
Workgroup: Network Working Group

Internet-Draft:

draft-rundgren-json-canonicalization-scheme-12

Published: 27 September 2019

Intended Status: Informational

Expires: 30 March 2020

Authors: A. Rundgren

Independent

B. Jordan

Symantec Corporation

S. Erdtman

Spotify AB

JSON Canonicalization Scheme (JCS)

Abstract

Cryptographic operations like hashing and signing need the data to

be expressed in an invariant format so that the operations are

reliably repeatable. One way to address this is to create a

canonical representation of the data. Canonicalization also permits

data to be exchanged in its original form on the "wire" while

cryptographic operations performed on the canonicalized counterpart

of the data in the producer and consumer end points, generate

consistent results. This document describes the JSON

Canonicalization Scheme (JCS). The JCS specification defines how to

create a canonical representation of JSON data by building on the

strict serialization methods for JSON primitives defined by

ECMAScript, constraining JSON data to the I-JSON subset, and by

using deterministic property sorting.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 30 March 2020.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Detailed Operation

3.1. Creation of Input Data

3.2. Generation of Canonical JSON Data

3.2.1. Whitespace

3.2.2. Serialization of Primitive Data Types

3.2.2.1. Serialization of Literals

3.2.2.2. Serialization of Strings

3.2.2.3. Serialization of Numbers

3.2.3. Sorting of Object Properties

3.2.4. UTF-8 Generation

4. IANA Considerations

5. Security Considerations

6. Acknowledgements

7. References

7.1. Normative References

7.2. Informative References

Appendix A. ES6 Sample Canonicalizer

Appendix B. Number Serialization Samples

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

Appendix C. Canonicalized JSON as "Wire Format"

Appendix D. Dealing with Big Numbers

Appendix E. String Subtype Handling

E.1. Subtypes in Arrays

Appendix F. Implementation Guidelines

Appendix G. Open Source Implementations

Appendix H. Other JSON Canonicalization Efforts

Appendix I. Development Portal

Appendix J. Document History

Authors' Addresses

1. Introduction

Cryptographic operations like hashing and signing need the data to

be expressed in an invariant format so that the operations are

reliably repeatable. One way to accomplish this is to convert the

data into a format that has a simple and fixed representation, like

Base64Url [RFC4648]. This is how JWS [RFC7515] addressed this issue.

Another solution is to create a canonical version of the data,

similar to what was done for the XML Signature [XMLDSIG] standard.

The primary advantage with a canonicalizing scheme is that data can

be kept in its original form. This is the core rationale behind JCS.

Put another way, using canonicalization enables a JSON Object to

remain a JSON Object even after being signed. This can simplify

system design, documentation, and logging.

To avoid "reinventing the wheel", JCS relies on the serialization of

JSON primitives (strings, numbers and literals), as defined by

ECMAScript (aka JavaScript) beginning with version 6 [ES6],

hereafter referred to as "ES6".

Seasoned XML developers may recall difficulties getting XML

signatures to validate. This was usually due to different

interpretations of the quite intricate XML canonicalization rules as

well as of the equally complex Web Services security standards. The

reasons why JCS should not suffer from similar issues are:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

o

o

o

o

The absence of a namespace concept and default values.

Constraining data to the I‑JSON [RFC7493] subset. This eliminates

the need for specific parsers for dealing with canonicalization.

JCS compatible serialization of JSON primitives is currently

supported by most Web browsers and as well as by Node.js

[NODEJS],

The full JCS specification is currently supported by multiple

Open Source implementations (see Appendix G). See also Appendix

F.

In summary the JCS specification defines how to create a canonical

representation of JSON data by building on the strict serialization

methods for JSON primitives defined by ECMAScript [ES6],

constraining JSON data to the I-JSON [RFC7493] subset, and by using

deterministic property sorting. The output from JCS is a "Hashable"

representation of JSON data that can be used by cryptographic

methods.

JCS is compatible with some existing systems relying on JSON

canonicalization such as JWK Thumbprint [RFC7638] and Keybase

[KEYBASE].

For potential uses outside of cryptography see [JSONCOMP].

The intended audiences of this document are JSON tool vendors, as

well as designers of JSON based cryptographic solutions. The reader

is assumed to have a basic knowledge of ECMAScript including the

"JSON" object.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Detailed Operation

This section describes different issues related to creating a

canonical JSON representation, and how they are addressed by JCS.

3.1. Creation of Input Data

Data to be serialized is usually achieved by:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

o

o

o

o

o

Parsing previously generated JSON data.

Programmatically creating data.

