
Network Working Group A. Sabatini
Internet-Draft Broker Communications Inc.
Intended Status: Standards Track .
Expires: February 14, 2013 August 15, 2012

Highly Efficient Selective Acknowledgement (SACK) for TCP
draft-sabatini-tcp-sack-01

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on January 22, 2013.

 Comments are solicited and should be addressed to the author at
draft-sack@tsabatini.com.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Abstract

Sabatini, Anthony Expires February 14, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/draft-sack
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet Draft High Efficiency SACK for TCP August 15, 2012

 This memo expands on the Selective Acknowledgement Protocol described
 in RFC2018 to improve its performance and efficiency while reducing
 the delay involved in recovering lost segments. This leads to very
 reliable and efficient communications regardless of transit delay or
 high levels of lost segments due to noise or congestion. It
 introduces a fundamentally new way of looking at Selective
 Acknowledgement and uses this concept to improve the performance of
 the RFC2018 protocol. This memo proposes an implementation of the
 improved SACK and discusses its performance and related issues.

Acknowledgements

 Much of the text in this document is taken directly from RFC2018 "TCP
 Selective Acknowledgement Options" by M. Mathis, J. Mahdavi, S. Floyd
 and A. Romanow and RFC1072 "TCP Extensions for Long-Delay Paths" by
 B. Braden and V. Jacobson.

1. Introduction

 This revision to the SACK protocol has its roots in a similar, HDLC
 based protocol I designed and implemented for secure financial
 transactions. That protocol, being designed for use on a worldwide
 basis, was born out of the need for a protocol that would handle any
 communications environment no matter how noisy or how much delay
 (including multiple satellite hops) was in the path. In later years
 its properties were found valuable in congestion situations where
 packets were dropped.

 Multiple packet losses from a window of data can have a catastrophic
 effect on TCP throughput. TCP [Postel81] uses a cumulative
 acknowledgment scheme in which received segments that are not at the
 left edge of the receive window are not acknowledged. This forces
 the sender to either wait a round-trip time to find out about each
 lost packet, or to unnecessarily retransmit segments which have been
 correctly received [Fall95]. With the cumulative acknowledgment
 scheme, multiple dropped segments generally cause TCP to lose its
 ACK-based clock, reducing overall throughput.

 Selective Acknowledgment (SACK) is a strategy which corrects this
 behavior in the face of multiple dropped segments. With selective
 acknowledgments, the data receiver can inform the sender about all
 segments that have arrived successfully, so the sender need
 retransmit only the segments that have actually been lost. The
 compatible extensions to RFC2018 proposed here enhance the protocol
 by changing retransmission from a worst case timer basis to a
 deterministic, state driven basis which responds rapidly to link
 conditions.

https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc1072
https://datatracker.ietf.org/doc/html/rfc2018

Sabatini, Anthony Expires February 14, 2013 [Page 2]

Internet Draft High Efficiency SACK for TCP August 15, 2012

 I propose modifications to the SACK options as proposed in RFC2018.
 Specifically, I add a transmit state to each transmitted message and
 return that transmit state when each acknowledgement is sent. By
 using the returned transmit state I can tell what messages have been
 transmitted after the information in the acknowledgement and thus
 rebuild the current state of the receiver at the transmitter. I also
 propose changes to the way SACK blocks are reported to insure that
 the oldest, and thus the most critical, are transmitted expeditiously
 without jeopardizing the multiple repetition of SACK information
 which gives the current protocol its reliability. Additionally since
 the space to store acknowledgements in IPv4 is limited and may not be
 able to accommodate all of the acknowledgement pairs, I propose a
 method of sending the complete receiver state by sending multiple
 acknowledgements when it becomes evident that transmission has
 stalled due to loss of multiple ACKs.

 The RFC2018 selective acknowledgment extension uses two TCP options.
 The first is an enabling option, "SACK-permitted", which may be sent
 in a SYN segment to indicate that the SACK option can be used once
 the connection is established. This option is extended to both
 indicate that this newer version of the protocol is being used and to
 establish an initial value for transmit state. The other is the SACK
 option itself, which may be sent over an established connection once
 permission has been given by SACK-permitted. This has also been
 extended to add both the transmit state implicit in the message and
 the transmit state that was received at the far end (now called
 "Returned State").

