
Network Working Group H. Ruellan
Internet-Draft J. Fujisawa
Expires: September 12, 2013 Canon, Inc.
 R. Bellessort
 Y. Fablet
 March 11, 2013

Header Diff: A compact HTTP header representation for HTTP/2.0
draft-ruellan-headerdiff-00

Abstract

 This document describes a format adapted to efficiently represent
 HTTP headers in the context of HTTP/2.0.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Ruellan, et al. Expires September 12, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Documentation HTTP Header Diff March 2013

Table of Contents

1. Introduction . 3
2. Overview . 3
2.1. Design Principles . 3
2.2. Outline . 3
2.3. Integration within HTTP/2.0 4
2.3.1. Deflate Usage . 5

3. Indexing Strategies . 5
3.1. Indexing Tables . 6
3.1.1. Header Table . 6
3.1.2. Name Table . 6

3.2. Header Representation 7
3.2.1. Literal Representation 7
3.2.2. Indexed Representation 7
3.2.3. Delta Representation 7

4. Detailed Format . 8
4.1. Low-level representations 8
4.1.1. Integer representation 8
4.1.2. String literal representation 10

4.2. Indexed Header Representation 10
4.2.1. Short Indexed Header 10
4.2.2. Long Indexed Header 11

4.3. Literal Header Representation 11
4.3.1. Literal Header without Indexing 11
4.3.2. Literal Header with Indexing 12

4.4. Delta Header Representation 12
4.4.1. Delta Header without Indexing 12
4.4.2. Delta Header with Indexing 13

5. Parameter Negotiation . 13
6. Open Questions . 14
6.1. Typed Codecs . 14
6.2. Specific header processing 14
6.3. Security Issues . 15
6.4. Deflate Partial Usage 15
6.5. Max length and entry numbers 15

7. Security Considerations 16
8. IANA Considerations . 16
9. References . 16
Appendix A. Initial header names 16
A.1. Requests . 16
A.2. Responses . 18
A.3. Example . 19
A.3.1. First header set 19
A.3.2. Second header set 21

 Authors' Addresses . 22

Ruellan, et al. Expires September 12, 2013 [Page 2]

Documentation HTTP Header Diff March 2013

1. Introduction

 This document describes a format adapted to efficiently represent
 HTTP headers in the context of HTTP/2.0.

2. Overview

2.1. Design Principles

 HTTP headers can be represented in various ways. As shown by SPDY,
 Deflate compresses very well HTTP headers. But the use of Deflate
 has been found to cause security issues. In particular, the
 compression of sensitive data, together with other data controlled by
 an attacker, may lead to leakage of the sensitive data. The
 processing and memory costs may also be too high for some classes of
 devices.

 Having a lightweight compact HTTP header representation is therefore
 useful. To design this representation, the focus was put on the
 following points:

 o Simplicity: the representation should have a small number of
 options that allow handling any kind of headers; in particular,
 the use of dedicated codecs for each type of header value is not
 considered here.

 o Efficiency: the representation should provide good compression at
 a small encoding/decoding cost for both processing and memory.

 o Flexibility: the representation should be compatible with
 constrained devices, but also provide improved efficiency when
 more capable devices are used.

 o Deflate-friendly: Deflate has proven its efficiency for encoding
 HTTP headers. A good HTTP header representation should be
 efficient as a pre-compression step prior to applying Deflate.

2.2. Outline

 The HTTP header representation described in this document is based on
 indexing tables that store (name,value) pairs, called header tables
 in the remainder of this document. Header tables are incrementally
 updated during the whole HTTP/2.0 session. Two independent header
 tables are used during a HTTP/2.0 session, one for HTTP request
 headers and one for HTTP response headers.

 The encoder is responsible for deciding which headers to insert as
 (name,value) pairs in the header table. The decoder follows exactly

Ruellan, et al. Expires September 12, 2013 [Page 3]

Documentation HTTP Header Diff March 2013

 what the encoder prescribes. This enables decoders to remain simple
 and understand a wide variety of encoders.

