
Network Working Group A. Rundgren
Internet-Draft Independent
Intended status: Standards Track B. Jordan
Expires: November 10, 2019 Symantec Corporation
 S. Erdtman
 Spotify AB
 May 9, 2019

JSON Canonicalization Scheme (JCS)
draft-rundgren-json-canonicalization-scheme-06

Abstract

 Cryptographic operations like hashing and signing requires that the
 original data does not change during serialization or parsing. One
 way addressing this issue is creating a canonical form of the data.
 Canonicalization also permits data to be exchanged in its original
 form on the "wire" while still being subject to secure cryptographic
 operations. The JSON Canonicalization Scheme (JCS) provides
 canonicalization support for data in the JSON format by building on
 the strict serialization methods for JSON primitives defined by
 ECMAScript, constraining JSON data to the I-JSON subset, and through
 a deterministic property sorting scheme.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 10, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Rundgren, et al. Expires November 10, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft draft-rundgren-json-canonicalization-scheme May 2019

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 4
3. Detailed Operation . 4
3.1. Creation of Input Data 4
3.2. Generation of Canonical JSON Data 5
3.2.1. Whitespace . 5
3.2.2. Serialization of Primitive Data Types 5
3.2.2.1. Serialization of Literals 6
3.2.2.2. Serialization of Strings 6
3.2.2.3. Serialization of Numbers 6

3.2.3. Sorting of Object Properties 7
3.2.4. UTF-8 Generation 8

4. IANA Considerations . 9
5. Security Considerations 9
6. Acknowledgements . 9
7. References . 9
7.1. Normative References 9
7.2. Informal References 10
7.3. URIs . 11

Appendix A. ES6 Sample Canonicalizer 11
Appendix B. Number Serialization Samples 13
Appendix C. Canonicalized JSON as "Wire Format" 14
Appendix D. Dealing with Big Numbers 15
Appendix E. String Subtype Handling 16
E.1. Subtypes in Arrays 18

Appendix F. Implementation Guidelines 18
Appendix G. Open Source Implementations 19
Appendix H. Other JSON Canonicalization Efforts 19
Appendix I. Development Portal 20

 Authors' Addresses . 20

1. Introduction

 Cryptographic operations like hashing and signing requires that the
 original data does not change during serialization or parsing. One
 way of accomplishing this is converting the data into a format that

https://datatracker.ietf.org/doc/html/draft-rundgren-json-canonicalization-scheme
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Rundgren, et al. Expires November 10, 2019 [Page 2]

Internet-Draft draft-rundgren-json-canonicalization-scheme May 2019

 has a simple and fixed representation like Base64Url [RFC4648], which
 is how JWS [RFC7515] addressed this issue.

 Another solution is to create a canonical version of the data,
 similar to what was done for the XML Signature [XMLDSIG] standard.
 The primary advantage with a canonicalizing scheme is that data can
 be kept in its original form. This is the core rationale behind JCS.
 Put another way: by using canonicalization a JSON Object may remain a
 JSON Object even after being signed which simplifies system design,
 documentation and logging.

 To avoid "reinventing the wheel", JCS relies on serialization of JSON
 primitives compatible with ECMAScript (aka JavaScript) beginning with
 version 6 [ES6], hereafter referred to as "ES6".

 Seasoned XML developers recalling difficulties getting signatures to
 validate (usually due to different interpretations of the quite
 intricate XML canonicalization rules as well as of the equally
 extensive Web Services security standards), may rightfully wonder why
 JCS would not suffer from similar issues. The reasons are twofold:

 o The absence of a namespace concept and default values, as well as
 constraining data to the I-JSON subset eliminate the need for
 specific parsers for dealing with canonicalization.

 o JCS compatible serialization of JSON primitives is supported by
 most current Web browsers and as well as by Node.js [NODEJS],
 while the full JCS specification is supported by multiple Open
 Source implementations (see Appendix G). See also Appendix F.

 In summary the JCS specification describes how serialization of JSON
 primitives compliant with ES6 combined with a deterministic property
 sorting scheme can be used for creating "Hashable" representations of
 JSON data intended for consumption by cryptographic methods.

 JCS is compatible with some existing systems relying on JSON
 canonicalization such as JWK Thumbprint [RFC7638] and Keybase
 [KEYBASE].

 For potential uses outside of cryptography see [JSONCOMP].

 The intended audiences of this document are JSON tool vendors, as
 well as designers of JSON based cryptographic solutions.

https://datatracker.ietf.org/doc/html/draft-rundgren-json-canonicalization-scheme
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7638

Rundgren, et al. Expires November 10, 2019 [Page 3]

Internet-Draft draft-rundgren-json-canonicalization-scheme May 2019

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Detailed Operation

 This section describes the different issues related to creating a
 canonical JSON representation, and how they are addressed by JCS.