 The SACK option is to be included in a segment sent from a TCP that
 is receiving data to the TCP that is sending that data; we will refer
 to these TCP's as the data receiver and the data sender,
 respectively. We will consider a particular simplex data flow; any
 data flowing in the reverse direction over the same connection can be
 treated independently.

2. Underlying concepts

 In order for a sender to know how to optimally transmit messages to a
 receiver the sender must recreate the state of the receiver as of the
 last acknowledgement received (which segments have been received and
 acknowledged, which segments have not) and then "age" or modify that
 state by updating it based upon the messages transmitted since the
 state implicit in the acknowledgement was current. In order to do
 this the sender must maintain a transmission order list which
 contains entries for the segment ranges of each message as it is
 sent. We called the index into the transmission order list "Send
 State" and transmit this state variable with each message. The
 receiver, after correctly receiving the message, saves this value and

https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2018

Sabatini, Anthony Expires February 14, 2013 [Page 3]

Internet Draft High Efficiency SACK for TCP August 15, 2012

 returns it (now called "Returned State") and the list of selectively
 acknowledged segments with each acknowledgement. When the sender
 receives this information it is then capable of constructing a list
 of missing segments by taking its unacknowledged segment range list
 and modifying it on the basis of the received selective
 acknowledgements and then removing from that list all segments that
 have been transmitted since the message which caused the
 acknowledgement which is all segments sent with indexes between the
 current "send state" and the "receive state" in the acknowledgement
 message.

 To accommodate the issue of receiving segments out of order at the
 receiver, or those packets delayed by alternate routing, the sender
 does not instantly update its Current Returned State value from the
 incoming ACK (which could trigger a false retransmission) but rather
 puts it on a timer queue for a length of time ("Reordering Time")
 appropriate to the delay randomness in the arrival path (typically 20
 to 100 ms based on media, speed and distance), which when the timer
 entry expires, causes the update of the Current Returned State value.
 If the updated Current Returned State value shows blocks that remain
 unacknowledged after this time out they are assumed to be lost and
 they are queued for retransmission.

 Thus by transmitting the complete acknowledgement information through
 the SACK blocks from the receiver along with an indicator to the
 sender as to its state current at the time of the acknowledgement the
 sender can accurately recreate the current status of the receiver
 assuming all "in flight" messages were received and thus only send
 the unacknowledged messages starting with the oldest followed by any
 new messages whose transmission is requested.

3. Enhanced Sack-Permitted Option

 This document is designed to be an extension of RFC2018 and any
 implementation of it must be designed to fall back to handling

RFC2018 when he other paty is not capable of handling the enhanced
 protocol.

 Although Enhanced SACK is a compatible extension of standard SACK it
 is recognized that certain middleware boxes are not RFC compliant as
 to extensions and therefore will fail if, as would properly be done,
 Enhanced SACK was handled as such. Therefore Enhanced SACK is
 transmitted as two options both in the SYN packets as well as data
 and ACK packets.

 The first option of the pair MUST be the standard SACK option (Kind =
 4) if this endpoint desires a SACK session of any kind. The second
 four or six byte option may be sent in a SYN by a TCP that has been

https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2018

Sabatini, Anthony Expires February 14, 2013 [Page 4]

Internet Draft High Efficiency SACK for TCP August 15, 2012

 extended to receive (and presumably process) the Enhanced SACK option
 in order to indicate its willingness to enter into an Enhanced SACK
 session.

 This option MUST NOT be transmitted on non-SYN segments in the
 current protocol, it is left to future study as to its use for
 transmitting long sequences of acknowledgements in one frame.

 TCP SACK-Permitted Option:

 Kind: 4

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Kind=4 | Length=2 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 TCP Enhanced SACK Setup Option:

 Kind: X1

 +-+
 | | |P|R|P|R| |
 | Kind=X1 | Length=6 or 8 |T|T|X|X| Reserved |
 | | |O|O|T|T| |
 +-+
 if RXT = 0 not requesting extended state
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Send State Token |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 if RXT = 1 requesting extended state
 +-+
 | Extended Send State Token | Reserved |
 +-+

 Control Bits: 4 bits (from left to right):

 PTO: Tokens Permitted, the sender supports the requirements of
 this extension

 RTO: Request Tokens, sender requests link use the protocol
 outlined in this extension

 PXT: Extended Tokens Supported

 RXT: Request Extended Tokens: sender requests using extended

Sabatini, Anthony Expires February 14, 2013 [Page 5]

Internet Draft High Efficiency SACK for TCP August 15, 2012

 tokens.