 A header may be represented as a literal, an index or a delta. If
 represented as a literal or a delta, the representation specifies
 whether this header is used to update the indexing table. The
 different representations are described in Section 3.2.

 To improve literal headers representation compactness, header names
 are indexed in a specific name table. Two independent name tables
 are used during a HTTP/2.0 session, one for HTTP request headers and
 another for HTTP response headers.

 An example illustrating the use of the different tables to represent
 headers is available in Appendix A.3. Once a set of header is
 represented using the available representations, it can optionally be
 compressed with Deflate.

2.3. Integration within HTTP/2.0

 The headers are inserted in the HTTP/2.0 frames at the same place as
 defined in SPDY (next chart was adapted from draft-ietf-httpbis-

http2-00).

 +------------------------------------+
 |1| version | 1 |
 +------------------------------------+
 | Flags (8) | Length (24 bits) |
 +------------------------------------+
 |X| Stream-ID (31bits) |
 +------------------------------------+
 |X| Associated-To-Stream-ID (31bits) |
 +------------------------------------+
 | Pri|Unused | Slot | |
 +-------------------+ |
 | Number of Name/Value pairs (int32) |
 +------------------------------------+
 | Encoded name/value pair | <+
 +------------------------------------+ | (*)
 | (repeats) | <+

 (*) This section is the "Name/Value Header Block",
 and may be compressed.

 The modifications to SPDY are the following:

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-00
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-00

Ruellan, et al. Expires September 12, 2013 [Page 4]

Documentation HTTP Header Diff March 2013

 o The headers are not represented as string tokens but using one of
 the possible representation described in Section 4.

 o The Deflate step is made optional.

2.3.1. Deflate Usage

 The header representation described in Section 4 is amenable to
 Deflate compression. The Deflate algorithm improves the compression
 at the expense of additional processing.

 At least two potential drawbacks have been identified when using
 Deflate. First, security issues may arise when using Deflate, like
 the CRIME attack [1]. Second, it may increase the workload of
 network intermediaries: they may need to uncompress and recompress
 the headers of all messages, even though they only need to process a
 few of them.

 The use of Deflate may still be envisioned if properly set up.
 Several approaches are available and should be studied:

 Restricting Deflate to Huffman-only coding is an option. This is
 supported by many Deflate implementations such as zlib. It may be
 used in the environments subject to CRIME attacks. This approach
 should be compared to the direct use of hand-tailored Huffman
 coding.

 The use of indexing mechanisms prior Deflate may solve some
 security issues. More precise analysis of the security impact of
 using indexing mechanisms prior Deflate should be studied as
 described in Section 6.3.

 Partial use of Deflate on a selected subset of headers may also be
 an option as described in Section 6.4.

 Restricting the use of Deflate to safe cases, such as controlled
 environments (widgets, native applications), anonymous connections
 and so on can be envisioned. For instance, restricting the use of
 Deflate to HTTP response headers should not enable CRIME-like
 attacks.

3. Indexing Strategies

Ruellan, et al. Expires September 12, 2013 [Page 5]

Documentation HTTP Header Diff March 2013

3.1. Indexing Tables

3.1.1. Header Table

 A header table consists in an ordered list of (name, value) pairs.
 Once a header pair is inserted in the header table, its index does
 not change until the pair gets removed. A pair is either inserted at
 the end of the table or replaces an existing pair depending on the
 chosen representation.

 Header names should be represented as lower-case strings. A header
 name is matching with a pair name if they are equal using a
 character-based, _case insensitive_ comparison. A header value is
 matching with a pair value if they are equal using a character-based,
 case sensitive comparison. A header is matching with a
 (name,value) pair if both name and value are matching.

 The header table is progressively updated based on headers
 represented as literal (as defined in Section 3.2.1) or delta (as
 defined in Section 3.2.3). Two update mechanisms are defined:

 o Incremental indexing: the represented header is inserted at the
 end of the header table as a (name, value) pair. The inserted
 pair index is set to the next free index in the table: it is equal
 to the number of headers in the table before its insertion.

 o Substitution indexing: the represented header contains an index to
 an existing (name,value) pair. The existing pair value is
 replaced by the header value.