3.1. Creation of Input Data

 In order to serialize JSON data, one needs data that is adapted for
 JSON serialization. This is usually achieved by:

 o Parsing previously generated JSON data.

 o Programmatically creating data.

 Irrespective of the method used, the data to be serialized MUST be
 compatible with I-JSON [RFC7493], which implies the following:

 o JSON Objects MUST NOT exhibit duplicate property names.

 o JSON String data MUST be expressible as Unicode [UNICODE].

 o JSON Number data MUST be expressible as IEEE-754 [IEEE754] double
 precision values. For applications needing higher precision or
 longer integers than offered by IEEE-754 double precision,

Appendix D outlines how such requirements can be supported in an
 interoperable and extensible way.

 An additional constraint is that parsed JSON String data MUST NOT be
 altered during subsequent serializations. For more information see

Appendix E.

 Note: although the Unicode standard offers a possibility combining
 certain characters into one, referred to as "Unicode Normalization"
 (https://www.unicode.org/reports/tr15/ [1]), such functionality MUST
 be delegated to the application layer.

https://datatracker.ietf.org/doc/html/draft-rundgren-json-canonicalization-scheme
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc7493
https://www.unicode.org/reports/tr15/

Rundgren, et al. Expires November 10, 2019 [Page 4]

Internet-Draft draft-rundgren-json-canonicalization-scheme May 2019

3.2. Generation of Canonical JSON Data

 The following subsections describe the steps required for creating a
 canonical JSON representation of the data elaborated on in the
 previous section.

Appendix A shows sample code for an ES6 based canonicalizer, matching
 the JCS specification.

3.2.1. Whitespace

 Whitespace between JSON elements MUST NOT be emitted.

3.2.2. Serialization of Primitive Data Types

 Assume that you parse a JSON object like the following:

 {
 "numbers": [333333333.33333329, 1E30, 4.50,
 2e-3, 0.000000000000000000000000001],
 "string": "\u20ac$\u000F\u000aA'\u0042\u0022\u005c\\\"\/",
 "literals": [null, true, false]
 }

 If you subsequently serialize the parsed data using a serializer
 compliant with ES6's "JSON.stringify()", the result would (with a
 line wrap added for display purposes only), be rather divergent with
 respect to representation of data:

 {"numbers":[333333333.3333333,1e+30,4.5,0.002,1e-27],"string":
 "EURO$\u000f\nA'B\"\\\\\"/","literals":[null,true,false]}

 Note: EURO denotes a single Euro character (Unicode: U+20AC),
 which not being ASCII, is currently not displayable in RFCs.

 The reason for the difference between the parsed data and its
 serialized counterpart, is due to a wide tolerance on input data (as
 defined by JSON [RFC8259]), while output data (as defined by ES6),
 has a fixed representation. As can be seen by the example, numbers
 are subject to rounding as well.

 The following subsections describe serialization of primitive JSON
 data types according to JCS. This part is identical to that of ES6.

https://datatracker.ietf.org/doc/html/draft-rundgren-json-canonicalization-scheme
https://datatracker.ietf.org/doc/html/rfc8259

Rundgren, et al. Expires November 10, 2019 [Page 5]

Internet-Draft draft-rundgren-json-canonicalization-scheme May 2019

3.2.2.1. Serialization of Literals

 The JSON literals "null", "true", and "false" present no challenge
 since they already have a fixed definition in JSON [RFC8259].

3.2.2.2. Serialization of Strings

 For JSON String data (which includes JSON Object property names as
 well), each Unicode code point MUST be serialized as described below
 (also matching Section 24.3.2.2 of [ES6]):

 o If the Unicode value falls within the traditional ASCII control
 character range (U+0000 through U+001F), it MUST be serialized
 using lowercase hexadecimal Unicode notation (\uhhhh) unless it is
 in the set of predefined JSON control characters U+0008, U+0009,
 U+000A, U+000C or U+000D which MUST be serialized as \b, \t, \n,
 \f and \r respectively.

 o If the Unicode value is outside of the ASCII control character
 range, it MUST be serialized "as is" unless it is equivalent to
 U+005C (\) or U+0022 (") which MUST be serialized as \\ and \"
 respectively.

 Finally, the resulting sequence of Unicode code points MUST be
 enclosed in double quotes (").

 Note: some JSON systems permit the use of invalid Unicode data
 including "lone surrogates" (e.g. U+DEAD). Since this leads to
 interoperability issues including broken signatures, occurrences of
 such data MUST cause the JCS algorithm to terminate with an error
 indication.

3.2.2.3. Serialization of Numbers

 JSON Number data MUST be serialized according to Section 7.1.12.1 of
 [ES6] including the "Note 2" enhancement.