 Reserved: 12 bits

 Reserved for future use, must be set to zero

 If RTO is set then the Send State immediately follows, 16 bits if RXT
 is not set and 24 bits if it is. If necessary the option is padded
 with a binary zero byte so that length is an even number. In the
 case that one end can only support 16 bit tokens only the right most
 16 bits of the extended field is used.

 For brevity in this document only the lesser, 16 bit format is shown.

4. SACK Option Format

 As with the SYN options, Enhanced SACK information must be
 transmitted as a seperate option in order to accomodate non RFC
 compliant middleware boxes. By its nature it must precede the TCP
 SACK Option.

 TCP Enhanced SACK Option:

 Kind: X2

 Length: 6 (or 8 if extended token)

 +--------+--------+
 | Kind=X2 | Len=6 |
 +--------+--------+--------+--------+
 | Send State | Returned State |
 +--------+--------+--------+--------+

 TCP SACK Option:

 Kind: 5

 Length: Variable

 +--------+--------+
 | Kind=5 | Length |
 +--------+--------+--------+--------+
 | Left Edge of 1st Block |
 +--------+--------+--------+--------+
 | Right Edge of 1st Block |
 +--------+--------+--------+--------+
 | |

Sabatini, Anthony Expires February 14, 2013 [Page 6]

Internet Draft High Efficiency SACK for TCP August 15, 2012

 / . . . /
 | |
 +--------+--------+--------+--------+
 | Left Edge of nth Block |
 +--------+--------+--------+--------+
 | Right Edge of nth Block |
 +--------+--------+--------+--------+

 The SACK option is to be sent by a data receiver to inform the data
 sender of non-contiguous blocks of data that have been received and
 queued. The data receiver awaits the receipt of data (perhaps by
 means of retransmissions) to fill the gaps in sequence space between
 received blocks. When missing segments are received, the data
 receiver acknowledges the data normally by advancing the left window
 edge in the Acknowledgement Number Field of the TCP header. The SACK
 option does not change the meaning or use of the Acknowledgement
 Number field.

 This option contains a list of some of the blocks of contiguous
 sequence space occupied by data that has been received and queued
 within the window.

 Each contiguous block of data queued at the data receiver is defined
 in the SACK option by two 32-bit unsigned integers in network byte
 order:

 * Left Edge of Block

 This is the first sequence number of this block.

 * Right Edge of Block

 This is the sequence number immediately following the last
 sequence number of this block.

 Each block represents received bytes of data that are contiguous and
 isolated; that is, the bytes just below the block, (Left Edge of
 Block - 1), and just above the block, (Right Edge of Block), have not
 been received.

 A SACK option that specifies n blocks will have a length of 8*n+6
 bytes, so the 40 bytes available for TCP options can specify a
 maximum of 4 blocks. It is suggested that the Enhanced SACK will
 provide the time-stamp information used for RTTM [Jacobson92].

5. Generating Sack Options: Data Receiver Behavior

 If the data receiver has received a SACK-Permitted option on the SYN

Sabatini, Anthony Expires February 14, 2013 [Page 7]

Internet Draft High Efficiency SACK for TCP August 15, 2012

 for this connection, the data receiver MAY elect to generate SACK
 options as described below. If the data receiver generates SACK
 options under any circumstance, it MUST generate them under all
 permitted circumstances. If the data receiver has not received a
 SACK-Permitted option for a given connection, it MUST NOT send SACK
 options on that connection.

 If sent at all, SACK options MUST be included in all ACKs which do
 not ACK the highest sequence number in the data receiver's queue. In
 this situation the network has lost or mis-ordered data, such that
 the receiver holds non-contiguous data in its queue. RFC 1122,
 Section 4.2.2.21, discusses the reasons for the receiver to send ACKs
 in response to additional segments received in this state. The
 receiver MUST send an ACK for every valid segment that arrives
 containing new data, and each of these "duplicate" ACKs SHOULD bear a
 SACK option.