 Incremental and substitution indexing are optional. If none of them
 is selected in a header representation, the header table is not
 updated. In particular, no update happens on the header table when
 processing an indexed representation.

 The header table size can be bounded so as to limit the memory
 requirements. The header table size is defined as the sum of the
 length (as defined in Section 4.1.2) of the values of all header
 table pairs. Header names are not counted in the header table size.

3.1.2. Name Table

 A name table is an ordered list of name entries that is used to
 efficiently represent header names. A header name is matching a name
 table entry if they are equal using a character-based, _case
 insensitive_ comparison.

Ruellan, et al. Expires September 12, 2013 [Page 6]

Documentation HTTP Header Diff March 2013

 If a header name is matching a name table entry, it is represented as
 an integer based on the index of the entry, as described in

Section 4.1.1. If a header name is not matching any of the name
 table entry, it is represented as a string, as described in

Section 4.1.2. A new entry containing the name is then inserted at
 the end of the name table. Once inserted in the name table, a header
 name is never removed and its index is never changing.

 To optimize the representation of the headers exchanged at the
 beginning of the HTTP/2.0 session, the header name table is initally
 populated with common header names. The initial header names list is
 provided in Appendix A.

3.2. Header Representation

3.2.1. Literal Representation

 The literal representation defines a header independentently of the
 header table. A literal header is represented as:

 o A header name, represented using the name table, as described in
Section 3.1.2.

 o The header value, represented as a literal string, as described in
Section 4.1.2.

3.2.2. Indexed Representation

 The indexed representation defines a header as a match to a
 (name,value) pair in the header table. An indexed header is
 represented as:

 o An integer representing the index of the matching (name,value)
 pair, as described in Section 4.1.1.

3.2.3. Delta Representation

 The delta representation defines a header as a reference to a
 (name,value) pair contained in the header table. The names must
 match between the represented header and the reference pair. The
 values should start by a common substring between the represented
 header and the reference pair.

 A delta header is represented as:

 o An integer representing the index of the reference (name, value)
 pair, as described in Section 4.1.1. The pair name must match the
 name of the header.

Ruellan, et al. Expires September 12, 2013 [Page 7]

Documentation HTTP Header Diff March 2013

 o An integer representing the length of the common prefix shared
 between the header value and the pair value, as described in

Section 4.1.1.

 o A string representing the suffix value to append to the common
 prefix to obtain the header value, as defined in Section 4.1.2.

4. Detailed Format

4.1. Low-level representations

4.1.1. Integer representation

 Integers are used to represent name indexes, pair indexes or string
 lengths. The integer representation keeps byte-alignment as much as
 possible as this allows various processing optimizations as well as
 efficient use of DEFLATE. For that purpose, an integer
 representation always finishes at the end of a byte.

 An integer is represented in two parts: a prefix that fills the
 current byte and an optional list of bytes that are used if the
 integer value does not fit in the prefix. The number of bits of the
 prefix (called N) is a parameter of the integer representation.

 The N-bit prefix allows filling the current byte. If the value is
 small enough (strictly less than 2^N-1), it is encoded within the
 N-bit prefix. Otherwise all the bits of the prefix are set to 1 and
 the value is encoded using an unsigned variable length integer [2]
 representation.

 The algorithm to represent an integer I is as follows:

 1. If I < 2^N - 1, encode I on N bits

 2. Else, encode 2^N - 1 on N bits and do the following steps:

 3.

 1. Set I to (I - 2^N - 1) and Q to 1

 2. While Q > 0

 3.

 1. Compute Q and R, quotient and remainder of I divided by
 2^7

Ruellan, et al. Expires September 12, 2013 [Page 8]

Documentation HTTP Header Diff March 2013

 2. If Q is strictly greater than 0, write one 1 bit;
 otherwise, write one 0 bit

 3. Encode R on the next 7 bits

 4. I = Q

4.1.1.1. Example 1: Encoding 10 using a 5-bit prefix

 The value 10 is to be encoded with a 5-bit prefix.

 o 10 is less than 31 (= 2^5 - 1) and is represented using the 5-bit
 prefix.