Irrespective of the method used, the data to be serialized MUST be

adapted for I‑JSON [RFC7493] formatting, which implies the

following:

JSON Objects MUST NOT exhibit duplicate property names.

JSON String data MUST be expressible as Unicode [UNICODE].

JSON Number data MUST be expressible as IEEE-754 [IEEE754] double

precision values. For applications needing higher precision or

longer integers than offered by IEEE-754 double precision,

Appendix D outlines how such requirements can be supported in an

interoperable and extensible way.

An additional constraint is that parsed JSON String data MUST NOT be

altered during subsequent serializations. For more information see

Appendix E.

Note: although the Unicode standard offers the possibility of

combining certain characters into one, referred to as "Unicode

Normalization" (https://www.unicode.org/reports/tr15/), JCS' string

processing does not take this in consideration. That is, all

components involved in a scheme depending on JCS, MUST preserve

Unicode string data "as is".

Note: how structured objects like sets are represented in JSON is

out of scope for JCS. See also Appendix F.

3.2. Generation of Canonical JSON Data

The following subsections describe the steps required to create a

canonical JSON representation of the data elaborated on in the

previous section.

Appendix A shows sample code for an ES6 based canonicalizer,

matching the JCS specification.

3.2.1. Whitespace

Whitespace between JSON tokens MUST NOT be emitted.

3.2.2. Serialization of Primitive Data Types

Assume a JSON object as follows is parsed:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.unicode.org/reports/tr15/

o

o

If the parsed data is subsequently serialized using a serializer

compliant with ES6's JSON.stringify(), the result would (with a line

wrap added for display purposes only), be rather divergent with

respect to the original data:

The reason for the difference between the parsed data and its

serialized counterpart, is due to a wide tolerance on input data (as

defined by JSON [RFC8259]), while output data (as defined by ES6),

has a fixed representation. As can be seen in the example, numbers

are subject to rounding as well.

The following subsections describe the serialization of primitive

JSON data types according to JCS. This part is identical to that of

ES6. In the (unlikely) event that a future version of ECMAScript

would invalidate any of the following serialization methods, it will

be up to the developer community to either stick to this

specification or create a new specification.

3.2.2.1. Serialization of Literals

In accordance with JSON [RFC8259], the literals "null", "true", and

"false" MUST be serialized as null, true, and false respectively.

3.2.2.2. Serialization of Strings

For JSON String data (which includes JSON Object property names as

well), each Unicode code point MUST be serialized as described below

(see section 24.3.2.2 of [ES6]):

If the Unicode value falls within the traditional ASCII control

character range (U+0000 through U+001F), it MUST be serialized

using lowercase hexadecimal Unicode notation (\uhhhh) unless it

is in the set of predefined JSON control characters U+0008,

U+0009, U+000A, U+000C or U+000D which MUST be serialized as \b,

\t, \n, \f and \r respectively.

If the Unicode value is outside of the ASCII control character

range, it MUST be serialized "as is" unless it is equivalent to

U+005C (\) or U+0022 (") which MUST be serialized as \\ and \"

respectively.

 {

 "numbers": [333333333.33333329, 1E30, 4.50,

 2e-3, 0.000000000000000000000000001],

 "string": "\u20ac$\u000F\u000aA'\u0042\u0022\u005c\\\"\/",

 "literals": [null, true, false]

 }

¶

¶

 {"numbers":[333333333.3333333,1e+30,4.5,0.002,1e-27],"string":

 "€$\u000f\nA'B\"\\\\\"/","literals":[null,true,false]}

¶

¶

¶

¶

¶

¶

¶

o

Finally, the resulting sequence of Unicode code points MUST be

enclosed in double quotes (").

Note: some JSON systems permit the use of invalid Unicode data like

"lone surrogates" (e.g. U+DEAD). Since this may lead to

interoperability issues including broken signatures, occurrences of

such data MUST cause a compliant JCS implementation to terminate

with an appropriate error.

3.2.2.3. Serialization of Numbers

JSON Number data MUST be serialized according to section 7.1.12.1 of

[ES6] including the "Note 2" enhancement.

Due to the relative complexity of this part, the algorithm itself is

not included in this document. For implementers of JCS compliant

number serialization, Google's V8 [V8] may serve as a reference.

Another compatible number serialization reference implementation is

Ryu [RYU], that is used by the JCS open source Java implementation

mentioned in Appendix G.

ES6 builds on the IEEE-754 [IEEE754] double precision standard for

representing JSON Number data. Appendix B holds a set of IEEE-754

sample values and their corresponding JSON serialization.

Note: since NaN (Not a Number) and Infinity are not permitted in

JSON, occurrences of such values MUST cause a compliant JCS

implementation to terminate with an appropriate error.