 The purpose of the SACK blocks is to recreate the status of the
 receiver at the transmitter. To that end the most important
 information is (1) new or changed blocks, (2) the second transmission
 of new or changed blocks, (3) a complete enumeration of all received
 blocks starting from the oldest first.

 If the data receiver chooses to send a SACK option, the following
 rules apply:

 * The data receiver first fills in "Send State" in the option from
 the current value of its "Send State". The data receiver then
 fills in "Returned State" from its "Saved Send State" which was
 set by either the SYN option or the SACK option of the last TCP
 packet that contained a value which was logically greater than the
 current saved value.

 * SACK blocks representing all discontiguous segment ranges
 received where those ranges are logically over the Acknowledgement
 Number in the TCP header are kept in logically ascending by
 segment range list. Additionally a count (a four byte binary for
 safety) is maintained in each block which represents the number of
 times it has been transmitted. Each time a SACK block is added or
 changes (normally by being merged with another entry) the count is
 set to zero(0).

 * All SACK block slots SHOULD be filled on each each normal ACK
 transmitted, starting with those that have the lowest count
 (acknowledging the most recently received segments), followed by
 those with the next lowest count, and so on until all SACK block
 slots are filled. As each SACK block is moved to a slot its count
 is incremented by one(1) (thus care needs to be taken on the

https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.2.21
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.2.21

Sabatini, Anthony Expires February 14, 2013 [Page 8]

Internet Draft High Efficiency SACK for TCP August 15, 2012

 second and subsequent passes to skip those entries currently in
 SACK blocks slots). By always starting from the oldest we insure
 the most critical have the first chance at receiving a SACK block
 slot. SACK blocks are empty ONLY if there are less SACK blocks
 outstanding than there are available slots. This methodology
 assures a fair number of transmissions to all SACK blocks.

 * The receiver receives a Send State from the sender that is
 logically greater than any previously seen the receiver must
 generate an ACK regardless of whether any SACK blocks have
 changed. Note that such a Send State change can come from an ACK
 produced by the sender as well as a message.

 * The definitions in RFC1022 are changed such that if there are
 entries on the SACK block list an ACK ALWAYS goes out in response
 to a received data segment.

 * To insure that the last added or changed SACK block is
 transmitted a second time, if the link goes idle for 2*Reordering
 Time the receiver SHOULD send another ACK following the rules
 above.

 * A timer is maintained based on the timestamp of the oldest SACK
 block and is set to RTT*1.25, it is reset each time a SACK block
 with a different segment start becomes the oldest SACK block. At
 the expiration of this timer, since this and probably other
 segments have not been retransmitted to the receiver, the receiver
 resets the timer to .25*RTT and again sends sufficient
 acknowledgements to completely transmit all current SACK blocks
 starting from the one with the logically lowest segment start and
 proceeding in ascending sequence. Note that this process is
 aborted by any action that changes the oldest SACK block. This
 timer is used to assure that in case of a burst error the sender
 has enough information to restart properly.

6. Interpreting the Sack Option and Retransmission Strategy: Data
 Sender Behavior

 As each transmission request from the calling program is processed
 and entry is made into the segment queue to handle the request and
 its buffering. Entries are removed from the segment queue when the
 segment is completely acknowledged either through the Acknowledgement
 Number Field of the TCP header passing through the end of that
 segment or by a SACK block completing the acknowledgement of that
 segment. The segment is also appended to the end of the
 retransmission queue and transmission restarted from that segment if
 transmission has stopped.

https://datatracker.ietf.org/doc/html/rfc1022

Sabatini, Anthony Expires February 14, 2013 [Page 9]

Internet Draft High Efficiency SACK for TCP August 15, 2012

 Before processing the SACK information the Acknowledgement Number
 Field of the TCP header is used to eliminate outdated entries from
 the segment queue, saved list and retransmission queue before new
 information is added. The acknowledgement may split the first entry
 in either the segment queue or the retransmission queue in which case
 a pseudo entry is created in that queue for the unacknowledged
 remainder which additionally points to the saved original entry with
 an additional field which is the count of pseudo segments derived
 from it, set to one in this case. The Acknowledgement Number Field
 of the TCP header may end up eliminating a pseudo entry in which case
 the pseudo segment count of the original saved entry is decremented
 and if zero the segment is then entirely removed from both the
 segment queue and the saved list.

