
Network Working Group H. Ruellan
Internet-Draft Y. Fablet
Intended status: Standards Track R. Bellessort
Expires: July 26, 2015 Canon CRF
 J. Fujisawa
 Canon, Inc.
 January 22, 2015

HTTP/2 Priority Tree Synchronization
draft-ruellan-priority-tree-sync-01

Abstract

 This specification describes an issue in HTTP/2 linked to the
 synchronization of priority trees between a client and a server. It
 outlines possible solutions to this issue.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 26, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Ruellan, et al. Expires July 26, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft HTTP/2 Priority Tree Synchronization January 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Conventions . 3

2. Problem Overview . 3
2.1. HTTP/2 Priorities . 3
2.2. Priority Usage . 3

3. Priority Retention . 5
3.1. Overview . 5
3.2. The PRIORITY_RETENTION Frame 6
3.3. Evaluation . 7

4. Priority Pruning Algorithm 7
4.1. Overview . 7
4.2. Algorithm . 7
4.3. The SETTING_PRIORITY_STATES parameter 8
4.4. Evaluation . 8

5. Server Feedback . 9
5.1. Overview . 9
5.2. The UNAPPLIED_PRIORITY Frame 9
5.3. Evaluation . 9

6. Security Considerations 9
7. Normative References . 10
Appendix A. Change Log (to be removed by RFC Editor before

 publication) . 11

1. Introduction

 HTTP/2 [HTTP2] allows multiplexing messages over a single connection.
 A client can express the processing order it expects from the server
 for its requests, by using HTTP/2 priority mechanism. Using this
 mechanism, the client requests are organized in a priority tree.

 The priority tree evolves as new requests are sent by the client, and
 as older requests are fulfilled by the server. Due to this dynamic
 nature, the client and the server can have different views of the
 priority tree. A discrepancy can cause issues, mainly due to the
 removal of requests from the priority tree.

Section 2 details this synchronization issue and its possible
 consequences.

Section 3, Section 4, and Section 5 draw rough sketches of possible
 solutions to this synchronization issue.

Ruellan, et al. Expires July 26, 2015 [Page 2]

Internet-Draft HTTP/2 Priority Tree Synchronization January 2015

1.1. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 All numeric values are in network byte order. Values are unsigned
 unless otherwise indicated. Literal values are provided in decimal
 or hexadecimal as appropriate. Hexadecimal literals are prefixed
 with "0x" to distinguish them from decimal literals.

2. Problem Overview

2.1. HTTP/2 Priorities

 HTTP/2 [HTTP2] allows multiplexing concurrent messages on the same
 connection. Each message exchange is carried by a stream. A client
 can express how it would prefer the server allocate resources for the
 concurrent streams, by using HTTP/2 priority mechanism (Section 5.3
 of [HTTP2]).

 Streams are organized into a priority tree by making each stream
 depend on another stream. A stream is processed only when all its
 parents in the priority tree have been processed.

 Each stream is allocated a weight. This weight is used to determine
 the relative share of resources that are allocated to streams
 depending on the same parent.

 A priority is set for a stream by defining its parent stream (i.e.,
 the stream it depends on), and its weight (a value between 1 and
 256). By default, the priority for a stream is to depend on no
 stream, and to have a weight of 16.

 A client can define the priority for a stream when creating it. It
 can later change this priority to reflect new expectations regarding
 the allocation of resources by the server.

2.2. Priority Usage

 A server needs to control the amount of memory used by a HTTP/2
 connection. To this end, it can limit the maximum number of
 simultaneous streams that a client is allowed to create. It also
 needs to remove streams from the priority tree once they are closed.
 However, the client could rely on these closed streams to place new
 streams in the priority tree. If the server receives a priority for
 a stream referencing a stream no longer in its priority tree, the

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Ruellan, et al. Expires July 26, 2015 [Page 3]

Internet-Draft HTTP/2 Priority Tree Synchronization January 2015

 default priority is assigned to the stream. This can lead to
 suboptimal behaviour.

 For example, when downloading a web page, a client can prioritize the
 resources used by the page to optimize the download speed as
 perceived by the user. To this end, the client organizes its
 priority tree to download less important resources after the more
 important ones. The stream for a less important resource is
 prioritized as depending on a stream for a more important resource.
 If the server is not able to apply this priority, because it has not
 kept priority information for the latter stream, it will use a
 default priority for the less important resource. As a result, this
 less important resource will be downloaded concurrently with much
 more important resource, and the downloading of the web page will not
 be optimized according to the client expectations.

 Another example is the downloading of two web pages in parallel, one
 in the foreground, the other in the background. The client can
 prioritize the resources to ensure the web page in the foreground is
 downloaded faster that the web page in the background. To be able to
 react to the user inverting the foreground and the background web
 pages, the client can organize the resources corresponding to each
 web page in a different branch of the priority tree. By changing the
 weights of the root of each branch, the client can change the
 relative download speeds of the two pages. However, if the server
 does not keep priority information for these roots, it will not be
 able to apply the weight changes sent by the client, and the client
 will not be able to change the relative download speed of the pages.