3.2.3. Sorting of Object Properties

Although the previous step normalized the representation of

primitive JSON data types, the result would not yet qualify as

"canonical" since JSON Object properties are not in lexicographic

(alphabetical) order.

Applied to the sample in Section 3.2.2, a properly canonicalized

version should (with a line wrap added for display purposes only),

read as:

The rules for lexicographic sorting of JSON Object properties

according to JCS are as follows:

JSON Object properties MUST be sorted recursively, which means

that JSON child Objects MUST have their properties sorted as

well.

¶

¶

¶

¶

¶

¶

¶

¶

 {"literals":[null,true,false],"numbers":[333333333.3333333,

 1e+30,4.5,0.002,1e-27],"string":"€$\u000f\nA'B\"\\\\\"/"}

¶

¶

¶

o

o

o

o

JSON Array data MUST also be scanned for the presence of JSON

Objects (if an object is found then its properties MUST be

sorted), but array element order MUST NOT be changed.

When a JSON Object is about to have its properties sorted, the

following measures MUST be adhered to:

The sorting process is applied to property name strings in their

"raw" (unescaped) form. That is, a newline character is treated

as U+000A.

Property name strings to be sorted are formatted as arrays of

UTF-16 [UNICODE] code units. The sorting is based on pure value

comparisons, where code units are treated as unsigned integers,

independent of locale settings.

Property name strings either have different values at some index

that is a valid index for both strings, or their lengths are

different, or both. If they have different values at one or more

index positions, let k be the smallest such index; then the

string whose value at position k has the smaller value, as

determined by using the < operator, lexicographically precedes

the other string. If there is no index position at which they

differ, then the shorter string lexicographically precedes the

longer string.

In plain English this means that property names are sorted in

ascending order like the following:

The rationale for basing the sorting algorithm on UTF-16 code units

is that it maps directly to the string type in ECMAScript (featured

in Web browsers and Node.js), Java and .NET. In addition, JSON only

supports escape sequences expressed as UTF-16 code units making

knowledge and handling of such data a necessity anyway. Systems

using another internal representation of string data will need to

convert JSON property name strings into arrays of UTF-16 code units

before sorting. The conversion from UTF-8 or UTF-32 to UTF-16 is

defined by the Unicode [UNICODE] standard.

The following test data can be used for verifying the correctness of

the sorting scheme in a JCS implementation. JSON test data:

¶

¶

¶

¶

¶

¶

 ""

 "a"

 "aa"

 "ab"

¶

¶

¶

Expected argument order after sorting property strings:

Note: for the purpose of obtaining a deterministic property order,

sorting on UTF-8 or UTF-32 encoded data would also work, but the

outcome for JSON data like above would differ and thus be

incompatible with this specification. However, in practice, property

names are rarely defined outside of 7-bit ASCII making it possible

to sort on string data in UTF-8 or UTF-32 format without conversions

to UTF-16 and still be compatible with JCS. If this is a viable

option or not depends on the environment JCS is used in.

3.2.4. UTF-8 Generation

Finally, in order to create a platform independent representation,

the result of the preceding step MUST be encoded in UTF-8.

Applied to the sample in Section 3.2.3 this should yield the

following bytes here shown in hexadecimal notation:

This data is intended to be usable as input to cryptographic

methods.

4. IANA Considerations

This document has no IANA actions.

 {

 "\u20ac": "Euro Sign",

 "\r": "Carriage Return",

 "\ufb33": "Hebrew Letter Dalet With Dagesh",

 "1": "One",

 "\ud83d\ude00": "Emoji: Grinning Face",

 "\u0080": "Control",

 "\u00f6": "Latin Small Letter O With Diaeresis"

 }

¶

¶

 "Carriage Return"

 "One"

 "Control"

 "Latin Small Letter O With Diaeresis"

 "Euro Sign"

 "Emoji: Grinning Face"

 "Hebrew Letter Dalet With Dagesh"

¶

¶

¶

¶

 7b 22 6c 69 74 65 72 61 6c 73 22 3a 5b 6e 75 6c 6c 2c 74 72

 75 65 2c 66 61 6c 73 65 5d 2c 22 6e 75 6d 62 65 72 73 22 3a

 5b 33 33 33 33 33 33 33 33 33 2e 33 33 33 33 33 33 33 2c 31

 65 2b 33 30 2c 34 2e 35 2c 30 2e 30 30 32 2c 31 65 2d 32 37

 5d 2c 22 73 74 72 69 6e 67 22 3a 22 e2 82 ac 24 5c 75 30 30

 30 66 5c 6e 41 27 42 5c 22 5c 5c 5c 5c 5c 22 2f 22 7d

¶

¶

¶

[ES6]

[IEEE754]

[RFC2119]

5. Security Considerations

It is vital performing "sanity" checks on input data to avoid

overflowing buffers and similar things that could affect the

integrity of the system.