 Due to the relative complexity of this part, the algorithm itself is
 not included in this document. However, the specification is fully
 implemented by for example Google's V8 [V8]. The open source Java
 implementation mentioned in Appendix G uses a recently developed
 number serialization algorithm called Ryu [RYU].

 ES6 builds on the IEEE-754 [IEEE754] double precision standard for
 representing JSON Number data. Appendix B holds a set of IEEE-754
 sample values and their corresponding JSON serialization.

https://datatracker.ietf.org/doc/html/draft-rundgren-json-canonicalization-scheme
https://datatracker.ietf.org/doc/html/rfc8259

Rundgren, et al. Expires November 10, 2019 [Page 6]

Internet-Draft draft-rundgren-json-canonicalization-scheme May 2019

 Note: since NaN (Not a Number) and Infinity are not permitted in
 JSON, occurrences of such values MUST cause the JCS algorithm to
 terminate with an error indication.

3.2.3. Sorting of Object Properties

 Although the previous step indeed normalized the representation of
 primitive JSON data types, the result would not qualify as
 "canonical" since JSON Object properties are not in lexicographic
 (alphabetical) order.

 Applied to the sample in Section 3.2.2, a properly canonicalized
 version should (with a line wrap added for display purposes only),
 read as:

 {"literals":[null,true,false],"numbers":[333333333.3333333,
 1e+30,4.5,0.002,1e-27],"string":"EURO$\u000f\nA'B\"\\\\\"/"}

 Note: EURO denotes a single Euro character (Unicode: U+20AC),
 which not being ASCII, is currently not displayable in RFCs.

 The rules for lexicographic sorting of JSON Object properties
 according to JCS are as follows:

 o JSON Object properties MUST be sorted in a recursive manner which
 means that possible JSON child Objects MUST have their properties
 sorted as well.

 o JSON Array data MUST also be scanned for presence of JSON Objects
 (and applying associated property sorting), but array element
 order MUST NOT be changed.

 When a JSON Object is about to have its properties sorted, the
 following measures MUST be adhered to:

 o The sorting process is applied to property name strings in their
 "raw" (unescaped) form. That is, a newline character is treated
 as U+000A.

 o Property name strings to be sorted are formatted as arrays of
 UTF-16 [UNICODE] code units. The sorting is based on pure value
 comparisons, where code units are treated as unsigned integers,
 independent of locale settings.

 o Property name strings either have different values at some index
 that is a valid index for both strings, or their lengths are
 different, or both. If they have different values at one or more
 index positions, let k be the smallest such index; then the string

https://datatracker.ietf.org/doc/html/draft-rundgren-json-canonicalization-scheme

Rundgren, et al. Expires November 10, 2019 [Page 7]

Internet-Draft draft-rundgren-json-canonicalization-scheme May 2019

 whose value at position k has the smaller value, as determined by
 using the < operator, lexicographically precedes the other string.
 If there is no index position at which they differ, then the
 shorter string lexicographically precedes the longer string.

 In plain English this means that property names are sorted in
 ascending order like the following:

 ""
 "a"
 "aa"
 "ab"

 The rationale for basing the sorting algorithm on UTF-16 code units
 is that it maps directly to the string type in ECMAScript (featured
 in Web browsers and Node.js), Java and .NET. Systems using another
 internal representation of string data will need to convert JSON
 property name strings into arrays of UTF-16 code units before
 sorting. The conversion from UTF-8 or UTF-32 to UTF-16 is defined by
 the Unicode [UNICODE] standard.

 Note: for the purpose of obtaining a deterministic property order,
 sorting on UTF-8 or UTF-32 encoded data would also work, but the
 result would differ and thus be incompatible with this specification.
 However, in practice property names rarely go outside of 7-bit ASCII
 making it possible sorting on the UTF-8 byte level and still be
 compatible with JCS. If this is a viable option or not depends on
 the environment JCS is supposed to be used in.

3.2.4. UTF-8 Generation

 Finally, in order to create a platform independent representation,
 the result of the preceding step MUST be encoded in UTF-8.

 Applied to the sample in Section 3.2.3 this should yield the
 following bytes here shown in hexadecimal notation:

 7b 22 6c 69 74 65 72 61 6c 73 22 3a 5b 6e 75 6c 6c 2c 74 72
 75 65 2c 66 61 6c 73 65 5d 2c 22 6e 75 6d 62 65 72 73 22 3a
 5b 33 33 33 33 33 33 33 33 33 2e 33 33 33 33 33 33 33 2c 31
 65 2b 33 30 2c 34 2e 35 2c 30 2e 30 30 32 2c 31 65 2d 32 37
 5d 2c 22 73 74 72 69 6e 67 22 3a 22 e2 82 ac 24 5c 75 30 30
 30 66 5c 6e 41 27 42 5c 22 5c 5c 5c 5c 5c 22 2f 22 7d

 This data is intended to be usable as input to cryptographic methods.

https://datatracker.ietf.org/doc/html/draft-rundgren-json-canonicalization-scheme

Rundgren, et al. Expires November 10, 2019 [Page 8]

Internet-Draft draft-rundgren-json-canonicalization-scheme May 2019

4. IANA Considerations

 This document has no IANA actions.