 As seen in these examples, not all streams are of the same importance
 to the client for defining new priorities. As a general rule, recent
 streams are more useful to the client as it will use them to define
 the priorities of new streams. However, there are two particular
 cases that can be used by the client to structure the priority tree.

 First, some streams are used as branching points in the priority
 tree. A branching point has several children that are intended to be
 processed in parallel. A branching point is useful to the client for
 adding further streams to be processed in parallel, alongside the
 existing children of the branching point.

 [[CREF1: Revise the figures to include Idle streams.]]

Ruellan, et al. Expires July 26, 2015 [Page 4]

Internet-Draft HTTP/2 Priority Tree Synchronization January 2015

 For example, the following priority tree allows downloading the three
 images in parallel:

 index.html
 |
 script.js
 |
 layout.css
 / | \
 / | \
 / | \
 i1.png i2.png i3.png

 Branching Point

 Second, some streams are at the root of priority tree branches.
 These streams are useful to the client for changing the general
 priority of a whole branch of the priority tree.

 For example, the following priority tree contains two branches, each
 corresponding to a web page:

 i1.html i2.html
 | |
 s1.js s2.js
 | |
 l1.css l2.css
 / \ |
 i1.png i2.png i3.jpg

 Branch Root

3. Priority Retention

3.1. Overview

 The client can ask the server to keep the priority state for a stream
 for some time after the stream is closed. A new frame
 PRIORITY_RETENTION (Section 3.2) is defined to allow this.

 This frame can also be used by the client to indicate that it no
 longer needs the server to keep the priority state corresponding to a
 stream.

Ruellan, et al. Expires July 26, 2015 [Page 5]

Internet-Draft HTTP/2 Priority Tree Synchronization January 2015

3.2. The PRIORITY_RETENTION Frame

 The PRIORITY_RETENTION HTTP/2 frame (Section 4 of [HTTP2]) allows an
 endpoint to transmit priority state retention information to its
 peer.

 The PRIORITY_RETENTION frame is a non-critical extension to HTTP/2.
 Endpoints that do not support this frame can safely ignore it.

 An endpoint willing to support receiving the PRIORITY_RETENTION frame
 from a peer can announce it by sending a PRIORITY_RETENTION frame on
 stream 0.

 The PRIORITY_RETENTION frame type is TBD.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | R |F|
 +-------------+-+

 PRIORITY_RETENTION frame PAYLOAD

 The PRIORITY_RETENTION frame contains the following fields:

 R: A reserved 7-bit field.

 F: A 1-bit field indicating the retention status of priority
 information for the stream.

 The value 1 means that the priority state for the stream is
 retained.

 The value 0 means that the priority state for the stream is not
 retained.

 The PRIORITY_RETENTION frame does not define any flags.

 An endpoint can request its peer to retain priority information for a
 stream by sending a PRIORITY_RETENTION frame with the F field set to
 the value of 1 on this stream.

 An endpoint can inform its peer that it no longer needs to retain
 priority information for a stream by sending a PRIORITY_RETENTION
 frame with the F field set to the value of 0 on this stream.

 [[CREF2: The detailed usage of the PRIORITY_RETENTION frame needs to
 be defined.]]

Ruellan, et al. Expires July 26, 2015 [Page 6]

Internet-Draft HTTP/2 Priority Tree Synchronization January 2015

3.3. Evaluation

 This extension enables the client to ask the server to retain some
 specific priority information. As such, the client has a good
 control over the priority tree of the server and can use many
 possible strategies for organizing the shape of the priority tree.

 The client is however limited in that it can't ask the server to
 retain a too large number of streams, otherwise the memory
 consumption on the server side would be too large.

4. Priority Pruning Algorithm

4.1. Overview

 The server can use a well-defined algorithm for selecting which
 priority states to keep for closed streams, and which to delete from
 memory. The client can replicate this algorithm to know on which
 streams to rely for defining new priorities.

 The algorithm defines the number of priority states kept by the
 server. By default, it is the same number as the maximum number of
 streams the client can open. This can be changed through a new
 setting parameter, SETTING_PRIORITY_STATES (Section 4.3).

 The priority states are by default deleted in the stream creation
 order. However, this order is modified to keep longer two types of
 streams:

 o Streams that are branching points in the priority tree: those that
 have several child streams. These streams are useful to define
 parallel processing.

 o Streams that are at the root of a branch of the priority tree.
 These streams are useful for changing priorities on a large scale.

4.2. Algorithm

 To select the priority states to keep for closed streams, the server
 applies the following algorithm:

 1. The server creates a list containing all the closed streams and
 orders it according to the stream creation order. The oldest
 stream is the first in the list, while the newest one is the
 last.