When JCS is applied to signature schemes like the one described in

Appendix F, applications MUST perform the following operations

before acting upon received data:

Parse the JSON data and verify that it adheres to I-JSON.

Verify the data for correctness according to the conventions

defined by the ecosystem where it is to be used. This also

includes locating the property holding the signature data.

Verify the signature.

If any of these steps fail, the operation in progress MUST be

aborted.

6. Acknowledgements

Building on ES6 Number serialization was originally proposed by

James Manger. This ultimately led to the adoption of the entire ES6

serialization scheme for JSON primitives.

Other people who have contributed with valuable input to this

specification include Scott Ananian, Tim Bray, Ben Campbell, Adrian

Farell, Richard Gibson, Bron Gondwana, John-Mark Gurney, John

Levine, Mark Miller, Matt Miller, Mike Jones, Mark Nottingham,

Mike Samuel, Jim Schaad, Robert Tupelo-Schneck and Michal Wadas.

For carrying out real world concept verification, the software and

support for number serialization provided by Ulf Adams,

Tanner Gooding and Remy Oudompheng was very helpful.

7. References

7.1. Normative References

Ecma International, "ECMAScript 2015 Language

Specification", June 2015, <https://www.ecma-

international.org/ecma-262/6.0/index.html>.

IEEE, "IEEE Standard for Floating-Point Arithmetic",

August 2008, <http://grouper.ieee.org/groups/754/>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

¶

1. ¶

2.

¶

3. ¶

¶

¶

¶

¶

https://www.ecma-international.org/ecma-262/6.0/index.html
https://www.ecma-international.org/ecma-262/6.0/index.html
http://grouper.ieee.org/groups/754/

[RFC7493]

[RFC8174]

[RFC8259]

[UNICODE]

[JSONCOMP]

[KEYBASE]

[NODEJS]

[OPENAPI]

[RFC4648]

[RFC7515]

[RFC7638]

[RYU]

[V8]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Bray, T., Ed., "The I-JSON Message Format", RFC 7493, DOI

10.17487/RFC7493, March 2015, <https://www.rfc-

editor.org/info/rfc7493>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/info/

rfc8259>.

The Unicode Consortium, "The Unicode Standard, Version

12.1.0", May 2019, <https://www.unicode.org/versions/

Unicode12.1.0/>.

7.2. Informative References

A. Rundgren, ""Comparable" JSON - Work in progress",

<https://tools.ietf.org/html/draft-rundgren-comparable-

json-04>.

"Keybase", <https://keybase.io/docs/api/1.0/

canonical_packings#json>.

"Node.js", <https://nodejs.org>.

"The OpenAPI Initiative", <https://www.openapis.org/>.

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://www.rfc-editor.org/info/rfc4648>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web

Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May

2015, <https://www.rfc-editor.org/info/rfc7515>.

Jones, M. and N. Sakimura, "JSON Web Key (JWK)

Thumbprint", RFC 7638, DOI 10.17487/RFC7638, September

2015, <https://www.rfc-editor.org/info/rfc7638>.

Ulf Adams, "Ryu floating point number serializing

algorithm", <https://github.com/ulfjack/ryu>.

Google LLC, "Chrome V8 Open Source JavaScript Engine",

<https://developers.google.com/v8/>.

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7493
https://www.rfc-editor.org/info/rfc7493
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.unicode.org/versions/Unicode12.1.0/
https://www.unicode.org/versions/Unicode12.1.0/
https://tools.ietf.org/html/draft-rundgren-comparable-json-04
https://tools.ietf.org/html/draft-rundgren-comparable-json-04
https://keybase.io/docs/api/1.0/canonical_packings#json
https://keybase.io/docs/api/1.0/canonical_packings#json
https://nodejs.org
https://www.openapis.org/
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7638
https://github.com/ulfjack/ryu
https://developers.google.com/v8/

[XMLDSIG]
W3C, "XML Signature Syntax and Processing Version 1.1",

<https://www.w3.org/TR/xmldsig-core1/>.

