
Network Working Group JP. Makela
Internet-Draft September 25, 2013
Intended status: Experimental
Expires: March 29, 2014

Ruoska Encoding
draft-ruoska-encoding-05

Abstract

 This document describes hierarchically structured binary encoding
 format called Ruoska Encoding (later RSK). The main design goals are
 minimal resource usage, well defined structure with good selection of
 widely known data types, and still extendable for future usage.

 The main benefit when compared to non binary hierarchically
 structured formats like XML is simplicity and minimal resource
 demands. Even basic XML parsing is time and memory consuming
 operation.

 When compared to other binary formats like BER encoding of ASN.1 the
 main benefit is simplicity. ASN.1 with many different encodings is
 complex and even simple implementation needs a lot of effort. RSK is
 also more efficient than BER.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 29, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Makela Expires March 29, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Ruoska Encoding September 2013

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Document Structure . 3
1.1. Endianness . 4
1.2. String Encoding . 4

2. Frame Definitions . 5
2.1. Leading Byte . 5
2.2. Meta Frames . 6
2.2.1. Null Frame . 6
2.2.2. Begin Frame . 6
2.2.3. End Frame . 7
2.2.4. Array Frame . 7

2.3. Data Frames . 8
2.3.1. Boolean Frame . 9
2.3.2. Integer Frames . 9
2.3.3. Float Frames . 10
2.3.4. String Frame . 10
2.3.5. Binary Frame . 11
2.3.6. DateTime Frames 12
2.3.7. NTP Short Frame 13
2.3.8. NTP Timestamp Frame 13
2.3.9. NTP Date Frame . 14
2.3.10. RSK Date Frame . 14

2.4. Extended Frames . 15
3. Identifiers . 16
3.1. Identifier Types in Leading Byte 16
3.2. Null Identifier . 16
3.3. Integer Identifiers 16
3.4. String Identifier . 17

4. Frame Type Table . 18
5. Implementation Notes . 20
6. Security Considerations 21
7. IANA Considerations . 22
8. Normative References . 23

 Author's Address . 24

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Makela Expires March 29, 2014 [Page 2]

Internet-Draft Ruoska Encoding September 2013

1. Document Structure

 The principal entity of RSK document is frame. Two main classes of
 frames exist. Meta Frames to define structure and Data Frames to
 hold actual payload data.

 All frames start with Leading Byte which defines frame type and some
 type depended instructions. Some meta frames and all data frames can
 be tagged with an identifier. Identifier type is defined in Leading
 Byte. If identifier exists it is placed right after the Leading
 Byte. In Data Frames payload comes after identifier. Meta Frames
 may also have payload or special fields or both. Data type of the
 payload is defined by frame type and type depended instructions. All
 frame types are explained in Section 2.

 RSK document is structured as finite tree. The tree is rooted to
 Begin Frame. After the rooting Begin Frame follows data frames as
 leafs and Begin - End Frame pairs as branches. Branches may contain
 data frames as leafs and again Begin - End Frame pairs as sub
 branches. Nesting levels start from 0 and maximum level is
 artificially limited to 255 to keep implementations simple.

 RSK document always ends with End Frame. Use of End Frame is two
 fold. It is used to return from branch to parent level and terminate
 the document. So document must always start with Begin Frame and end
 with End Frame. Root nesting level 0 must not contain any other than
 rooting Begin and terminating End Frames. Between root Begin and
 terminating End Frame is nesting level 1. Nesting level 1 may
 contain data frames or branches or both.

 Example Tree Structure

 0 1 2 Nesting levels
 | | |
 Begin[id:tractor] Begin Frame at level 0
 | String[id:manufacturer, value:Valmet] Leaf at level 1
 | String[id:model, value:33D] Leaf at level 1
 | Begin[id:engine] Branch at level 1
 | | String[id:fuel, value:Diesel] Leaf at level 2
 | | UInt8[id:horsepower, value:37] Leaf at level 2
 | End Ending branch
 End Terminating at level 0

 Figure 1: Tree Structure

Makela Expires March 29, 2014 [Page 3]

Internet-Draft Ruoska Encoding September 2013

1.1. Endianness

 Big-endian networking byte order is used. Endianness applies to all
 integer and floating point numbers. This includes payload of any
 data frames like Integer, Float, and Timestamp and 16-bits wide
 integer identifier values and also meta data fields like length of
 payload. Canonical network byte order is fully described in RFC791,
 Appendix B.

