P. Saint- TOoC

Network Working Group

Andre
Internet-Draft Cisco
. March 09,
Obsoletes: 3920 (if approved)
2009

Intended status: Standards
Track

Expires: September 10, 2009

Extensible Messaging and Presence Protocol (XMPP): Core
draft-saintandre-rfc3920bis-09

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

The 1list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on September 10, 2009.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents in effect on the date of
publication of this document (http://trustee.ietf.org/license-info).
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document.

Abstract

This document defines the core features of the Extensible Messaging and
Presence Protocol (XMPP), a technology for streaming Extensible Markup
Language (XML) elements for the purpose of exchanging structured

information in close to real time between any two or more network-aware

http://tools.ietf.org/html/rfc3920
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

entities. XMPP provides a generalized, extensible framework for
incrementally exchanging XML data, upon which a variety of applications
can be built. The framework includes methods for stream setup and
teardown, channel encryption, authentication of a client to a server
and of one server to another server, and primitives for push-style
messages, publication of network availability information ("presence"),
and request-response interactions. This document also specifies the
format for XMPP addresses, which are fully internationalizable.

This document obsoletes RFC 3920.

Table of Contents

1. Introduction
1.1. Overview
1.2. Functional Summary
1.3. Conventions
1.4. Acknowledgements
1.5. Discussion Venue

2. Architecture
2.1. Overview
2.2. Server
2.3. Client
2.4. Network
3. Addresses
3.1. Overview
3.2. Domain Identifier
3.3. Node Identifier
3.4. Resource Identifier
3.5. Determination of Addresses
4. TCP Binding
4.1. Scope
4.2. Hostname Resolution
4.3. Client-to-Server Communication
4.4. Server-to-Server Communication
4.5. Reconnection
4.6. Other Bindings
5. XML Streams

5.1. Overview
5.2. Stream Security
5.3. Stream Attributes

5.3.1. from

5.3.2. to

5.3.3. id

5.3.4. xml:lang

5.3.5. version

5.3.6. Summary of Stream Attributes

5.4. Namespace Declarations

5.5. Stream Features
5.6. Restarts During Stream Negotiation
5.7. Closing a Streanm

5.7.1. With Stream Error

5.7.2. Without Stream Error

5.7.3. Handling of Idle Streams
5.8. Stream Errors
5.8.1. Rules
5.8.1.1. Stream Errors Are Unrecoverable
5.8.1.2. Stream Errors Can Occur During Setup

5.8.1.3. Stream Errors When the Host is Unspecified or

Unknown
5.8 Syntax
5.8 Defined Stream Error Conditions
.1. bad-format

bad-namespace-prefix
conflict
connection-timeout
host-gone

host -unknown
improper-addressing
internal-server-error
invalid-from
invalid-id
invalid-namespace
invalid-xml
not-authorized
policy-violation
remote-connection-failed
resource-constraint
restricted-xml
see-other-host
system-shutdown
undefined-condition
unsupported-encoding
unsupported-stanza-type
unsupported-version
.24. xml-not-well-formed
5.8.4. Application-Specific Conditions
5.9. Simplified Stream Examples
6. STARTTLS Negotiation
6.1. Overview
6.2. Rules
6.2.1. Data Formatting

6.2.2. Order of Negotiation

6.3. Process

6.3.1. Exchange of Stream Headers and Stream Features

6.3.2. Initiation of STARTTLS Negotiation

6.3.2.1. STARTTLS Command

© (00 [N O |01 | W N

[
NG

NN RR R R PR
N R [@ |0 w|N oo~ |w

(G2 I 2 R (@ » B (@2 I 6 2 N (@ 2 A 6 1 2 (@ I 2 N (@2 A (2 N (@ 2 B (@ 2 I 2 16 2 (@ I (6 2 (@ 2 N (2 R 16 2 B (@ 2 I (62 B (€2 IR GV I\)
N
w

Q0 (00 (00 (0O |00 (0O (00 (0O |00 (0O (00 (0O |00 (0O (0O (0O |00 (0O (0O |00 |00 (0O (0o |Co
W (W W W [W W WW|W[W W W |W[W W W |W W w|w|www |w
[N
N

™

|®

7.1.
7.2.