 In processing selective acknowledgements the transmitter applies each
 SACK block to first the segment queue and then the retransmission
 queue. If the SACK block completely acknowledges a segment it is
 removed from the segment queue and moved to the saved list with a
 count of zero or completely if from the retransmission queue. If the
 SACK block completely acknowledges a pseudo segment that segment is
 removed and if from the segment queue the pseudo segment count in the
 related saved entry is decremented. If the SACK block acknowledges
 the beginning or end of a segment in either queue a pseudo entry is
 created with the adjusted unacknowledged remainder, if the segment
 was on the segment list the original segment is moved to the saved
 list and the pseudo count is set to one. If the entry was already a
 pseudo segment and this SACK acknowledges the beginning or end of the
 segment, the segment limits are adjusted but no other action occurs.
 If this entry is already a pseudo entry and the SACK block splits the
 segment in two a second pseudo entry is created to handle the right
 hand side of the range and, if on the segment list, the pseudo
 segment count in the related save list entry is incremented by one.
 The original pseudo entry is modified to represent the left hand
 range created by the SACK.

 The sender maintains a Transmission List which an array of structures
 into which the segment start and end addresses of each transmitted
 block (be it a primary transmission or a retransmission) is placed.
 This list is, for optimal processing, a power of 2 in size and is, at
 a minimum, four times as large as the Maximum Number of Segments
 Outstanding. As each segment is transmitted the current Transmit
 Token modulus the Transmission List size is used as an index into
 this structure to store the segment start and end and then the
 Transmit Token is incremented by one.

 When each each new SACK option is processed, its Returned Token is
 checked against the Current Returned Token and the Future Returned
 Token List, if logically greater than any of the above, it is

Sabatini, Anthony Expires February 14, 2013 [Page 10]

Internet Draft High Efficiency SACK for TCP August 15, 2012

 inserted into the Future Returned Token list in logical order along
 with the current time-stamp incremented by the Reordering Time. If
 it is the first entry on the list a timer is started for the value
 token time stamp minus current time stamp. When the timer expires
 the first entry on the Future Returned Token list set as the Current
 Returned Token and then it is removed from the list. If there are
 more members on the Future Returned Token list the timer is restarted
 with a value of the time-stamp in that entry minus the current time-
 stamp. A change in the Current Returned Token causes a recreation of
 the Retransmission Queue by first copying the Segment Queue and then
 removing from it all segments that have been transmitted
 subsequently, in a process identical to processing a SACK block
 starting at the segment identified by the Current Returned Token from
 the Transmission List and continuing through the Transmission List up
 to the (but not including) the Transmit Token. The Transmission
 Pointer is then set to first incomplete entry in the Retransmission
 Queue and transmission restarted if it has stopped.

 Another method of implementation which allows quicker retransmission
 response at the expense of building the Retransmission Queue a second
 time is to retrieve the time stamp of the just receieved Returned
 Token if that Returned Token has not previously been seen (by
 comparing it with the Current Returned Token and the Future Returned
 Token list) and then subtracting from that timestamp the Reordering
 Time to allow for out of order messages. This value is then used to
 select any entry on the Transmission List with an equal or greater
 timestamp. The first version of the Retransmission Queue is created
 by copying the Segment Queue and then removing the segments that have
 since been retransmitted based on the adjusted timestamp. When the
 timer on the Future Returned Token List expires the retransmission
 queue is recreated a second time as in the preceeding paragraph.

 Note: For processing efficiency we believe most people will implement
 the Retransmission Queue as additional fields in the Segment Queue.

6.1 Handling last segment problem

 If the sender side of the link goes idle for 2*Reordering Time and
 there are still unacknowledged segments the sender SHOULD send an ACK
 (which would have the updated Send State) so that the receiver may
 ultimately detect if the last message is missing and cause it to be
 transmitted (the receiver would pass the Send State back as Returned
 State and the sender would realize the segment is still outstanding).

6.2 Congestion Control Issues

 This document does not attempt to specify in detail the congestion
 control algorithms for implementations of TCP with SACK. However,

Sabatini, Anthony Expires February 14, 2013 [Page 11]

Internet Draft High Efficiency SACK for TCP August 15, 2012

 the congestion control algorithms present in the de facto standard
 TCP implementations MUST be preserved [Stevens94]. This algorithm
 eliminates much unnecessary retransmission so is likely to lessen
 overall congestion.