1.2. String Encoding

 All strings are UTF-8 encoded. This applies to string identifiers
 and payload of String, Date, DateTime and DateTimeMillis Frames.

 Implementations using any of frame types above or String Identifier
 or both must be able to validate UTF-8 encoding. On writing phase
 UTF-8 encoding violation must be handled as error condition. If
 UTF-8 encoding fails on reading phase warning must be raised and let
 user decide to continue reading or not. More information about UTF-8
 see RFC 3629 [RFC3629].

https://datatracker.ietf.org/doc/html/rfc791#appendix-B
https://datatracker.ietf.org/doc/html/rfc791#appendix-B
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3629

Makela Expires March 29, 2014 [Page 4]

Internet-Draft Ruoska Encoding September 2013

2. Frame Definitions

 As mentioned earlier the principal entity of RSK is frame. This
 section explains all frame types and type dependent special
 instructions in detail.

2.1. Leading Byte

 All frames start with Leading Byte. Leading Byte determines frame
 type and type dependent instructions. The most significant bit is
 reserved for Extended Frames which may be introduced in later
 versions. See Section 2.4 for details.

 Leading Byte is presented as bit array where left-most bit is the
 most significant bit. MSB 0 bit numbering scheme is used with two
 exceptions. Left-most bit is reserved for Extended Frame and thus
 marked as 'X' for all Leading Byte definitions. Also some bits are
 marked with 'R' meaning that they are reserved for later use and must
 not be set in this version.

 Leading Byte is followed by frame type dependent fields like
 Identifier or Payload or both. These fields are presented as labeled
 byte blocks with possible lengths in bytes, kilobytes like 64k, or
 gigabytes like 4G.

 Leading Byte Example Field Example Payload
 +-+---------+---+ +-------------+ +---------------+
 |X|1|2|3|4|5|6|7| | 4 or 8 | | 0 - 64k |
 +-+---------+---+ +-------------+ +---------------+
 | \ / \ /
 | \ / | Frame type dependent instructions bits
 | |
 | | Frame type bits
 |
 | Extended frame bit

 Figure 2: Leading Byte

 Example Field: Example of possible frame type dependent byte field.
 4 or 8 means that field can be 4 or 8 bytes long. Actual length
 can be determined by frame type, instruction bits, or some other
 field.

 Example Payload: Example of possible frame type dependent payload
 field. 0 - 64k means that field can be from 0 to 65535 bytes long.
 Actual length can be determined by frame type, instruction bits,
 or some other field.

Makela Expires March 29, 2014 [Page 5]

Internet-Draft Ruoska Encoding September 2013

 Frame type dependent instructions bits: These bits determine type
 dependent instructions. See specific frame type sections for
 details. For most frame types these are used to define identifier
 type.

 Frame type bits: This bit field determines frame type. Values are
 defined in Section 4.

 Extended frame bit: Extended frame bit. See Section 2.4 for
 details.

2.2. Meta Frames

 Meta Frames define document structure.

2.2.1. Null Frame

 Null Frame can be tagged with an identifier but does not contain any
 payload data.

 Leading Byte Identifier
 +-+---------+---+ +---------+
 |X|1|2|3|4|5|6|7| | 0 - 256 |
 +-+---------+---+ +---------+
 \ / \ /
 \ / | Id bits
 |
 | Type bits

 Figure 3: Null Frame

 Identifier & Id bits: See Section 3 for details.

 Type bits: See Section 4.

2.2.2. Begin Frame

 Document and branches start with Begin Frame. Begin Frame may have
 an identifier. More details about tree structure see Section 1.