~

IN

6.3.2.2. Failure Case
6.3.2.3. Proceed Case
6.3.3. TLS Negotiation
6.3.3.1. Rules
6.3.3.2. TLS Failure
6.3.3.3. TLS Success
SASL Negotiation
Overview
Rules
7.2.1. Mechanism Preferences
7.2.2. Mechanism Offers
7.2.3. Data Formatting
7.2.4. Security Layers
7.2.5. Simple Usernames
7.2.6. Authorization Identities
7.2.7. Realms
7.2.8. Round Trips
Process
7.3.1. Exchange of Stream Headers and Stream Features
7.3.2 Initiation
7.3.3 Challenge-Response Sequence
7.3.4. Abort
7.3.5. Failure
7.3.6. Success
SASL Errors
7.4.1. aborted
7.4.2. account-disabled
7.4.3. credentials-expired
7.4.4. encryption-required
7.4.5. 1incorrect-encoding
7.4.6. 1invalid-authzid
7.4.7. 1invalid-mechanism
7.4.8. malformed-request
7.4.9. mechanism-too-weak
7.4.10. not-authorized
7.4.11. temporary-auth-failure
7.4.12. transition-needed

7.

5.

SASL Definition

Resource Binding

Overview

Advertising Support

Generation of Resource Identifiers
Server-Generated Resource Identifier

8.1.
8.2.
8.3.
8.4.

8.5.

8.4.1.
8.4.2.

Success Case
Error Cases

8.4.2.1. Resource Constraint
8.4.2.2. Not Allowed
Client-Submitted Resource Identifier

8.5.1.

Success Case

|«©

8.5.2.

Error Cases

8.5.2.1. Bad Request
8.5.2.2. Conflict

8.5.3.

Retries

8.6. Binding Multiple Resources

8.6.1.
8.6.2.
8.6.3.

Support
Binding an Additional Resource
Unbinding a Resource

8.6.3.1. Success Case
8.6.3.2. Error Cases

8.6.4.

XML Stanza

S

From Addresses

9.1. Common Attributes

9.1.1.

1

to

.1.1.1. Client-to-Server Streams

1

.1.1.2. Server-to-Server Streams

from

.1.2.1. Client-to-Server Streams
.1.2.2. Server-to-Server Streams

9.1.3.
9.1.4.
9.1.5.
9.2. Basi
9.2.1.

9.2.2.

9.2.3.

H WO | N[O |©

Cc

id

type

xml:lang

Semantics

Message Semantics
Presence Semantics
IQ Semantics

9.3. Stanza Errors

9.3.1.

.3.2.

O [©
w
w

© [© |© |[© [© |© [© [© |© [© © |© [© O |© [© [© |© [©
@ S CEEEEEE R EEEEE
(O]

Rules

Syntax

Defined Conditions
.1. bad-request

conflict

feature-not-implemented

forbidden

gone

internal-server-error

item-not-found

jid-malformed

not-acceptable
not-allowed
not-authorized
not-modified
payment-required
recipient-unavailable
redirect
registration-required
remote-server-not-found
remote-server-timeout
resource-constraint

© |00 N O |01 | W N

e O S [[y |
© o [N o 0|~ |w [N R

9.3.3.20. service-unavailable
9.3.3.21. subscription-required
9.3.3.22. undefined-condition
9.3.3.23. unexpected-request
9.3.3.24. unknown-sender

9.3.4. Application-Specific Conditions
9.4. Extended Content
9.5. Stanza Size
10. Examples
10.1. Client-to-Server
10.1.1. TLS
10.1.2. SASL
10.1.3. Resource Binding
10.1.4. Stanza Exchange
10.1.5. Close
10.2. Server-to-Server Examples
10.2.1. TLS
10.2.2. SASL
10.2.3. Stanza Exchange
10.2.4. Close
11. Server Rules for Processing XML Stanzas
11.1. No 'to' Address
11.1.1. Overview
11.1.2. Message
11.1.3. Presence
11.1.4. 1IQ
11.2. Local Domain
11.2.1. Mere Domain
11.2.2. Domain with Resource
11.2.3. Node at Domain
11.2.3.1. No Such User
11.2.3.2. Bare JID
11.2.3.3. Full JID
11.3. Foreign Domain
11.3.1. Existing Stream
11.3.2. No Existing Stream
11.3.3. Error Handling
12. XML Usage
12.1. Restrictions
12.2. XML Namespace Names and Prefixes
12.2.1. Streams Namespace
12.2.2. Default Namespace
12.2.3. Extended Namespaces

12.3. Well-Formedness

12.4 Validation

12.5 Inclusion of Text Declaration
12.6 Character Encoding

12.7 Whitespace

XML Versions

=
N
[e¢)

13. Compliance Requirements
13.1. Servers
13.2. Clients
Internationalization Considerations
Security Considerations
15.1. High Security
15.2. Certificates
15.2.1. Certificate Generation

[
o |

15.2.1.1. Server Certificates
15.2.1.2. Client Certificates
15.2.1.3. ASN.1 Object Identifier

15.2.2. Certificate Validation
15.2.2.1. Server-to-Server Streams
15.2.2.2. Client-to-Server Streams
15.2.2.3. Use of Certificates in XMPP Extensions