 +-----+-----+-----+-----+-----+-----+-----+-----+
 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | X | X | X | 0 | 1 | 0 | 1 | 0 | 10 stored on 5 bits
 +-----+-----+-----+-----+-----+-----+-----+-----+

4.1.1.2. Example 2: Encoding 1337 using a 5-bit prefix

 The value I=1337 is to be encoded with a 5-bit prefix.

 o 1337 is greater than 31 (= 2^5 - 1).

 o

 * The 5-bit prefix is filled with its max value (31).

 o The value to represent on next bytes is I = 1337 - 2^5 = 1305.

 o

 * 1305 = 128*10 + 25, i.e. Q=10 and R=25.

 * Q is greater than 1, bit 8 is set to 1.

 * The remainder R=25 is encoded on next 7 bits.

 * I is replaced by the quotient Q=10.

 o The value to represent on next bytes is I = 10.

 o

 * 10 = 128*0 + 10, i.e. Q=0 and R=10.

Ruellan, et al. Expires September 12, 2013 [Page 9]

Documentation HTTP Header Diff March 2013

 * Q is equal to 0, bit 16 is set to 0.

 * The remainder R=10 is encoded on next 7 bits.

 * I is replaced by the quotient Q=0.

 o The process ends.

 +----+-----+-----+-----+-----+-----+-----+-----+
 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | X | X | X | 1 | 1 | 1 | 1 | 1 | Prefix = 31
 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | Q>=1, R=25
 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | Q=0 , R=10
 +-----+-----+-----+-----+-----+-----+-----+-----+

4.1.2. String literal representation

 Literal strings can represent header names, header values or header
 values suffix in the case of delta coding. They are encoded in two
 parts:

 1. The string length, defined as the number of bytes needed to store
 its UTF-8 representation, is represented as an integer with a
 zero bits prefix. If the string length is strictly less than
 128, it is represented as one byte.

 2. The string value represented as a list of UTF-8 characters.

4.2. Indexed Header Representation

 Indexed headers can be represented as short indexed header if the
 matching pair index is strictly below 64. Otherwise it is
 represented as a long indexed header.

4.2.1. Short Indexed Header

 +-------+-------+-------+-------+-------+-------+-------+-------+
 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
 +-------+-------+-------+-------+-------+-------+-------+-------+
1	0	00 0000 - 11 1111
		Matching pair index
		(if strictly lower than 64)
 +-------+-------+-------+-------+-------+-------+-------+-------+

Ruellan, et al. Expires September 12, 2013 [Page 10]

Documentation HTTP Header Diff March 2013

 This representation starts with the '10' 2-bit pattern, followed by
 the index of the matching pair, represented on 6 bits. A short
 indexed header is always coded in one byte.

4.2.2. Long Indexed Header

 +-------+-------+-------+-------+-------+-------+-------+-------+
 | 0 | 1 | 2 | 3 | ... | ... | e | f |
 +-------+-------+-------+-------+-------+-------+-------+-------+
1	1	00 0000 0000 0000 - 11 1111 1111 1111 1111
		Matching pair index
		(if equal to or greater than 64)
 +-------+-------+-------+-------+-------+-------+-------+-------+

 This representation starts with the '11' 2-bit pattern, followed by
 the value of the index of the matching pair minus 64, represented as
 an integer with a 14-bit prefix A long indexed header is coded in two
 bytes if the index minus 64 is strictly below 16383.

4.3. Literal Header Representation

4.3.1. Literal Header without Indexing

 +-------+-------+-------+-------+-------+-------+-------+-------+
 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
 +-------+-------+-------+-------+-------+-------+-------+-------+
			0 0000
			New header name symbol
0	0	0	---------------------------------------
			0 0001 - 1 1111
			Index of matching header name
 +-------+-------+-------+-------+-------+-------+-------+-------+

 This representation, which does not involve updating the header
 table, starts with the '000' 3-bit pattern.

 If the header name matches a header name entry whose index is IN, the
 value (IN+1) is represented as an integer with a 5-bit prefix. Note
 that if the index is strictly below 30, one byte is used.