Makela Expires March 29, 2014 [Page 6]

Internet-Draft Ruoska Encoding September 2013

 Leading Byte Identifier
 +-+---------+---+ +----------+
 |X|1|2|3|4|5|6|7| | 0 - 256 |
 +-+---------+---+ +----------+
 \ / \ /
 \ / | Id bits
 |
 | Type bits

 Figure 4: Begin Frame

 Identifier & Id bits: See Section 3 for details.

 Type bits: See Section 4.

2.2.3. End Frame

 End Frame is used to return from branch to parent level in tree
 structure and also used to terminate a document. More details about
 tree structure see Section 1.

 Leading Byte
 +-+---------+---+
 |X|1|2|3|4|5|R|R|
 +-+---------+---+
 \ /
 \ /
 |
 | Type bits

 Figure 5: End Frame

 Type bits: See Section 4.

2.2.4. Array Frame

 Array column in Frame Type Table in Section 4 defines frame types
 which can be enclosed into a array.

 Array itself and each item may have identifiers. Array identifier is
 defined in Leading Byte. All items have identifier of same type and
 all items are same frame type. Frame and identifier type for all
 items are defined by CLB (Common Leading Byte).

 Array capacity is defined by selecting corresponding Array Frame

Makela Expires March 29, 2014 [Page 7]

Internet-Draft Ruoska Encoding September 2013

 type. See Section 4 for details.

 Leading Byte Identifier CLB Count Items
 +-+---------+---+ +---------+ +---+ +-------+ +-------+ +-------+
 |X|1|2|3|4|5|6|7| | 0 - 256 | | 1 | | 1/2/4 | | Item1 | | Item2 | ...
 +-+---------+---+ +---------+ +---+ +-------+ +-------+ +-------+
 \ / \ /
 \ / | Id bits
 |
 | Type bits

 Figure 6: Array Frame

 Identifier & Id bits: Array identifier. See Section 3 for details.

 CLB: Common Leading Byte determines type of items and type of item
 identifiers.

 Count: 8, 16, or 32-bits wide unsigned integer telling item count.
 Width of Count field depends on array type, see Section 4 for
 details.

 Items: Array of items.

 Type bits: See Section 4.

 Array items are stored right after Count field. Items may have
 Identifier.

 Identifier Item Payload
 +------------+ +--------------+
 | 0 - 256 | | 1 - 4G |
 +------------+ +--------------+

 Figure 7: Array Item

2.3. Data Frames

 Data Frames are collection of widely used data types. There are
 frames for boolean, integer and floating point numbers, UTF-8 encoded
 strings, dates, and timestamps. There is also frame for raw binary
 data. All data frames can be tagged with an identifier.

Makela Expires March 29, 2014 [Page 8]

Internet-Draft Ruoska Encoding September 2013

2.3.1. Boolean Frame

 Boolean value (False/True) is defined by choosing corresponding
 Boolean Frame type. See Section 4.

 Leading Byte Identifier
 +-+---------+---+ +----------+
 |X|1|2|3|4|5|6|7| | 0 - 256 |
 +-+---------+---+ +----------+
 \ / \ /
 \ / | Id bits
 |
 | Type bits

 Figure 8: Boolean Frame

 Identifier & Id bits: See Section 3 for details.

 Type bits: See Section 4.

2.3.2. Integer Frames

 Wide range of integer types are supported. Integer width and
 signedness are defined by choosing corresponding Integer Frame type.
 Signed integers are presented in two's complement notation.

 Integer payload is always stored in big-endian format. See
Section 1.1 for details.

 Leading Byte Identifier Payload
 +-+---------+---+ +----------+ +--------------+
 |X|1|2|3|4|5|6|7| | 0 - 256 | | 1,2,4 or 8 |
 +-+---------+---+ +----------+ +--------------+
 \ / \ /
 \ / | Id bits
 |
 | Type bits

 Figure 9: Integer Frames

Makela Expires March 29, 2014 [Page 9]

Internet-Draft Ruoska Encoding September 2013

 Identifier & Id bits: See Section 3 for details.

 Payload: Payload integer value.

 Type bits: See Section 4.