Appendix A. ES6 Sample Canonicalizer

Below is an example of a JCS canonicalizer for usage with ES6 based

systems:¶

https://www.w3.org/TR/xmldsig-core1/

 //

 // Since the primary purpose of this code is highlighting //

 // the core of the JCS algorithm, error handling and //

 // UTF-8 generation were not implemented //

 //

 var canonicalize = function(object) {

 var buffer = '';

 serialize(object);

 return buffer;

 function serialize(object) {

 if (object === null || typeof object !== 'object' ||

 object.toJSON != null) {

 ///

 // Primitive type or toJSON - Use ES6/JSON //

 ///

 buffer += JSON.stringify(object);

 } else if (Array.isArray(object)) {

 ///

 // Array - Maintain element order //

 ///

 buffer += '[';

 let next = false;

 object.forEach((element) => {

 if (next) {

 buffer += ',';

 }

 next = true;

 ///

 // Array element - Recursive expansion //

 ///

 serialize(element);

 });

 buffer += ']';

 } else {

 ///

 // Object - Sort properties before serializing //

 ///

 buffer += '{';

 let next = false;

 Object.keys(object).sort().forEach((property) => {

 if (next) {

 buffer += ',';

 }

 next = true;

 ///

 // Property names are strings - Use ES6/JSON //

 ///

 buffer += JSON.stringify(property);

 buffer += ':';

 //

 // Property value - Recursive expansion //

 //

 serialize(object[property]);

 });

 buffer += '}';

 }

 }

 };

¶

Appendix B. Number Serialization Samples

The following table holds a set of ES6 compatible Number

serialization samples, including some edge cases. The column

"IEEE‑754" refers to the internal ES6 representation of the Number

data type which is based on the IEEE-754 [IEEE754] standard using

64-bit (double precision) values, here expressed in hexadecimal.¶

╒══════════════════╤═══════════════════════════╤═════════════════════╕

│ IEEE-754 │ JSON Representation │ Comment │

╞══════════════════╪═══════════════════════════╪═════════════════════╡

│ 0000000000000000 │ 0 │ Zero │

├──────────────────┼───────────────────────────┼─────────────────────┤

│ 8000000000000000 │ 0 │ Minus zero │

├──────────────────┼───────────────────────────┼─────────────────────┤

│ 0000000000000001 │ 5e-324 │ Min pos number │

├──────────────────┼───────────────────────────┼─────────────────────┤

│ 8000000000000001 │ -5e-324 │ Min neg number │

├──────────────────┼───────────────────────────┼─────────────────────┤

│ 7fefffffffffffff │ 1.7976931348623157e+308 │ Max pos number │

├──────────────────┼───────────────────────────┼─────────────────────┤

│ ffefffffffffffff │ -1.7976931348623157e+308 │ Max neg number │

├──────────────────┼───────────────────────────┼─────────────────────┤

│ 4340000000000000 │ 9007199254740992 │ Max pos integer (1) │

├──────────────────┼───────────────────────────┼─────────────────────┤

│ c340000000000000 │ -9007199254740992 │ Max neg integer (1) │

├──────────────────┼───────────────────────────┼─────────────────────┤

│ 4430000000000000 │ 295147905179352830000 │ ~2**68 (2) │

├──────────────────┼───────────────────────────┼─────────────────────┤

│ 7fffffffffffffff │ │ NaN (3) │

├──────────────────┼───────────────────────────┼─────────────────────┤

│ 7ff0000000000000 │ │ Infinity (3) │

├──────────────────┼───────────────────────────┼─────────────────────┤

│ 44b52d02c7e14af5 │ 9.999999999999997e+22 │ │

├──────────────────┼───────────────────────────┼─────────────────────┤

│ 44b52d02c7e14af6 │ 1e+23 │ │

├──────────────────┼───────────────────────────┼─────────────────────┤

│ 44b52d02c7e14af7 │ 1.0000000000000001e+23 │ │

├──────────────────┼───────────────────────────┼─────────────────────┤

│ 444b1ae4d6e2ef4e │ 999999999999999700000 │ │

├──────────────────┼───────────────────────────┼─────────────────────┤

│ 444b1ae4d6e2ef4f │ 999999999999999900000 │ │

├──────────────────┼───────────────────────────┼─────────────────────┤

│ 444b1ae4d6e2ef50 │ 1e+21 │ │

├──────────────────┼───────────────────────────┼─────────────────────┤

│ 3eb0c6f7a0b5ed8c │ 9.999999999999997e-7 │ │

├──────────────────┼───────────────────────────┼─────────────────────┤

│ 3eb0c6f7a0b5ed8d │ 0.000001 │ │

├──────────────────┼───────────────────────────┼─────────────────────┤

│ 41b3de4355555553 │ 333333333.3333332 │ │

├──────────────────┼───────────────────────────┼─────────────────────┤

│ 41b3de4355555554 │ 333333333.33333325 │ │

├──────────────────┼───────────────────────────┼─────────────────────┤

│ 41b3de4355555555 │ 333333333.3333333 │ │

├──────────────────┼───────────────────────────┼─────────────────────┤

│ 41b3de4355555556 │ 333333333.3333334 │ │

├──────────────────┼───────────────────────────┼─────────────────────┤

│ 41b3de4355555557 │ 333333333.33333343 │ │

├──────────────────┼───────────────────────────┼─────────────────────┤

│ becbf647612f3696 │ -0.0000033333333333333333 │ │

├──────────────────┼───────────────────────────┼─────────────────────┤

│ 43143ff3c1cb0959 │ 1424953923781206.2 │ Round to even (4) │

└──────────────────┴───────────────────────────┴─────────────────────┘

¶

(1)