 If the header name does not match a header name entry, the value 0 is
 represented on 5 bits followed by the header name, represented as a
 literal string.

 Header name representation is followed by the header value
 represented as a literal string.

Ruellan, et al. Expires September 12, 2013 [Page 11]

Documentation HTTP Header Diff March 2013

4.3.2. Literal Header with Indexing

 +-------+-------+-------+-------+-------+-------+-------+-------+
 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
 +-------+-------+-------+-------+-------+-------+-------+-------+
				0000
			Indexing	New header name symbol
0	0	1		-------------------------------
			Mode	0001 - 1111
				Index of matching header name
 +-------+-------+-------+-------+-------+-------+-------+-------+

 This representation starts with the '001' 3-bit pattern. The fourth
 bit sets the indexing mode: 0 for incremental indexing, 1 for
 substitution indexing.

 If the header name matches a header name entry whose index is IN, the
 value (IN+1) is represented as an integer with a 4-bit prefix. Note
 that if the index is strictly below 14, one byte is used.

 If the header name does not match a header name entry, the value 0 is
 represented on 4 bits followed by the header name, represented as a
 literal string.

 Header name representation is followed by the header value
 represented as a string as described in Section 4.1.2. In the case
 of substitution indexing, the substituted (name,value) pair index is
 inserted before the header value as a zero-bit prefix integer. The
 header value is represented as a literal string.

4.4. Delta Header Representation

4.4.1. Delta Header without Indexing

 +-------+-------+-------+-------+-------+-------+-------+-------+
 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
 +-------+-------+-------+-------+-------+-------+-------+-------+
 | 0 | 1 | 0 | 0 0000 - 1 1111 |
 | | | | Index of reference pair |
 +-------+-------+-------+-------+-------+-------+-------+-------+

 This representation starts with the '010' 3-bit pattern.

 It continues with the index IR of the reference header pair. The
 value IR is represented as an integer with a 5-bit prefix. Note that
 if the index is strictly below 31, one byte is used.

Ruellan, et al. Expires September 12, 2013 [Page 12]

Documentation HTTP Header Diff March 2013

 Index value is followed by:

 1. the length of the common prefix shared between the header value
 and the pair value, represented as an integer with a zero-bit
 prefix.

 2. the header value suffix represented as a literal string.

4.4.2. Delta Header with Indexing

 +-------+-------+-------+-------+-------+-------+-------+-------+
 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
 +-------+-------+-------+-------+-------+-------+-------+-------+
 | 0 | 1 | 1 |Indexing| 0000 - 1111 |
 | | | | Mode | Index of reference pair |
 +-------+-------+-------+-------+-------+-------+-------+-------+

 This representation starts with the '011' 3-bit pattern. The fourth
 bit sets the indexing mode, 0 for incremental indexing and 1 for
 substitution indexing.

 It continues with the index IR of the reference header pair. The
 value IR is represented as an integer with a 4-bit prefix. Note that
 if the index is strictly below 15, one byte is used.

 Index value is followed by:

 1. the length of the common prefix shared between the header value
 and the pair value, represented as an integer with a zero-bit
 prefix.

 2. the header value suffix, represented as a literal string.

5. Parameter Negotiation

 Two parameters may be used to accomodate the client and server
 processing and memory requirements:

 o A parameter Nh that configures the size of the header table. The
 size can be computed as 2^Nh. Nh is exchanged as an unsigned
 integer.

 o A parameter Nd that configures the Deflate step. If Nd is equal
 to zero, no Deflate step is used. Otherwise, Deflate is used with
 a sliding window equal to 2^Nd. Huffman-only coding is advertised
 using the Deflate block initial bits. Nd is exchanged as an
 unsigned integer.

Ruellan, et al. Expires September 12, 2013 [Page 13]

Documentation HTTP Header Diff March 2013

 This section should be further completed, including but not limited
 to the following points:

 o Define default values?

 o Define when negotiation happens: at the beginning only, any time
 during the session...

 o Define how are exchanged these parameters, probably using SETTINGS
 frames, through the definition of 4 settings (outgoing-Nd,
 outgoing-Nh, preferred-incomingNd, preferred-incoming-Nh).