 2. Each closed stream that has at least two children is moved after
 the latest of its child present in the list.

Ruellan, et al. Expires July 26, 2015 [Page 7]

Internet-Draft HTTP/2 Priority Tree Synchronization January 2015

 3. Each closed stream that depends on no other stream and that has
 at least one descendant is moved after the latest of its
 descendant in the list.

 4. Priority states are kept only for the streams at the end of the
 list, such that the number of kept priority states is lower than
 or equal to the value of the SETTING_PRIORITY_STATES
 (Section 4.3) parameter.

4.3. The SETTING_PRIORITY_STATES parameter

 The SETTING_PRIORITY_STATES SETTINGS parameter (Section 6.5.2 of
 [HTTP2]) indicates the number of priority states kept for closed
 streams by the endpoint.

 This parameter identifier is TBD.

 The initial value for this parameter is 100. It is recommended that
 the value for this parameter be at least the same as the value of the
 SETTING_MAX_CONCURRENT_STREAMS parameter.

 The usage of this new setting parameter doesn't require any
 negotiation between peers. Upon sending this setting parameter, an
 endpoint informs its peer that it uses the pruning algorithm
 described above (Section 4.2) for selecting for which closed streams
 priority states are kept.

 A peer receiving this setting parameter and understanding it can
 choose to take advantage of it to compute the priority state
 information kept by the sending endpoint.

 [[CREF3: The detailed usage of the SETTING_MAX_CONCURRENT_STREAMS
 parameter needs to be defined.]]

4.4. Evaluation

 This extension enables the client to have a good knowledge of the
 closed streams for which priority information is kept by the server.
 Using this information, the client can define priorities knowing
 reliably that the server will be able to apply them.

 However, this extension is based on assumptions on which streams are
 the most useful to the client for defining priorities. If these
 assumptions don't hold, then the client may not be able to fully
 express its expectations for the processing order of its requests by
 the server.

Ruellan, et al. Expires July 26, 2015 [Page 8]

Internet-Draft HTTP/2 Priority Tree Synchronization January 2015

5. Server Feedback

5.1. Overview

 When the server is not able to apply a priority sent by the client,
 it fails silently. To mitigate the consequences of this failure, the
 server could send feedback to the client.

 A new frame UNAPPLIED_PRIORITY (Section 5.2) is defined to allow the
 server to inform the client that a priority has not been applied.

5.2. The UNAPPLIED_PRIORITY Frame

 The UNAPPLIED_PRIORITY HTTP/2 frame (Section 4 of [HTTP2]) allows an
 endpoint to inform its peer that the priority it received was not
 applied. The UNAPPLIED_PRIORITY frame is sent on the stream for
 which the priority was not applied.

 The UNAPPLIED_PRIORITY frame is a non-critical extension to HTTP/2.
 Endpoints that do not support this frame can safely ignore it.

 The UNAPPLIED_PRIORITY frame type is TBD.

 The UNAPPLIED_PRIORITY frame has no payload.

 The UNAPPLIED_PRIORITY frame does not define any flags.

 [[CREF4: The detailed usage of the UNAPPLIED_PRIORITY frame needs to
 be defined.]]

5.3. Evaluation

 This extension provides a lightweight way for the server to inform
 the client when it cannot apply a priority sent for a stream.

 While this feedback enables the client to know that a priority has
 not been applied by the server, it provides little information on how
 to change the priority in order for the server to able to apply it.

6. Security Considerations

 The different extensions proposed in this specification introduce new
 HTTP/2 setting parameters, or new HTTP/2 frames that could be abused
 in the same way as existing setting parameters and frames.

 The PRIORITY_RETENTION (Section 3.2) frame can be abused to cause a
 peer to retain a large amount of priority state by sending only
 priority retention requests.

Ruellan, et al. Expires July 26, 2015 [Page 9]

Internet-Draft HTTP/2 Priority Tree Synchronization January 2015

7. Normative References

 [HTTP2] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol version 2", draft-ietf-httpbis-http2-13
 (work in progress), June 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

Ruellan, et al. Expires July 26, 2015 [Page 10]

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-13
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft HTTP/2 Priority Tree Synchronization January 2015

Appendix A. Change Log (to be removed by RFC Editor before publication)

Authors' Addresses

 Herve Ruellan
 Canon CRF

 EMail: herve.ruellan@crf.canon.fr

 Youenn Fablet
 Canon CRF

 EMail: youenn.fablet@crf.canon.fr

 Romain Bellessort
 Canon CRF

 EMail: romain.bellessort@crf.canon.fr

 Jun Fujisawa
 Canon, Inc.

 EMail: fujisawa.jun@canon.co.jp

Ruellan, et al. Expires July 26, 2015 [Page 11]

