
Internet Engineering Task Force A. Rundgren, Ed.
Internet-Draft WebPKI.org
Intended status: Informational November 4, 2015
Expires: May 7, 2016

Predictable Serialization for JSON Tools
draft-rundgren-predictable-serialization-for-json-00

Abstract

 This specification outlines an optional characteristic of JSON tools
 like parsers, serving two entirely different purposes: 1) Making
 information-rich JSON messages more human-readable by honoring the
 originator's conventions. 2) Facilitating simple "Signed JSON"
 schemes without necessarily needing specific signature text-
 processing software. Finally, there is a section containing
 recommendations for interoperability with systems based on EcmaScript
 V6 (AKA JavaScript).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Rundgren Expires May 7, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Predictable Serialization for JSON Tools November 2015

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Notational Conventions 3

2. Predictable Serialization 3
2.1. Ordering of Properties 3
2.2. Element Handling . 3
2.2.1. Whitespace Processing 4
2.2.2. String Normalization 4
2.2.3. Number Representation 4
2.2.4. Other Element Types 4

3. Signed JSON Objects . 4
3.1. Creating a Signed JSON object 4
3.2. Verifying a Signed JSON Object 5
3.3. Interoperability with EcmaScript V6 6

4. Acknowledgements . 7
5. IANA Considerations . 7
6. Security Considerations 7
7. References . 7
7.1. Normative References 7
7.2. Informative References 8

 Author's Address . 8

1. Introduction

 There is currently a strong trend moving from XML, EDI, ASN.1, and
 plain-text formats to JSON [RFC7159]. Although obviously working,
 JSON's unspecified of ordering of properties as well as the lack of a
 canonical form, sometimes make the transition rather painful.

 The sample below displays the problems in a nutshell. Assume the
 following JSON message is parsed:

 {
 "device": "Pump2",
 "value": 0.000000000000000001
 }

 After serialization a fully JSON-compliant output may look like:

 {
 "value": 1e-18,
 "device": "Pump2"
 }

https://datatracker.ietf.org/doc/html/rfc7159

Rundgren Expires May 7, 2016 [Page 2]

Internet-Draft Predictable Serialization for JSON Tools November 2015

 Note: Whitespace was added for brevity.

 If a JSON object contains dozens of properties the ability for a
 human to follow a message with respect to its specification (which
 presumably lists properties in a "logical" order), becomes
 considerably harder if the properties are serialized in an arbitrary
 order. In addition, changing the representation of numbers also
 contributes to confusion. Computers however, do not care.

 While limitations in JSON-data for human consumption may only be
 considered a "nuisance", adding a signature property to a JSON object
 is infeasible unless there is some kind of predictable representation
 of data. This is one of the reasons why JSON Web Signature (JWS)
 [RFC7515] specifies that data to be signed must be Base64URL-encoded
 which though unfortunately makes JWS-signed messages unreadable by
 humans.

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Predictable Serialization

 To cope with the mentioned drawbacks, this specification introduces a
 simple predictable serialization scheme, preferably implemented
 directly in JSON parsers.

 Note: This is not an attempt to change the JSON language in any way;
 it is only about how it is processed!

2.1. Ordering of Properties

 The original property order MUST be honored during parsing of JSON
 objects to support a subsequent serialization phase. Duplicate or
 empty properties MUST be rejected.

2.2. Element Handling

 In addition to preserving property order, this specification implies
 specific handling of JSON language elements, described in the
 succeeding sub-sections.

https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Rundgren Expires May 7, 2016 [Page 3]

Internet-Draft Predictable Serialization for JSON Tools November 2015

2.2.1. Whitespace Processing

 All whitespace before and after JSON values and structural characters
 MUST be removed during serialization.