6. Open Questions

6.1. Typed Codecs

 Typed codecs may be useful to represent header values, especially on
 response side. An additional typed header representation could be
 defined, adding support for a small number of codecs such as:

 o An Integer codec: may be useful for headers such as 'Age' and
 'Content-Length'.

 o A Date codec: may be useful for headers such as 'Date', 'Expires',
 'If-Modified-Since', 'Last-Modified'.

6.2. Specific header processing

 Some (name,value) pairs may be singled out to improve network nodes
 processing, such as:

 o The request line (verb, version and URL) for HTTP requests.

 o The response line (status and version) for HTTP responses.

 For those headers, the specification may define specific rules that
 can improve the processing cost, at the expense of some compression
 loss:

 o All those headers are placed as the first headers in the
 SYN_STREAM frame, with a predefined order.

 o Verb, version and status are represented as integers with zero-bit
 prefix.

 o Indexed, delta or literal representation may be used for URL
 values. In the case of delta and literal representation, only the
 substitution mode is used so that a processor only needs to store

Ruellan, et al. Expires September 12, 2013 [Page 14]

Documentation HTTP Header Diff March 2013

 the URL of the previous message to compute the URL of the current
 message.

6.3. Security Issues

 Adequate use of delta and indexed representation before using of
 Deflate are supposed to solve security issues such as the CRIME
 attack. For instance, if cookie headers are represented as indexed
 headers as much as possible, attackers may be prevented from
 progressively learning its value.

 This point should be confirmed with deeper analysis. Additional
 study should also be done to evaluate whether the proposed indexed
 and delta representation create any new security issue.

6.4. Deflate Partial Usage

 To circumvent Deflate issues related to both security and network
 intermediaries, the header set of a given message can be split in two
 buckets. A first bucket would be sent without using Deflate, while
 the second bucket would be further compressed using Deflate. The
 decision would be done by the encoder. The specification could
 define a minimum set of headers that SHOULD never be compressed using
 Deflate, for instance URLs and cookies.

 Another possibility would be to define Deflate as a specific
 representation. The use of Deflate would then be decided on per-
 header basis. That would enable excluding any header that may
 contain sensitive data. The overall scheme would be less efficient
 though (padding bits and so on).

 Additional analysis of the complexity and benefit of these approaches
 would be needed to go further. For instance, these approaches should
 be compared to the use of Deflate restricted to Huffman-coding in
 terms of simplicity and compression benefits.

6.5. Max length and entry numbers

 The integer representation allows representation of unbounded values.
 If bounding the table entries number or string lengths, the integer
 encoding may be further optimized.

 o Decide whether to limit the length of strings to a max value and
 if so which value, 32768?

 o Decide whether to limit name table entries to 256?

 o Decide whether to limit header table entries to 16384?

Ruellan, et al. Expires September 12, 2013 [Page 15]

Documentation HTTP Header Diff March 2013

7. Security Considerations

 This section should be completed according the previous sections.

8. IANA Considerations

 This memo includes no request to IANA.

9. References

Appendix A. Initial header names

A.1. Requests

 Indexes strictly lower than 14 are always encoded on 1 byte. Hence,
 the 14 most frequent names should be set in the 14 first positions.
 This table may be updated based on statistical analysis of header
 names frequency and specific HTTP 2.0 header rules (like removal of
 'proxy-connection', url being split or not...).

 +---------+------------------------------------+
 | Index | Header Name |
 +---------+------------------------------------+
 | 0 | accept |
 +---------+------------------------------------+
 | 1 | accept-charset |
 +---------+------------------------------------+
 | 2 | accept-encoding |
 +---------+------------------------------------+
 | 3 | accept-language |
 +---------+------------------------------------+
 | 4 | cookie |
 +---------+------------------------------------+
 | 5 | method |
 +---------+------------------------------------+
 | 6 | host |
 +---------+------------------------------------+
 | 7 | if-modified-since |
 +---------+------------------------------------+
 | 8 | keep-alive |
 +---------+------------------------------------+
 | 9 | url |
 +---------+------------------------------------+
 | 10 | user-agent |
 +---------+------------------------------------+
 | 11 | version |
 +---------+------------------------------------+
 | 12 | proxy-connection |