(2)

(3)

(4)

Notes:

For maximum compliance with the ES6 JSON object, values that

are to be interpreted as true integers SHOULD be in the range

-9007199254740991 to 9007199254740991. However, how numbers

are used in applications do not affect the JCS algorithm.

Although a set of specific integers like 2**68 could be

regarded as having extended precision, the JCS/ES6 number

serialization algorithm does not take this in consideration.

Invalid. See Section 3.2.2.3.

This number is exactly 1424953923781206.25 but will after the

"Note 2" rule mentioned in Section 3.2.2.3 be truncated and

rounded to the closest even value.

Appendix C. Canonicalized JSON as "Wire Format"

Since the result from the canonicalization process (see Section

3.2.4), is fully valid JSON, it can also be used as "Wire Format".

However, this is just an option since cryptographic schemes based on

JCS, in most cases would not depend on that externally supplied JSON

data already is canonicalized.

In fact, the ES6 standard way of serializing objects using

JSON.stringify() produces a more "logical" format, where properties

are kept in the order they were created or received. The example

below shows an address record which could benefit from ES6 standard

serialization:

Using canonicalization the properties above would be output in the

order "address", "city", "name", "state" and "zip", which adds

fuzziness to the data from a human (developer or technical support),

perspective. Canonicalization also converts JSON data into a single

line of text, which may be less than ideal for debugging and

logging.

Appendix D. Dealing with Big Numbers

There are several issues associated with the JSON Number type, here

illustrated by the following sample object:

¶

¶

¶

¶

¶

¶

¶

 {

 "name": "John Doe",

 "address": "2000 Sunset Boulevard",

 "city": "Los Angeles",

 "zip": "90001",

 "state": "CA"

 }

¶

¶

¶

Although the sample above conforms to JSON [RFC8259], applications

would normally use different native data types for storing

"giantNumber" and "int64Max". In addition, monetary data like

"payMeThis" would presumably not rely on floating point data types

due to rounding issues with respect to decimal arithmetic.

The established way handling this kind of "overloading" of the JSON

Number type (at least in an extensible manner), is through mapping

mechanisms, instructing parsers what to do with different properties

based on their name. However, this greatly limits the value of using

the JSON Number type outside of its original somewhat constrained,

JavaScript context. The ES6 JSON object does not support mappings to

JSON Number either.

Due to the above, numbers that do not have a natural place in the

current JSON ecosystem MUST be wrapped using the JSON String type.

This is close to a de-facto standard for open systems. This is also

applicable for other data types that do not have direct support in

JSON, like "DateTime" objects as described in Appendix E.

Aided by a system using the JSON String type; be it programmatic

like

or declarative schemes like OpenAPI [OPENAPI], JCS imposes no limits

on applications, including when using ES6.

Appendix E. String Subtype Handling

Due to the limited set of data types featured in JSON, the JSON

String type is commonly used for holding subtypes. This can

depending on JSON parsing method lead to interoperability problems

which MUST be dealt with by JCS compliant applications targeting a

wider audience.

Assume you want to parse a JSON object where the schema designer

assigned the property "big" for holding a "BigInteger" subtype and

"time" for holding a "DateTime" subtype, while "val" is supposed to

be a JSON Number compliant with JCS. The following example shows

such an object:

 {

 "giantNumber": 1.4e+9999,

 "payMeThis": 26000.33,

 "int64Max": 9223372036854775807

 }

¶

¶

¶

¶

¶

 var obj = JSON.parse('{"giantNumber": "1.4e+9999"}');

 var biggie = new BigNumber(obj.giantNumber);

¶

¶

¶

¶

Parsing of this object can accomplished by the following ES6

statement:

After parsing the actual data can be extracted which for subtypes

also involve a conversion step using the result of the parsing

process (an ECMAScript object) as input:

Canonicalization of "object" using the sample code in Appendix A

would return the following string:

Although this is (with respect to JCS) technically correct, there is

another way parsing JSON data which also can be used with ECMAScript

as shown below:

If you now apply the canonicalizer in Appendix A to "object", the

following string would be generated:

In this case the string arguments for "big" and "time" have changed

with respect to the original, presumable making an application

depending on JCS fail.