 Note that the enhanced protocol does not suffer from traditional
 congestion collapse even though it is more robust, since it does not
 use timers and is rate limited by the tokens. Delayed and lost
 messages and ACKS make it slower but do not increase the traffic it
 sends significantly.

 The use of time-outs as a fall-back mechanism for detecting dropped
 packets is unchanged by the SACK option. Because in normal operation
 acknowledgements will prevent retransmit timeout, when a retransmit
 timeout occurs the data sender SHOULD ignore prior SACK information
 in determining which data to retransmit.

 Future research into congestion control algorithms may take advantage
 of the additional information provided by SACK. One such area for
 future research concerns modifications to TCP for a wireless or
 satellite environment where packet loss is not necessarily an
 indication of congestion.

7. Efficiency and Worst Case Behavior

 Although this high efficiency improved SACK option sends more and
 larger SACK blocks and more acknowledgements than the previous
 version, with an active bi-directional link additional
 acknowledgements are often associated with data transmission and thus
 not a penalty. If the SACK option needs to be used due to segment
 loss then the improved efficiency afforded with this protocol more
 than justifies the additional SACK blocks.

 The deployment of other TCP options may reduce the number of
 available SACK blocks to 2 or even to 1. This will reduce the
 redundancy of SACK delivery in the presence of lost ACKs. Even so,
 the exposure of TCP SACK in regard to the unnecessary retransmission
 of packets is strictly less than the exposure of current
 implementations of TCP. The worst-case conditions necessary for the
 sender to needlessly retransmit data is discussed in more detail in a
 separate document [Floyd96].

 Older TCP implementations which do not have the SACK option will not
 be unfairly disadvantaged when competing against SACK-capable TCPs.
 This issue is discussed in more detail in [Floyd96].

8. Time-stamping

Sabatini, Anthony Expires February 14, 2013 [Page 12]

Internet Draft High Efficiency SACK for TCP August 15, 2012

 One pleasant benefit of having a token which is returned by the far
 end on a deterministic basis is the easy calculation of round trip
 delay. We can save a time stamp along with the segment information
 in our transmission order array. This allows us to calculate round
 trip delay when we receive our "Returned State" value and use it to
 access the time-stamp. Since more than one received message might
 have the same "Returned State" value we mark the time-stamp after use
 to indicate that the value should not be used again. Note that if an
 acknowledgement is lost we will calculate a longer delay than is
 accurate therefore we must smooth the returned values, typically
 returning the sma llest out of the last N where N is typically four.

9. Data Receiver Reneging

 Since the Sender is recreating the state of the Receiver, the data
 Receiver MUST NOT discard data in its queue once that data has been
 reported in a SACK option. The Receiver is responsible for
 allocating enough buffers so that the missing segments within the
 window may be properly received and processed. Since enhanced SACK
 is event driven the lack of a new event for 2.50*RTT SHOULD trigger a
 connection reset to guard agains denial of service attacks.

10. Security Considerations

 This document neither strengthens nor weakens TCP's current security
 properties.

11. References

 [Jacobson88], Jacobson, V. and R. Braden, "TCP Extensions for Long-
 Delay Paths", RFC 1072, October 1988.

 [Jacobson92] Jacobson, V., Braden, R., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [Mathis96] Mathis, M., Mahdavi, J., Floyd, S., Romanow, J. "TCP
 Selective Acknowleddgement Options", RFC 2018, October 1996.

 [Postel81] Postel, J., "Transmission Control Protocol - DARPA
 Internet Program Protocol Specification", RFC 793, DARPA, September
 1981.

Author's Address

 Anthony Sabatini
 Broker Communications Inc.
 200 West 20th Street

https://datatracker.ietf.org/doc/html/rfc1072
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc793

Sabatini, Anthony Expires February 14, 2013 [Page 13]

Internet Draft High Efficiency SACK for TCP August 15, 2012

 Suite 1216
 New York, NY 10011
 Email: draft-sack@tsabatini.com

 The author is currently a master's degree candidate at -

 Hofstra University
 Hempstead, N.Y.

 His adviser is Dr. Xiang Fu

Sabatini, Anthony Expires February 14, 2013 [Page 14]

https://datatracker.ietf.org/doc/html/draft-sack