2.3.3. Float Frames

 Floating point number precision is defined by choosing corresponding
 Float Frame type. See Section 4 for frame types. Floats are
 presented in IEEE754 standard format and endianness is big-endian.
 See Section 1.1 for details.

 Leading Byte Identifier Payload
 +-+---------+---+ +----------+ +------------+
 |X|1|2|3|4|5|6|7| | 0 - 256 | | 2,4 or 8 |
 +-+---------+---+ +----------+ +------------+
 \ / \ /
 \ / | Id bits
 |
 | Type bits

 Figure 10: Float Frames

 Identifier & Id bits: See Section 3 for details.

 Payload: Payload float value.

 Type bits: See Section 4.

2.3.4. String Frame

 String Frame can hold UTF-8 encoded string. If implementation
 supports String Frame it must be able to validate UTF-8 encoding.
 See Section 1.2 for details.

 Frame capacity is defined by selecting corresponding String Frame
 type. See Section 4 for details.

Makela Expires March 29, 2014 [Page 10]

Internet-Draft Ruoska Encoding September 2013

 Leading Byte Identifier Length Payload
 +-+---------+---+ +----------+ +-------+ +-----------+
 |X|1|2|3|4|5|6|7| | 0 - 256 | | 1/2/4 | | 0 - 4G |
 +-+---------+---+ +----------+ +-------+ +-----------+
 \ / \ /
 \ / | Id bits
 |
 | Type bits

 Figure 11: String Frame

 Identifier & Id bits: See Section 3 for details.

 Length: 8, 16, or 32-bits wide unsigned integer telling length of
 string in bytes. Depends on String Frame type, see Section 4 for
 details.

 Payload: UTF-8 encoded string.

 Type bits: See Section 4.

2.3.5. Binary Frame

 Binary Frame holds arbitrary binary data.

 Frame capacity is defined by selecting corresponding Binary Frame
 type. See Section 4 for details.

 Leading Byte Identifier Length Payload
 +-+---------+---+ +----------+ +-------+ +-----------+
 |X|1|2|3|4|5|6|7| | 0 - 256 | | 1/2/4 | | 0 - 4G |
 +-+---------+---+ +----------+ +-------+ +-----------+
 \ / \ /
 \ / | Id bits
 |
 | Type bits

 Figure 12: Binary Frame

 Identifier & Id bits: See Section 3 for details.

 Length: 8, 16, or 32-bits wide unsigned integer telling length of
 payload in bytes. Depends on Binary Frame type, see Section 4 for
 details.

Makela Expires March 29, 2014 [Page 11]

Internet-Draft Ruoska Encoding September 2013

 Payload: Arbitrary binary data.

 Type bits: See Section 4.

2.3.6. DateTime Frames

 DateTime Frames hold date or date and time in UTC timescale as UTF-8
 encoded string. String formats are compatible with RFC 3339
 [RFC3339].

 If implementation supports any of DateTime Frames it must be able to
 validate UTF-8 encoding. See Section 1.2 for details. Besides
 string formats must be validated but date data validation is not part
 of RSK. On writing phase illegal string format must be handled as
 error. On reading phase string format violation can be handled by
 rising warning and let user decide continue reading or not.

 Date frame types and corresponding date string formats:

 Date: YYYY-MM-DD

 DateTime: YYYY-MM-DDTHH:MM:SSZ

 DateTimeMillis: YYYY-MM-DDTHH:MM:SS.SSSZ

 Leading Byte Identifier Date/DateTime/DateTimeMillis
 +-+-------+-+---+ +----------+ +----------------------------+
 |X|1|2|3|4|5|6|7| | 0 - 256 | | 10/20/24 |
 +-+-------+-+---+ +----------+ +----------------------------+
 \ / \ /
 \ / | Id bits
 |
 | Type bits

 Figure 13: DateTime Frame

 Identifier & Id bits: See Section 3 for details.

 Date/DateTime/DateTimeMillis: Date, DateTime, or DateTimeMillis
 string depends of date frame type.

 Type bits: See Section 4.