The reason for the deviation is that in stream and schema based JSON

parsers, the original "string" argument is typically replaced on-

 {

 "time": "2019-01-28T07:45:10Z",

 "big": "055",

 "val": 3.5

 }

¶

¶

 var object = JSON.parse(JSON_object_featured_as_a_string);¶

¶

 ... = new Date(object.time); // Date object

 ... = BigInt(object.big); // Big integer

 ... = object.val; // JSON/JS number

¶

¶

 {"big":"055","time":"2019-01-28T07:45:10Z","val":3.5}¶

¶

 // Note: "BigInt" is implemented by Google's V8 ECMAScript engine.

 // It requires the following code to become JSON serializable.

 BigInt.prototype.toJSON = function() {

 return this.toString();

 };

 // JSON parsing using a "stream" based method

 var object = JSON.parse(JSON_object_featured_as_a_string,

 (k,v) => k == 'time' ? new Date(v) : k == 'big' ? BigInt(v) : v

);

¶

¶

 {"big":"55","time":"2019-01-28T07:45:10.000Z","val":3.5}¶

¶

the-fly by the native subtype which when serialized, may exhibit a

different and platform dependent pattern.

That is, stream and schema based parsing MUST treat subtypes as

"pure" (immutable) JSON String types, and perform the actual

conversion to the designated native type in a subsequent step. In

modern programming platforms like Go, Java and C# this can be

achieved with moderate efforts by combining annotations, getters and

setters. Below is an example in C#/Json.NET showing a part of a

class that is serializable as a JSON Object:

In an application "Amount" can be accessed as any other property

while it is actually represented by a quoted string in JSON

contexts.

Note: the example above also addresses the constraints on numeric

data implied by I-JSON (the C# "decimal" data type has quite

different characteristics compared to IEEE-754 double precision).

E.1. Subtypes in Arrays

Since the JSON Array construct permits mixing arbitrary JSON data

types, custom parsing and serialization code may be required to cope

with subtypes anyway.

Appendix F. Implementation Guidelines

The optimal solution is integrating support for JCS directly in JSON

serializers (parsers need no changes). That is, canonicalization

would just be an additional "mode" for a JSON serializer. However,

this is currently not the case. Fortunately JCS support can be

performed through externally supplied canonicalizer software,

enabling signature creation schemes like the following:

Create the data to be signed.

Serialize the data using existing JSON tools.

¶

¶

 // The "pure" string solution uses a local

 // string variable for JSON serialization while

 // exposing another type to the application

 [JsonProperty("amount")]

 private string _amount;

 [JsonIgnore]

 public decimal Amount {

 get { return decimal.Parse(_amount); }

 set { _amount = value.ToString(); }

 }

¶

¶

¶

¶

¶

1. ¶

2. ¶

Let the external canonicalizer process the serialized data and

return canonicalized result data.

Sign the canonicalized data.

Add the resulting signature value to the original JSON data

through a designated signature property.

Serialize the completed (now signed) JSON object using existing

JSON tools.

A compatible signature verification scheme would then be as follows:

Parse the signed JSON data using existing JSON tools.

Read and save the signature value from the designated signature

property.

Remove the signature property from the parsed JSON object.

Serialize the remaining JSON data using existing JSON tools.

Let the external canonicalizer process the serialized data and

return canonicalized result data.

Verify that the canonicalized data matches the saved signature

value using the algorithm and key used for creating the

signature.

A canonicalizer like above is effectively only a "filter",

potentially usable with a multitude of quite different cryptographic

schemes.

Using a JSON serializer with integrated JCS support, the

serialization performed before the canonicalization step could be

eliminated for both processes.

Appendix G. Open Source Implementations

The following Open Source implementations have been verified to be

compatible with JCS:

JavaScript: https://www.npmjs.com/package/canonicalize

Java: https://github.com/erdtman/java-json-canonicalization

Go: https://github.com/cyberphone/json-canonicalization/tree/

master/go

3.

¶

4. ¶

5.

¶

6.

¶

¶

1. ¶

2.

¶

3. ¶

4. ¶

5.

¶

6.

¶

¶

¶

¶

* ¶

* ¶

*

¶

https://www.npmjs.com/package/canonicalize
https://github.com/erdtman/java-json-canonicalization
https://github.com/cyberphone/json-canonicalization/tree/master/go
https://github.com/cyberphone/json-canonicalization/tree/master/go

.NET/C#: https://github.com/cyberphone/json-canonicalization/

tree/master/dotnet

Python: https://github.com/cyberphone/json-canonicalization/tree/

master/python3

Appendix H. Other JSON Canonicalization Efforts

There are (and have been) other efforts creating "Canonical JSON".