5. Security Considerations

 It is vital performing "sanity" checks on input data to avoid
 overflowing buffers and similar things that could affect the
 integrity of the system.

 When JCS is applied to signature schemes like the one in Appendix F,
 applications MUST perform the following operations before acting upon
 received data:

 1. Parse the JSON data

 2. Verify the data for correctness

 3. Verify the signature

6. Acknowledgements

 Building on ES6 Number serialization was originally proposed by
 James Manger. This ultimately led to the adoption of the entire ES6
 serialization scheme for JSON primitives.

 Other people who have contributed with valuable input to this
 specification include Scott Ananian, Ben Campbell, Richard Gibson,
 Bron Gondwana, John-Mark Gurney, Mike Jones, Mike Miller,
 Mark Nottingham, Mike Samuel, Jim Schaad, Robert Tupelo-Schneck and
 Michal Wadas.

 For carrying out real world concept verification, the software and
 support for number serialization provided by Ulf Adams,
 Tanner Gooding and Remy Oudompheng was very helpful.

7. References

7.1. Normative References

 [ES6] Ecma International, "ECMAScript 2015 Language
 Specification", <https://www.ecma-international.org/ecma-

262/6.0/index.html>.

 [IEEE754] IEEE, "IEEE Standard for Floating-Point Arithmetic",
 August 2008, <http://grouper.ieee.org/groups/754/>.

https://datatracker.ietf.org/doc/html/draft-rundgren-json-canonicalization-scheme
https://www.ecma-international.org/ecma-262/6.0/index.html
https://www.ecma-international.org/ecma-262/6.0/index.html
http://grouper.ieee.org/groups/754/

Rundgren, et al. Expires November 10, 2019 [Page 9]

Internet-Draft draft-rundgren-json-canonicalization-scheme May 2019

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7493] Bray, T., Ed., "The I-JSON Message Format", RFC 7493,
 DOI 10.17487/RFC7493, March 2015,
 <https://www.rfc-editor.org/info/rfc7493>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [UNICODE] The Unicode Consortium, "The Unicode Standard, Version
 10.0.0",
 <https://www.unicode.org/versions/Unicode10.0.0/>.

7.2. Informal References

 [JSONCOMP]
 A. Rundgren, ""Comparable" JSON - Work in progress",
 <https://tools.ietf.org/html/

draft-rundgren-comparable-json-04>.

 [KEYBASE] "Keybase",
 <https://keybase.io/docs/api/1.0/canonical_packings#json>.

 [NODEJS] "Node.js", <https://nodejs.org>.

 [OPENAPI] "The OpenAPI Initiative", <https://www.openapis.org/>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/info/rfc7515>.

 [RFC7638] Jones, M. and N. Sakimura, "JSON Web Key (JWK)
 Thumbprint", RFC 7638, DOI 10.17487/RFC7638, September
 2015, <https://www.rfc-editor.org/info/rfc7638>.

https://datatracker.ietf.org/doc/html/draft-rundgren-json-canonicalization-scheme
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7493
https://www.rfc-editor.org/info/rfc7493
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.unicode.org/versions/Unicode10.0.0/
https://tools.ietf.org/html/draft-rundgren-comparable-json-04
https://tools.ietf.org/html/draft-rundgren-comparable-json-04
https://keybase.io/docs/api/1.0/canonical_packings#json
https://nodejs.org
https://www.openapis.org/
https://datatracker.ietf.org/doc/html/rfc4648
https://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc7515
https://www.rfc-editor.org/info/rfc7515
https://datatracker.ietf.org/doc/html/rfc7638
https://www.rfc-editor.org/info/rfc7638

Rundgren, et al. Expires November 10, 2019 [Page 10]

Internet-Draft draft-rundgren-json-canonicalization-scheme May 2019

 [RYU] Ulf Adams, "Ryu floating point number serializing
 algorithm", <https://github.com/ulfjack/ryu>.

 [V8] Google LLC, "Chrome V8 Open Source JavaScript Engine",
 <https://developers.google.com/v8/>.

 [XMLDSIG] W3C, "XML Signature Syntax and Processing Version 1.1",
 <https://www.w3.org/TR/xmldsig-core1/>.