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339

Makela Expires March 29, 2014 [Page 12]

Internet-Draft Ruoska Encoding September 2013

2.3.7. NTP Short Frame

 NTP Short Frame holds NTP Short Format compatible timestamp. See RFC
5905 [RFC5905] for details.

 Leading Byte Identifier Seconds Fraction
 +-+-------+-+---+ +----------+ +-------+ +--------+
 |X|1|2|3|4|5|6|7| | 0 - 256 | | 2 | | 2 |
 +-+-------+-+---+ +----------+ +-------+ +--------+
 \ / \ /
 \ / | Id bits
 |
 | Type bits

 Figure 14: NTP Short Format Frame

 Identifier & Id bits: See Section 3 for details.

 Seconds: 16-bits unsigned integer telling seconds.

 Fraction: 16-bits unsigned integer holding fractions of second.

 Type bits: See Section 4.

2.3.8. NTP Timestamp Frame

 NTP Timestamp Frame holds NTP Timestamp Format compatible timestamp.
 See RFC 5905 [RFC5905] for details.

 Leading Byte Identifier Seconds Fraction
 +-+-------+-+---+ +----------+ +-------+ +--------+
 |X|1|2|3|4|5|6|7| | 0 - 256 | | 4 | | 4 |
 +-+-------+-+---+ +----------+ +-------+ +--------+
 \ / \ /
 \ / | Id bits
 |
 | Type bits

 Figure 15: NTP Timestamp Format Frame

https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905

Makela Expires March 29, 2014 [Page 13]

Internet-Draft Ruoska Encoding September 2013

 Identifier & Id bits: See Section 3 for details.

 Seconds: 32-bits unsigned integer telling seconds.

 Fraction: 32-bits unsigned integer holding fractions of second.

 Type bits: See Section 4.

2.3.9. NTP Date Frame

 NTP Date Frame holds NTP Date Format compatible date. See RFC 5905
 [RFC5905] for details.

 Leading Byte Identifier Era Era Offset Fraction
 +-+-------+-+---+ +----------+ +---+ +----------+ +--------+
 |X|1|2|3|4|5|6|7| | 0 - 256 | | 4 | | 4 | | 8 |
 +-+-------+-+---+ +----------+ +---+ +----------+ +--------+
 \ / \ /
 \ / | Id bits
 |
 | Type bits

 Figure 16: NTP Date Format Frame

 Identifier & Id bits: See Section 3 for details.

 Era: 32-bits signed integer telling the era of timestamp. See RFC
5905 [RFC5905] for era definitions.

 Offset: 32-bits unsigned integer holding number of seconds since
 beginning of the Era.

 Fraction: 64-bits unsigned integer holding fractions of second.

 Type bits: See Section 4.

2.3.10. RSK Date Frame

 RSK Date is optimized version of NTP Date Format defined in RFC 5905
 [RFC5905].

 Differences with NTP Date Format

https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905

Makela Expires March 29, 2014 [Page 14]

Internet-Draft Ruoska Encoding September 2013

 Width of Era field: NTP Date Format has 32-bits wide Era field.
 Here Era is only 8-bits wide. Interpretation is same but with
 narrowed range. Epoch is same so Era 0 starts at 1900-01-01 00:
 00:00 UTC like in NTP Date Format.

 Width of Fraction Field: NTP Date Format uses 64-bits wide Fraction
 field. Here fraction is only 16-bits wide and thus capable to 16
 microsecond resolution.

 Leading Byte Identifier Era Era Offset Fraction
 +-+-------+-+---+ +----------+ +---+ +----------+ +--------+
 |X|1|2|3|4|5|6|7| | 0 - 256 | | 1 | | 4 | | 2 |
 +-+-------+-+---+ +----------+ +---+ +----------+ +--------+
 \ / \ /
 \ / | Id bits
 |
 | Type bits

 Figure 17: RSK Date Frame

 Identifier & Id bits: See Section 3 for details.

 Era: 8-bit signed integer telling the era of timestamp. See RFC
5905 [RFC5905] for era definitions.