Below is a list of URLs to some of them:

https://tools.ietf.org/html/draft-staykov-hu-json-canonical-

form-00

https://gibson042.github.io/canonicaljson-spec/

http://wiki.laptop.org/go/Canonical_JSON

The listed efforts all build on text level JSON to JSON

transformations. The primary feature of text level canonicalization

is that it can be made neutral to the flavor of JSON used. However,

such schemes also imply major changes to the JSON parsing process

which is a likely hurdle for adoption. Albeit at the expense of

certain JSON and application constraints, JCS was designed to be

compatible with existing JSON tools.

Appendix I. Development Portal

The JCS specification is currently developed at: https://github.com/

cyberphone/ietf-json-canon.

The most recent "editors' copy" can be found at: https://

cyberphone.github.io/ietf-json-canon.

JCS source code and extensive test data is available at: https://

github.com/cyberphone/json-canonicalization

Appendix J. Document History

[[to be removed by the RFC Editor before publication as an RFC]]

Version 00-06:

See IETF diff listings.

Version 07:

Initial converson to XML RFC version 3.

Changed intended status to "Informational".

*

¶

*

¶

¶

*

¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

* ¶

¶

* ¶

* ¶

https://github.com/cyberphone/json-canonicalization/tree/master/dotnet
https://github.com/cyberphone/json-canonicalization/tree/master/dotnet
https://github.com/cyberphone/json-canonicalization/tree/master/python3
https://github.com/cyberphone/json-canonicalization/tree/master/python3
https://tools.ietf.org/html/draft-staykov-hu-json-canonical-form-00
https://tools.ietf.org/html/draft-staykov-hu-json-canonical-form-00
https://gibson042.github.io/canonicaljson-spec/
http://wiki.laptop.org/go/Canonical_JSON
https://github.com/cyberphone/ietf-json-canon
https://github.com/cyberphone/ietf-json-canon
https://cyberphone.github.io/ietf-json-canon
https://cyberphone.github.io/ietf-json-canon
https://github.com/cyberphone/json-canonicalization
https://github.com/cyberphone/json-canonicalization

Added UTF-16 test data and explanations.

Version 08:

Updated Abstract.

Added a "Note 2" number serialization sample.

Updated Security Considerations.

Tried to clear up the JSON input data section.

Added a line about Unicode normalization.

Added a line about serialiation of structured data.

Added a missing fact about "BigInt" (V8 not ES6).

Version 09:

Updated initial line of Abstract and Introduction.

Added note about breaking ECMAScript changes.

Minor language nit fixes.

Version 10-12:

Language tweaks.

Authors' Addresses

Anders Rundgren

Independent

Montpellier

France

Email: anders.rundgren.net@gmail.com

URI: https://www.linkedin.com/in/andersrundgren/

Bret Jordan

Symantec Corporation

350 Ellis Street

Mountain View, CA 94043

United States of America

Email: bret_jordan@symantec.com

Samuel Erdtman

Spotify AB

Birger Jarlsgatan 61, 4tr

* ¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

¶

* ¶

mailto:anders.rundgren.net@gmail.com
https://www.linkedin.com/in/andersrundgren/
mailto:bret_jordan@symantec.com

SE-113 56 Stockholm

Sweden

Email: erdtman@spotify.com

mailto:erdtman@spotify.com

	JSON Canonicalization Scheme (JCS)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Detailed Operation
	3.1. Creation of Input Data
	3.2. Generation of Canonical JSON Data
	3.2.1. Whitespace
	3.2.2. Serialization of Primitive Data Types
	3.2.2.1. Serialization of Literals
	3.2.2.2. Serialization of Strings
	3.2.2.3. Serialization of Numbers

	3.2.3. Sorting of Object Properties
	3.2.4. UTF-8 Generation

	4. IANA Considerations
	5. Security Considerations
	6. Acknowledgements
	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. ES6 Sample Canonicalizer
	Appendix B. Number Serialization Samples
	Appendix C. Canonicalized JSON as "Wire Format"
	Appendix D. Dealing with Big Numbers
	Appendix E. String Subtype Handling
	E.1. Subtypes in Arrays
	Appendix F. Implementation Guidelines
	Appendix G. Open Source Implementations
	Appendix H. Other JSON Canonicalization Efforts
	Appendix I. Development Portal
	Appendix J. Document History
	Authors' Addresses