Ruellan, et al. Expires September 12, 2013 [Page 16]

Documentation HTTP Header Diff March 2013

 +---------+------------------------------------+
 | 13 | referer |
 +---------+------------------------------------+
 | 14 | accept-datetime |
 +---------+------------------------------------+
 | 15 | authorization |
 +---------+------------------------------------+
 | 16 | allow |
 +---------+------------------------------------+
 | 17 | cache-control |
 +---------+------------------------------------+
 | 18 | connection |
 +---------+------------------------------------+
 | 19 | content-length |
 +---------+------------------------------------+
 | 20 | content-md5 |
 +---------+------------------------------------+
 | 21 | content-type |
 +---------+------------------------------------+
 | 22 | date |
 +---------+------------------------------------+
 | 23 | expect |
 +---------+------------------------------------+
 | 24 | from |
 +---------+------------------------------------+
 | 25 | if-match |
 +---------+------------------------------------+
 | 26 | if-none-match |
 +---------+------------------------------------+
 | 27 | if-range |
 +---------+------------------------------------+
 | 28 | if-unmodified-since |
 +---------+------------------------------------+
 | 29 | max-forwards |
 +---------+------------------------------------+
 | 30 | pragma |
 +---------+------------------------------------+
 | 31 | proxy-authorization |
 +---------+------------------------------------+
 | 32 | range |
 +---------+------------------------------------+
 | 33 | te |
 +---------+------------------------------------+
 | 34 | upgrade |
 +---------+------------------------------------+
 | 35 | via |
 +---------+------------------------------------+
 | 36 | warning |

Ruellan, et al. Expires September 12, 2013 [Page 17]

Documentation HTTP Header Diff March 2013

 +---------+------------------------------------+

A.2. Responses

 Indexes strictly lower than 14 are always encoded on 1 byte. Hence,
 the 14 most frequent names should be set in the 14 first positions.
 This table may be updated based on statistical analysis of header
 names frequency and specific HTTP 2.0 header rules.

 +---------+------------------------------------+
 | Index | Header Name |
 +---------+------------------------------------+
 | 0 | age |
 +---------+------------------------------------+
 | 1 | cache-control |
 +---------+------------------------------------+
 | 2 | content-length |
 +---------+------------------------------------+
 | 3 | content-type |
 +---------+------------------------------------+
 | 4 | date |
 +---------+------------------------------------+
 | 5 | etag |
 +---------+------------------------------------+
 | 6 | expires |
 +---------+------------------------------------+
 | 7 | last-modified |
 +---------+------------------------------------+
 | 8 | server |
 +---------+------------------------------------+
 | 9 | set-cookie |
 +---------+------------------------------------+
 | 10 | status |
 +---------+------------------------------------+
 | 11 | vary |
 +---------+------------------------------------+
 | 12 | version |
 +---------+------------------------------------+
 | 13 | via |
 +---------+------------------------------------+
 | 14 | access-control-allow-origin |
 +---------+------------------------------------+
 | 15 | accept-ranges |
 +---------+------------------------------------+
 | 16 | allow |
 +---------+------------------------------------+
 | 17 | connection |

Ruellan, et al. Expires September 12, 2013 [Page 18]

Documentation HTTP Header Diff March 2013

 +---------+------------------------------------+
 | 18 | content-disposition |
 +---------+------------------------------------+
 | 19 | content-encoding |
 +---------+------------------------------------+
 | 20 | content-language |
 +---------+------------------------------------+
 | 21 | content-location |
 +---------+------------------------------------+
 | 22 | content-md5 |
 +---------+------------------------------------+
 | 23 | content-range |
 +---------+------------------------------------+
 | 24 | link |
 +---------+------------------------------------+
 | 25 | location |
 +---------+------------------------------------+
 | 26 | p3p |
 +---------+------------------------------------+
 | 27 | pragma |
 +---------+------------------------------------+
 | 28 | proxy-authenticate |
 +---------+------------------------------------+
 | 29 | refresh |
 +---------+------------------------------------+
 | 30 | retry-after |
 +---------+------------------------------------+
 | 31 | strict-transport-security |
 +---------+------------------------------------+
 | 32 | trailer |
 +---------+------------------------------------+
 | 33 | transfer-encoding |
 +---------+------------------------------------+
 | 34 | warning |
 +---------+------------------------------------+
 | 35 | www-authenticate |
 +---------+------------------------------------+