2.2.2. String Normalization

 Quoted strings including properties MUST be normalized in a way which
 is close to the de-facto standard for JSON parsers which is:

 o JSON '\/' escape sequences MUST be honored on input within quoted
 strings but be treated as a "degenerate" equivalents to '/' by
 rewriting them.

 o Unicode [UNICODE] escape sequences ('\uhhhh') within quoted
 strings MUST be adjusted as follows: If the Unicode value falls
 within the ASCII [RFC20] control character range (0x00 - 0x1f), it
 MUST be rewritten in lower-case hexadecimal notation unless it is
 one of the pre-defined JSON escapes ('\n' etc.) because the latter
 have precedence. If the Unicode value is outside of the ASCII
 control character range, it MUST be replaced by the corresponding
 Unicode character with the exception of '"' and '\' which always
 MUST be escaped as well.

2.2.3. Number Representation

 The textual representation of numbers MUST be preserved during
 parsing and serialization. That is, if numbers like 3.50 and -0 are
 encountered during a parsing process, they MUST be serialized as 3.50
 and -0 respectively although 3.5 and 0 would be the most natural
 outcome.

2.2.4. Other Element Types

 No particular action needs to be taken for the remaining JSON
 language elements.

3. Signed JSON Objects

 The following non-normative section shows the principles for creating
 and verifying in-object signatures built on top of the predictable
 serialization concept.

3.1. Creating a Signed JSON object

 Assume there is a JSON object like the following:

https://datatracker.ietf.org/doc/html/rfc20

Rundgren Expires May 7, 2016 [Page 4]

Internet-Draft Predictable Serialization for JSON Tools November 2015

 {
 "property-1": ...,
 "property-2": ...,
 ...
 "property-n": ...
 }

 A with this specification compliant serialization would then return:

 {"property-1":...,"property-2":...,..."property-n":...}

 This string may after conversion to UTF-8 [RFC3629] be signed using
 any suitable algorithm like HS256 [RFC7518] or RS256 [RFC7518].
 Using a bare-bones signature scheme the resulting JSON object could
 look like the following:

 {
 "property-1": ...,
 "property-2": ...,
 ...
 "property-n": ...,
 "signature":"LmTlQxXB3LgZrNLmhOfMaCnDizczC_RfQ6Kx8iNwfFA"
 }

 The actual signature value would typically be Base64URL-encoded
 [RFC4648].

 Note: The placement of the "signature" property with respect to the
 other properties (1-n) is insignificant.

 Note: Signed data may very well be "pretty-printed" since whitespace
 is excluded by the serialization process.

3.2. Verifying a Signed JSON Object

 The signed object created in the previous section could be verified
 by performing the following steps:

 1. Parse the JSON object

 2. Read and decode the value of the "signature" property

 3. Remove the "signature" property from the JSON object

 4. Serialize the JSON object which should generate exactly the same
 result as in the preceding section

https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/rfc4648

Rundgren Expires May 7, 2016 [Page 5]

Internet-Draft Predictable Serialization for JSON Tools November 2015

 5. Apply an algorithm-dependent signature verification method using
 the signature key, the UTF-8 representation of the serialization
 result from step #4, and the data read in step #2 as input
 arguments

3.3. Interoperability with EcmaScript V6

 Since ECMAScript [ECMA-262] due its availability in Internet browsers
 represents the largest base of JSON-tools, it seems likely that
 "Signed JSON" will also be used in such environments. This is indeed
 possible but there are some constraints that need to be catered for
 if interoperability with this specification is desired:

 o Property names MUST NOT be expressed as integer values like "1"
 because EmcaScript does not honor creation order for such items as
 described in section 9.1.12 of the EcmaScript V6 specification.

 o Serialization of floating-point numbers is described in section
7.1.12.1 of the EcmaScript V6 specification. However, since this

 serialization scheme does not guarantee the correctness of the
 least significant digit, the following workaround is REQUIRED for
 maintaining interoperability between different EcmaScript
 implementations:

 var aValue = 0.000000000000000001;
 var myObject = {};
 myObject.device = 'Pump2';
 myObject.value =
 parseFloat((Math.abs(aValue) < 2.22507385850721E-308 ?
 0 : aValue).toPrecision(15));

 // Serialize object to a JSON string
 var jsonString = JSON.stringify(myObject);

 // This string can now be signed and the value be
 // added to the object itself (not shown here)

 The test with 2.22507385850721E-308 is for dealing with underflow and
 15 digits of precision at the same time.