7.3. URIs

 [1] https://www.unicode.org/reports/tr15/

 [2] https://www.npmjs.com/package/canonicalize

 [3] https://github.com/erdtman/java-json-canonicalization

 [4] https://github.com/cyberphone/json-canonicalization/tree/master/
go

 [5] https://github.com/cyberphone/json-canonicalization/tree/master/
dotnet

 [6] https://github.com/cyberphone/json-canonicalization/tree/master/
python3

 [7] https://tools.ietf.org/html/draft-staykov-hu-json-canonical-
form-00

 [8] https://gibson042.github.io/canonicaljson-spec/

 [9] http://wiki.laptop.org/go/Canonical_JSON

 [10] https://github.com/cyberphone/ietf-json-canon

 [11] https://cyberphone.github.io/ietf-json-canon

 [12] https://github.com/cyberphone/json-canonicalization

Appendix A. ES6 Sample Canonicalizer

 Below is an example of a JCS canonicalizer for usage with ES6 based
 systems:

 //
 // Since the primary purpose of this code is highlighting //
 // the core of the JCS algorithm, error handling and //
 // UTF-8 generation were not implemented //

https://datatracker.ietf.org/doc/html/draft-rundgren-json-canonicalization-scheme
https://github.com/ulfjack/ryu
https://developers.google.com/v8/
https://www.w3.org/TR/xmldsig-core1/
https://www.unicode.org/reports/tr15/
https://www.npmjs.com/package/canonicalize
https://github.com/erdtman/java-json-canonicalization
https://github.com/cyberphone/json-canonicalization/tree/master/go
https://github.com/cyberphone/json-canonicalization/tree/master/go
https://github.com/cyberphone/json-canonicalization/tree/master/dotnet
https://github.com/cyberphone/json-canonicalization/tree/master/dotnet
https://github.com/cyberphone/json-canonicalization/tree/master/python3
https://github.com/cyberphone/json-canonicalization/tree/master/python3
https://tools.ietf.org/html/draft-staykov-hu-json-canonical-form-00
https://tools.ietf.org/html/draft-staykov-hu-json-canonical-form-00
https://gibson042.github.io/canonicaljson-spec/
http://wiki.laptop.org/go/Canonical_JSON
https://github.com/cyberphone/ietf-json-canon
https://cyberphone.github.io/ietf-json-canon
https://github.com/cyberphone/json-canonicalization

Rundgren, et al. Expires November 10, 2019 [Page 11]

Internet-Draft draft-rundgren-json-canonicalization-scheme May 2019

 //
 var canonicalize = function(object) {

 var buffer = '';
 serialize(object);
 return buffer;

 function serialize(object) {
 if (object === null || typeof object !== 'object' ||
 object.toJSON != null) {
 ///
 // Primitive type or toJSON - Use ES6/JSON //
 ///
 buffer += JSON.stringify(object);

 } else if (Array.isArray(object)) {
 ///
 // Array - Maintain element order //
 ///
 buffer += '[';
 let next = false;
 object.forEach((element) => {
 if (next) {
 buffer += ',';
 }
 next = true;
 ///
 // Array element - Recursive expansion //
 ///
 serialize(element);
 });
 buffer += ']';

 } else {
 ///
 // Object - Sort properties before serializing //
 ///
 buffer += '{';
 let next = false;
 Object.keys(object).sort().forEach((property) => {
 if (next) {
 buffer += ',';
 }
 next = true;
 ///
 // Property names are strings - Use ES6/JSON //
 ///
 buffer += JSON.stringify(property);

https://datatracker.ietf.org/doc/html/draft-rundgren-json-canonicalization-scheme

Rundgren, et al. Expires November 10, 2019 [Page 12]

Internet-Draft draft-rundgren-json-canonicalization-scheme May 2019

 buffer += ':';
 //
 // Property value - Recursive expansion //
 //
 serialize(object[property]);
 });
 buffer += '}';
 }
 }
 };

Appendix B. Number Serialization Samples

 The following table holds a set of ES6 compatible Number
 serialization samples, including some edge cases. The column
 "IEEE-754" refers to the internal ES6 representation of the Number
 data type which is based on the IEEE-754 [IEEE754] standard using
 64-bit (double precision) values, here expressed in hexadecimal.

