@cisco.com

 Pankaj Garg
 Microsoft
 1 Microsoft Way
 Redmond, WA 98052
 USA

 Email: pankajg@microsoft.com

 Patricia Thaler
 Broadcom Corporation
 3151 Zanker Road
 San Jose, CA 95134
 USA

 Email: pthaler@broadcom.com

 Tom Herbert
 Google
 1600 Amphitheatre Parkway
 Mountain View, CA
 USA

 Email: therbert@google.com

Nordmark (ed), et al. Expires September 10, 2015 [Page 37]