 Non-EcmaScript systems targeting EcmaScript environments MUST (of
 course) apply the measures specified above as well. An externally
 created signed object could for example be supplied as in-line
 EcmaScript in an HTML document like below:

Rundgren Expires May 7, 2016 [Page 6]

Internet-Draft Predictable Serialization for JSON Tools November 2015

 var inObjectSignedData =
 {
 "device": "Pump2",
 "value": 1e-18,
 "signature": "LmTlQxXB3LgZrNLmhOfMaCnDizczC_RfQ6Kx8iNwfFA"
 };

 Note: Whitespace can be used to make code more readable without
 affecting signatures.

 Note: Quotes around property names are actually redundant if you (as
 in the example), stick to names that are syntactically compatible
 with the EcmaScript language.

4. Acknowledgements

 During the initial design of the JSON Cleartext Signature (JCS) [JCS]
 scheme which was the "inspiration" for this specification, highly
 appreciated feedback was provided by Manu Sporny, Jim Klo, Jeffrey
 Walton, David Chadwick, Jim Schaad, David Waite, Douglas Crockford,
 Arne Riiber, Sergey Beryozkin, and Brian Campbell.

 A special thank goes to James Manger who helped weeding out bugs in
 both the specification and in the reference code.

5. IANA Considerations

 This memo includes no request to IANA.

6. Security Considerations

 This specification does (according to the author), not reduce or add
 vulnerabilities to JSON processing. Bugs in serializing software can
 though (of course) potentially expose sensitive data to attackers,
 activate protected APIs, or incorrectly validate signatures.

7. References

7.1. Normative References

 [RFC20] Cerf, V., "ASCII format for Network Interchange", October
 1969, <http://www.rfc-editor.org/info/rfc20>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

http://www.rfc-editor.org/info/rfc20
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119

Rundgren Expires May 7, 2016 [Page 7]

Internet-Draft Predictable Serialization for JSON Tools November 2015

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [UNICODE] The Unicode Consortium, "The Unicode Standard",
 <http://www.unicode.org/versions/latest/>.

7.2. Informative References

 [ECMA-262]
 Ecma International, "ECMAScript Language Specification
 Edition 6", June 2015, <http://www.ecma-

international.org/publications/standards/Ecma-262.htm>.

 [JCS] Rundgren, A., "JSON Cleartext Signature (JCS)", January
 2015,
 <https://cyberphone.github.io/openkeystore/resources/docs/

jcs.html>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <http://www.rfc-editor.org/info/rfc3629>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <http://www.rfc-editor.org/info/rfc4648>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <http://www.rfc-editor.org/info/rfc7515>.

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518, DOI
 10.17487/RFC7518, May 2015,
 <http://www.rfc-editor.org/info/rfc7518>.

Author's Address

 Anders Rundgren (editor)
 WebPKI.org
 14 Ave. Du General Leclerc
 Perols 34470
 France

 Phone: +33 644 75 23 31
 Email: anders.rundgren.net@gmail.com

https://datatracker.ietf.org/doc/html/rfc7159
http://www.rfc-editor.org/info/rfc7159
http://www.unicode.org/versions/latest/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
https://cyberphone.github.io/openkeystore/resources/docs/jcs.html
https://cyberphone.github.io/openkeystore/resources/docs/jcs.html
https://datatracker.ietf.org/doc/html/rfc3629
http://www.rfc-editor.org/info/rfc3629
https://datatracker.ietf.org/doc/html/rfc4648
http://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc7515
http://www.rfc-editor.org/info/rfc7515
https://datatracker.ietf.org/doc/html/rfc7518
http://www.rfc-editor.org/info/rfc7518

Rundgren Expires May 7, 2016 [Page 8]