 |==|
 | IEEE-754 | JSON Representation | Comment |
 |==|
 | 0000000000000000 | 0 | Zero |
 |--|
 | 8000000000000000 | 0 | Minus zero |
 |--|
 | 0000000000000001 | 5e-324 | Min pos number |
 |--|
 | 8000000000000001 | -5e-324 | Min neg number |
 |--|
 | 7fefffffffffffff | 1.7976931348623157e+308 | Max pos number |
 |--|
 | ffefffffffffffff | -1.7976931348623157e+308 | Max neg number |
 |--|
 | 4340000000000000 | 9007199254740992 | Max pos integer (1) |
 |--|
 | c340000000000000 | -9007199254740992 | Max neg integer (1) |
 |--|
 | 4430000000000000 | 295147905179352830000 | ~2**68 (2) |
 |--|
 | 7fffffffffffffff | | NaN (3) |
 |--|
 | 7ff0000000000000 | | Infinity (3) |
 |--|
 | 44b52d02c7e14af5 | 9.999999999999997e+22 | |
 |--|
 | 44b52d02c7e14af6 | 1e+23 | |
 |--|

https://datatracker.ietf.org/doc/html/draft-rundgren-json-canonicalization-scheme

Rundgren, et al. Expires November 10, 2019 [Page 13]

Internet-Draft draft-rundgren-json-canonicalization-scheme May 2019

 | 44b52d02c7e14af7 | 1.0000000000000001e+23 | |
 |--|
 | 444b1ae4d6e2ef4e | 999999999999999700000 | |
 |--|
 | 444b1ae4d6e2ef4f | 999999999999999900000 | |
 |--|
 | 444b1ae4d6e2ef50 | 1e+21 | |
 |--|
 | 3eb0c6f7a0b5ed8c | 9.999999999999997e-7 | |
 |--|
 | 3eb0c6f7a0b5ed8d | 0.000001 | |
 |--|
 | 41b3de4355555553 | 333333333.3333332 | |
 |--|
 | 41b3de4355555554 | 333333333.33333325 | |
 |--|
 | 41b3de4355555555 | 333333333.3333333 | |
 |--|
 | 41b3de4355555556 | 333333333.3333334 | |
 |--|
 | 41b3de4355555557 | 333333333.33333343 | |
 |--|
 | becbf647612f3696 | -0.0000033333333333333333 | |
 |--|

 Notes:

 (1) For maximum compliance with the ES6 "JSON" object values that
 are to be interpreted as true integers SHOULD be in the range
 -9007199254740991 to 9007199254740991. However, how numbers are
 used in applications do not affect the JCS algorithm.

 (2) Although a set of specific integers like 2**68 could be regarded
 as having extended precision, the JCS/ES6 number serialization
 algorithm does not take this in consideration.

 (3) Invalid. See Section 3.2.2.3.

Appendix C. Canonicalized JSON as "Wire Format"

 Since the result from the canonicalization process (see
Section 3.2.4), is fully valid JSON, it can also be used as

 "Wire Format". However, this is just an option since cryptographic
 schemes based on JCS, in most cases would not depend on that
 externally supplied JSON data already is canonicalized.

 In fact, the ES6 standard way of serializing objects using
 "JSON.stringify()" produces a more "logical" format, where properties

https://datatracker.ietf.org/doc/html/draft-rundgren-json-canonicalization-scheme

Rundgren, et al. Expires November 10, 2019 [Page 14]

Internet-Draft draft-rundgren-json-canonicalization-scheme May 2019

 are kept in the order they were created or received. The example
 below shows an address record which could benefit from ES6 standard
 serialization:

 {
 "name": "John Doe",
 "address": "2000 Sunset Boulevard",
 "city": "Los Angeles",
 "zip": "90001",
 "state": "CA"
 }

 Using canonicalization the properties above would be output in the
 order "address", "city", "name", "state" and "zip", which adds
 fuzziness to the data from a human (developer or technical support),
 perspective. Canonicalization also converts JSON data into a single
 line of text, which may be less than ideal for debugging and logging.

Appendix D. Dealing with Big Numbers

 There are several issues associated with the JSON Number type, here
 illustrated by the following sample object:

 {
 "giantNumber": 1.4e+9999,
 "payMeThis": 26000.33,
 "int64Max": 9223372036854775807
 }

 Although the sample above conforms to JSON [RFC8259], applications
 would normally use different native data types for storing
 "giantNumber" and "int64Max". In addition, monetary data like
 "payMeThis" would presumably not rely on floating point data types
 due to rounding issues with respect to decimal arithmetic.

 The established way handling this kind of "overloading" of the JSON
 Number type (at least in an extensible manner), is through mapping
 mechanisms, instructing parsers what to do with different properties
 based on their name. However, this greatly limits the value of using
 the JSON Number type outside of its original somewhat constrained,
 JavaScript context. The ES6 "JSON" object does not support mappings
 to JSON Number either.