 Offset: 32-bit unsigned integer holding number of seconds since
 beginning of the Era.

 Fraction: 16-bit unsigned integer holding fractions of second.

 Type bits: See Section 4.

2.4. Extended Frames

 Extended Frame is concept to introduce new structures and data types
 in future versions of RSK. The most significant bit in Leading Byte
 is reserved for Extended Frames. In this version Extended bit must
 not be set when writing a RSK document. If Extended Frame is
 discovered on reading phase it must be handles as error in this
 version.

https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905

Makela Expires March 29, 2014 [Page 15]

Internet-Draft Ruoska Encoding September 2013

3. Identifiers

 All data frames and some of the meta frames can be tagged with an
 identifier. Identifier can be defined as 8 or 16-bit wide unsigned
 integer or as length-prefixed UTF-8 encoded string. If identifier is
 not needed it can be set to Null.

 Frame's Leading Byte tells type of identifier. Identifier bytes are
 placed immediately after the Leading Byte. In case of integer
 identifier there is one or two bytes depending on selected integer
 identifier type. String identifier can take up to 256 bytes. See
 following sections for details.

3.1. Identifier Types in Leading Byte

 Two least significant bits of Leading Byte are reserved for Id bits
 in all frame types which can be tagged with an identifier.

 Leading Byte Identifier
 +-+---------+---+ +----------+
 |X|1|2|3|4|5|6|7| | 0 - 256 |
 +-+---------+---+ +----------+
 \ /
 | Id bits

 Figure 18: Identifier Types

 Id bits values and identifier types:

 00 Null Identifier. See Section 3.2.

 01 8-bits wide Integer Identifier. See Section 3.3.

 10 16-bits wide Integer Identifier. See Section 3.3.

 11 String Identifier. See Section 3.4

3.2. Null Identifier

 Some frames in a document may not need identifier so it can be left
 empty by setting it Null in Leading Byte.

3.3. Integer Identifiers

 Integer identifier types are 8 or 16-bits wide unsigned integers.
 Integer identifiers are presented in big-endian format. See

Makela Expires March 29, 2014 [Page 16]

Internet-Draft Ruoska Encoding September 2013

Section 1.1 for details.

 Leading Byte Uint8 Uint16
 +---------------+ +-------+ +----------+
 |X|1|2|3|4|5|6|7| | 1 | OR | 2 |
 +---------------+ +-------+ +----------+
 | |
 \---Integer Identifier ---/

 Figure 19: Integer Identifier

3.4. String Identifier

 String identifier is length-prefixed and UTF-8 encoded. Length is
 presented by one byte as 8-bits wide unsigned integer at the
 beginning of identifier field. String identifier itself can be 0 -
 255 bytes long.

 If implementation supports string identifiers it must be able to
 validate UTF-8 encoding. See Section 1.2 for details.

 Leading Byte Length UTF-8 Encoded String
 +---------------+ +--------+ +----------------------+
 |X|1|2|3|4|5|6|7| | 1 | | 0 - 255 |
 +---------------+ +--------+ +----------------------+
 | |
 \------ String Identifier --------/

 Figure 20: String Identifier

Makela Expires March 29, 2014 [Page 17]

Internet-Draft Ruoska Encoding September 2013

4. Frame Type Table

 No Frame Type Id Array Payload

 1. Null 0x00 [x] [] 0
 2. Begin 0x04 [x] [] 0
 3. End 0x08 [] [] 0

 4. Boolean False 0x0C [x] [] 0
 5. Boolean True 0x10 [x] [] 0

 6. TinyArray 0x14 [x] [] 0 - 255 (items)
 7. Array 0x18 [x] [] 0 - 64k (items)
 8. LongArray 0x1C [x] [] 0 - 4G (items)

 9. TinyString 0x20 [x] [x] 0 - 255
 10. String 0x24 [x] [x] 0 - 64k
 11. LongString 0x28 [x] [x] 0 - 4G

 12. TinyBinary 0x2C [x] [x] 0 - 255
 13. Binary 0x30 [x] [x] 0 - 64k
 14. LongBinary 0x34 [x] [x] 0 - 4G

 15. Signed int 8-bits 0x38 [x] [x] 1
 16. Signed int 16-bits 0x3C [x] [x] 2
 17. Signed int 32-bits 0x40 [x] [x] 4
 18. Signed int 64-bits 0x44 [x] [x] 8