A.3. Example

 Here is an example that illustrates different representations and how
 tables are updated.

A.3.1. First header set

 The first header set to represent is the following:

Ruellan, et al. Expires September 12, 2013 [Page 19]

Documentation HTTP Header Diff March 2013

 url: http://www.example.org/my-example/index.html
 user-agent: my-user-agent
 x-my-header: first

 The header table is empty, all headers are represented as literal
 headers with indexing. The 'x-my-header' header name is not in the
 header name table and is encoded literally. This gives the following
 representation:

 0x2A (literal header with indexing, name index = 9)
 0x2C (header value string length = 44)
 http://www.example.org/my-example/index.html
 0x2B (literal header with indexing, name index = 10)
 0x0D (header value string length = 43)
 my-user-agent
 0x20 (literal header with indexing, new name)
 0x0B (header name string length = 11)
 x-my-header
 0x05 (header value string length = 5)
 first

 The header tables are as follow after the processing of these
 headers:

 Name table
 +---------+---+
 | Index | Header Name |
 +---------+---+
 | 0 | accept |
 +---------+---+
 | 1 | accept-charset |
 +---------+---+
 | ... | ... |
 +---------+---+
 | 36 | warning |
 +---------+---+
 | 37 | x-my-header | added name
 +---------+---+

 Header table
 +----+-------------+------------------------------------+
 | 0 | url | http://www.example.org/ | added pair
 | | | my-example/index.html |
 +----+-------------+------------------------------------+
 | 1 | user-agent | my-user-agent | added pair

Ruellan, et al. Expires September 12, 2013 [Page 20]

Documentation HTTP Header Diff March 2013

 +----+-------------+------------------------------------+
 | 2 | x-my-header | first | added pair
 +----+-------------+------------------------------------+

A.3.2. Second header set

 The second header set to represent is the following:

 url: http://www.example.org/my-example/resources/script.js
 user-agent: my-user-agent
 x-my-header: second

 The url header is represented as a delta header with substitution.
 The user-agent header will be represented as a short header. The x
 -my-header will be represented as a literal header with indexing.

 0x70 (delta header with substitution, header index = 0)
 0x22 (common prefix length = 32)
 0x13 (suffix value length = 19)
 resources/script.js
 0x81 (indexed header, index = 1)
 0x2f 0x17 (literal header with indexing, name index = 37)
 0x05 (header value string length = 5)
 second

 The name table remains unchanged. The header table is updated as
 follow:

 +----+-------------+------------------------------------+
 | 0 | url | http://www.example.org/ | substituted
 | | | my-example/resources/script.js | pair
 +----+-------------+------------------------------------+
 | 1 | user-agent | my-user-agent |
 +----+-------------+------------------------------------+
 | 2 | x-my-header | first |
 +----+-------------+------------------------------------+
 | 3 | x-my-header | second | added pair
 +----+-------------+------------------------------------+

Ruellan, et al. Expires September 12, 2013 [Page 21]

Documentation HTTP Header Diff March 2013

Authors' Addresses

 Herve Ruellan

 Email: herve.ruellan@crf.canon.fr

 Jun Fujisawa
 Canon, Inc.
 3-30-2 Shimomaruko
 Ohta-ku, Tokyo 146-8501
 Japan

 Email: fujisawa.jun@canon.co.jp

 Romain Bellessort

 Email: romain.bellessort@crf.canon.fr

 Youenn Fablet

 Email: youenn.fablet@crf.canon.fr

Ruellan, et al. Expires September 12, 2013 [Page 22]