 Due to the above, numbers that do not have a natural place in the
 current JSON ecosystem MUST be wrapped using the JSON String type.
 This is close to a de-facto standard for open systems. This is also
 applicable for other data types that do not have direct support in
 JSON, like "DateTime" objects as described in Appendix E.

https://datatracker.ietf.org/doc/html/draft-rundgren-json-canonicalization-scheme
https://datatracker.ietf.org/doc/html/rfc8259

Rundgren, et al. Expires November 10, 2019 [Page 15]

Internet-Draft draft-rundgren-json-canonicalization-scheme May 2019

 Aided by a system using the JSON String type; be it programmatic like

 var obj = JSON.parse('{"giantNumber": "1.4e+9999"}');
 var biggie = new BigNumber(obj.giantNumber);

 or declarative schemes like OpenAPI [OPENAPI], JCS imposes no limits
 on applications, including when using ES6.

Appendix E. String Subtype Handling

 Due to the limited set of data types featured in JSON, the JSON
 String type is commonly used for holding subtypes. This can
 depending on JSON parsing method lead to interoperability problems
 which MUST be dealt with by JCS compliant applications targeting a
 wider audience.

 Assume you want to parse a JSON object where the schema designer
 assigned the property "big" for holding a "BigInteger" subtype and
 "time" for holding a "DateTime" subtype, while "val" is supposed to
 be a JSON Number compliant with JCS. The following example shows
 such an object:

 {
 "time": "2019-01-28T07:45:10Z",
 "big": "055",
 "val": 3.5
 }

 Parsing of this object can accomplished by the following ES6
 statement:

 var object = JSON.parse(JSON-data-featured-as-a-string);

 After parsing the actual data can be extracted which for subtypes
 also involve a conversion step using the result of the parsing
 process (an ECMAScript object) as input:

 ... = new Date(object.time); // Date object
 ... = BigInt(object.big); // Big integer
 ... = object.val; // JSON/JS number

 Canonicalization of "object" using the sample code in Appendix A
 would return the following string:

 {"big":"055","time":"2019-01-28T07:45:10Z",val:3.5}

https://datatracker.ietf.org/doc/html/draft-rundgren-json-canonicalization-scheme

Rundgren, et al. Expires November 10, 2019 [Page 16]

Internet-Draft draft-rundgren-json-canonicalization-scheme May 2019

 Although this is (with respect to JCS) technically correct, there is
 another way parsing JSON data which also can be used with ES6 as
 shown below:

 // Currently required to make BigInt JSON serializable
 BigInt.prototype.toJSON = function() {
 return this.toString();
 };

 // JSON parsing using a "stream" based method
 var object = JSON.parse(JSON-data-featured-as-a-string,
 (k,v) => k == 'time' ? new Date(v) : k == 'big' ? BigInt(v) : v
);

 If you now apply the canonicalizer in Appendix A to "object", the
 following string would be generated:

 {"big":"55","time":"2019-01-28T07:45:10.000Z","val":3.5}

 In this case the string arguments for "big" and "time" have changed
 with respect to the original, presumable making an application
 depending on JCS fail.

 The reason for the deviation is that in stream and schema based JSON
 parsers, the original "string" argument is typically replaced on-the-
 fly by the native subtype which when serialized, may exhibit a
 different and platform dependent pattern.

 That is, stream and schema based parsing MUST treat subtypes as
 "pure" (immutable) JSON String types, and perform the actual
 conversion to the designated native type in a subsequent step. In
 modern programming platforms like Go, Java and C# this can be
 achieved with moderate efforts by combining annotations, getters and
 setters. Below is an example in C#/Json.NET showing a part of a
 class that is serializable as a JSON Object:

 // The "pure" string solution uses a local
 // string variable for JSON serialization while
 // exposing another type to the application
 [JsonProperty("amount")]
 private string _amount;

 [JsonIgnore]
 public decimal Amount {
 get { return decimal.Parse(_amount); }
 set { _amount = value.ToString(); }
 }

https://datatracker.ietf.org/doc/html/draft-rundgren-json-canonicalization-scheme

Rundgren, et al. Expires November 10, 2019 [Page 17]

Internet-Draft draft-rundgren-json-canonicalization-scheme May 2019

 In an application "Amount" can be accessed as any other property
 while it is actually represented by a quoted string in JSON contexts.

 Note: the example above also addresses the constraints on numeric
 data implied by I-JSON (the C# "decimal" data type has quite
 different characteristics compared to IEEE-754 double precision).

E.1. Subtypes in Arrays

 Since the JSON Array construct permits mixing arbitrary JSON
 elements, custom parsing and serialization code must normally be used
 to cope with subtypes anyway.