 19. Unsigned int 8-bits 0x48 [x] [x] 1
 20. Unsigned int 16-bits 0x4C [x] [x] 2
 21. Unsigned int 32-bits 0x50 [x] [x] 4
 22. Unsigned int 64-bits 0x54 [x] [x] 8

 23. Floating 16-bits 0x58 [x] [x] 2
 24. Floating 32-bits 0x5C [x] [x] 4
 25. Floating 64-bits 0x60 [x] [x] 8

 26. Date 0x64 [x] [x] 10
 27. DateTime 0x68 [x] [x] 20
 28. DateTimeMillis 0x6C [x] [x] 24

 29. NTP Short Format 0x70 [x] [x] 4
 30. NTP Timestamp Format 0x74 [x] [x] 8
 31. NTP Date Format 0x78 [x] [x] 16

 32. RSK Date 0x7C [x] [x] 7

Makela Expires March 29, 2014 [Page 18]

Internet-Draft Ruoska Encoding September 2013

 Frame Type Table columns:

 Frame: Name of frame type. See Section 2 for detailed frame
 definitions.

 Type: Hexadecimal value of Leading Byte with mask 0xFC. See
Section 2.1 for detailed description of Leading Byte.

 Id: All marked with X has identifier field. See Section 3 for
 details.

 Array: All marked with X can be enclosed into a array. See
Section 2.2.4 for details.

 Payload: Payload length in bytes for data frames and item count for
 arrays.

Makela Expires March 29, 2014 [Page 19]

Internet-Draft Ruoska Encoding September 2013

5. Implementation Notes

 RSK is designed so that implementations could have very small memory
 and other resource demands. Pay attention to memory usage and try to
 perform IO operations efficiently.

 Implementations must make sure that well formed documents are
 written. On reading phase any deformation in document or frame
 structure must be detected and handled as error condition.

 Implementations can vary depending on environment and usage. All
 implementations must support at least Begin and End Frames to be able
 to handle document structure. Other frame types may not be
 supported. Implementation may also support most or all frame types
 but not all identifier types. Some frame types can be also partially
 supported so that they can be detected and skipped on reading phase
 although their payload data is not interpreted.

Makela Expires March 29, 2014 [Page 20]

Internet-Draft Ruoska Encoding September 2013

6. Security Considerations

 RSK is data encoding format and does not include any executable
 commands. Implementations must make sure that any parts of encoded
 documents are not leaked into execution memory. Even malformed
 documents must be handled so that memory leaks are avoided.

 RSK does not include any means to validate payload data integrity.
 Protocols based on RSK or underlying mechanisms which are utilized by
 those protocols must take care of this. If data integrity is not
 checked can data get corrupted by malfunctioning devices, software,
 or malicious attackers.

Makela Expires March 29, 2014 [Page 21]

Internet-Draft Ruoska Encoding September 2013

7. IANA Considerations

 The MIME media type for RSK documents is application/ruoska.

 Type name: application

 Subtype name: ruoska

 Required parameters: n/a

 Optional parameters: n/a

Makela Expires March 29, 2014 [Page 22]

Internet-Draft Ruoska Encoding September 2013

8. Normative References

 [RFC3339] Klyne, G., Ed. and C. Newman, "Date and Time on the
 Internet: Timestamps", RFC 3339, July 2002.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC5905] Mills, D., Martin, J., Burbank, J., and W. Kasch, "Network
 Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, June 2010.

Makela Expires March 29, 2014 [Page 23]

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc5905

Internet-Draft Ruoska Encoding September 2013

Author's Address

 Jukka-Pekka Makela
 Janakkala, Tavastia Proper
 Finland

Makela Expires March 29, 2014 [Page 24]