Appendix F. Implementation Guidelines

 The optimal solution is integrating support for JCS directly in JSON
 serializers (parsers need no changes). That is, canonicalization
 would just be an additional "mode" for a JSON serializer. However,
 this is currently not the case. Fortunately JCS support can be
 performed through externally supplied canonicalizer software,
 enabling signature creation schemes like the following:

 1. Create the data to be signed.

 2. Serialize the data using existing JSON tools.

 3. Let the external canonicalizer process the serialized data and
 return canonicalized result data.

 4. Sign the canonicalized data.

 5. Add the resulting signature value to the original JSON data
 through a designated signature property.

 6. Serialize the completed (now signed) JSON object using existing
 JSON tools.

 A compatible signature verification scheme would then be as follows:

 1. Parse the signed JSON data using existing JSON tools.

 2. Read and save the signature value from the designated signature
 property.

 3. Remove the signature property from the parsed JSON object.

 4. Serialize the remaining JSON data using existing JSON tools.

https://datatracker.ietf.org/doc/html/draft-rundgren-json-canonicalization-scheme

Rundgren, et al. Expires November 10, 2019 [Page 18]

Internet-Draft draft-rundgren-json-canonicalization-scheme May 2019

 5. Let the external canonicalizer process the serialized data and
 return canonicalized result data.

 6. Verify that the canonicalized data matches the saved signature
 value using the algorithm and key used for creating the
 signature.

 A canonicalizer like above is effectively only a "filter",
 potentially usable with a multitude of quite different cryptographic
 schemes.

 Using a JSON serializer with integrated JCS support, the
 serialization performed before the canonicalization step could be
 eliminated for both processes.

Appendix G. Open Source Implementations

 The following Open Source implementations have been verified to be
 compatible with JCS:

 o JavaScript: https://www.npmjs.com/package/canonicalize [2]

 o Java: https://github.com/erdtman/java-json-canonicalization [3]

 o Go: https://github.com/cyberphone/json-
canonicalization/tree/master/go [4]

 o .NET/C#: https://github.com/cyberphone/json-
canonicalization/tree/master/dotnet [5]

 o Python: https://github.com/cyberphone/json-
canonicalization/tree/master/python3 [6]

Appendix H. Other JSON Canonicalization Efforts

 There are (and have been) other efforts creating "Canonical JSON".
 Below is a list of URLs to some of them:

 o https://tools.ietf.org/html/draft-staykov-hu-json-canonical-
form-00 [7]

 o https://gibson042.github.io/canonicaljson-spec/ [8]

 o http://wiki.laptop.org/go/Canonical_JSON [9]

 In contrast to JCS which is a serialization scheme, the listed
 efforts build on text level JSON to JSON transformations.

https://datatracker.ietf.org/doc/html/draft-rundgren-json-canonicalization-scheme
https://www.npmjs.com/package/canonicalize
https://github.com/erdtman/java-json-canonicalization
https://github.com/cyberphone/json-canonicalization/tree/master/go
https://github.com/cyberphone/json-canonicalization/tree/master/go
https://github.com/cyberphone/json-canonicalization/tree/master/dotnet
https://github.com/cyberphone/json-canonicalization/tree/master/dotnet
https://github.com/cyberphone/json-canonicalization/tree/master/python3
https://github.com/cyberphone/json-canonicalization/tree/master/python3
https://tools.ietf.org/html/draft-staykov-hu-json-canonical-form-00
https://tools.ietf.org/html/draft-staykov-hu-json-canonical-form-00
https://gibson042.github.io/canonicaljson-spec/
http://wiki.laptop.org/go/Canonical_JSON

Rundgren, et al. Expires November 10, 2019 [Page 19]

Internet-Draft draft-rundgren-json-canonicalization-scheme May 2019

Appendix I. Development Portal

 The JCS specification is currently developed at:
https://github.com/cyberphone/ietf-json-canon [10].

 The most recent "editors' copy" can be found at:
https://cyberphone.github.io/ietf-json-canon [11].

 JCS source code and test data is available at:
https://github.com/cyberphone/json-canonicalization [12]

Authors' Addresses

 Anders Rundgren
 Independent
 Montpellier
 France

 Email: anders.rundgren.net@gmail.com
 URI: https://www.linkedin.com/in/andersrundgren/

 Bret Jordan
 Symantec Corporation
 350 Ellis Street
 Mountain View CA 94043
 USA

 Email: bret_jordan@symantec.com

 Samuel Erdtman
 Spotify AB
 Birger Jarlsgatan 61, 4tr
 Stockholm 113 56
 Sweden

 Email: erdtman@spotify.com

https://datatracker.ietf.org/doc/html/draft-rundgren-json-canonicalization-scheme
https://github.com/cyberphone/ietf-json-canon
https://cyberphone.github.io/ietf-json-canon
https://github.com/cyberphone/json-canonicalization
https://www.linkedin.com/in/andersrundgren/

Rundgren, et al. Expires November 10, 2019 [Page 20]