15.3 Client-to-Server Communication

15.4 Server-to-Server Communication

15.5 Order of Layers

15.6 Mandatory-to-Implement Technologies
15.7 SASL Downgrade Attacks

15.8. Lack of SASL Channel Binding to TLS
15.9. Use of base64 in SASL

15.10. Stringprep Profiles
15.11. Address Spoofing
15.11.1. Address Forging
15.11.2. Address Mimicking
15.12. Firewalls
15.13. Denial of Service
15.14. Presence Leaks
15.15. Directory Harvesting
16. IANA Considerations
16.1. XML Namespace Name for TLS Data
16.2. XML Namespace Name for SASL Data
16.3. XML Namespace Name for Stream Errors
16.4. XML Namespace Name for Resource Binding
16.5. XML Namespace Name for Stanza Errors
16.6. Nodeprep Profile of Stringprep
16.7. Resourceprep Profile of Stringprep
16.8. GSSAPI Service Name
16.9. Port Numbers
17. References
17.1. Normative References
17.2. Informative References
Appendix A. Nodeprep
A.1. Introduction
A.2. Character Repertoire
A.3. Mapping
A.4. Normalization
A.5. Prohibited Output

A.6. Bidirectional Characters

A.7. Notes
Appendix B. Resourceprep

B.1. Introduction

B.2. Character Repertoire

B.3. Mapping

B.4. Normalization

B.5. Prohibited Output

B.6. Bidirectional Characters
Appendix C. XML Schemas

C.1. Streams Namespace

C.2. Stream Error Namespace

C.3. STARTTLS Namespace

C.4. SASL Namespace

C.5. Resource Binding Namespace

C.6. Stanza Error Namespace
Appendix D. Contact Addresses
Appendix E. Account Provisioning
Appendix F. Differences From RFC 3920
Appendix G. Copying Conditions
§ Index
8§ Author's Address

1. Introduction TOC

1.1. Overview TOC

The Extensible Messaging and Presence Protocol (XMPP) is an application
profile of the Extensible Markup Language [XML] (Paoli, J., Maler, E.,
Sperberg-McQueen, C., Yergeau, F., and T. Bray, “Extensible Markup
Language (XML) 1.0 (Fourth Edition),” August 2006.) for streaming XML
data in close to real time between any two (or more) network-aware
entities. XMPP is typically used to exchange messages, share presence
information, and engage in structured request-response interactions.
The basic syntax and semantics of XMPP were developed originally within
the Jabber open-source community, mainly in 1999. In late 2002, the
XMPP Working Group was chartered with developing an adaptation of the
core Jabber protocol that would be suitable as an IETF instant
messaging (IM) and presence technology. As a result of work by the XMPP
WG, [RFC3920] (Saint-Andre, P., Ed., “Extensible Messaging and Presence
Protocol (XMPP): Core,” October 2004.) and [RFC3921] (Saint-Andre, P.,
Ed., “Extensible Messaging and Presence Protocol (XMPP): Instant

Messaging and Presence,” October 2004.) were published in October 2004,
representing the most complete definition of XMPP at that time.

As a result of extensive implementation and deployment experience with
XMPP since 2004, as well as more formal interoperability testing
carried out under the auspices of the XMPP Standards Foundation (XSF),
this document reflects consensus from the XMPP developer community
regarding XMPP's core XML streaming technology. In particular, this
document incorporates the following backward-compatible changes from
RFC 3920:

*Incorporated corrections and errata
*Added examples throughout

*Clarified and more completely specified matters that were
underspecified

*Modified text to reflect updated technologies for which XMPP is a
using protocol, e.g., Transport Layer Security (TLS) and the
Simple Authentication and Security Layer (SASL)

*Defined several additional stream, stanza, and SASL error
conditions

*Removed the deprecated DIGEST-MD5 SASL mechanism [DIGEST-MD5
(Leach, P. and C. Newman, “Using Digest Authentication as a SASL
Mechanism,” May 2000.) as a mandatory-to-implement technology

*Added the TLS plus the SASL PLAIN mechanism [PLAIN] (Zeilenga,
K., “The PLAIN Simple Authentication and Security Layer (SASL)
Mechanism,” August 2006.) as a mandatory-to-implement technology

*Defined of optional support for multiple resources over the same
connection

*Transferred historical documentation for the server dialback
protocol from this specification to a separate specification

Therefore, this document defines the core features of XMPP 1.0, thus
obsoleting RFC 3920.

Note: [rfc3921bis] (Saint-Andre, P., “Extensible Messaging and
Presence Protocol (XMPP): Instant Messaging and Presence,”

March 2009.) defines the XMPP features needed to provide the basic
instant messaging and presence functionality that is described in
[IMP-REQS] (Day, M., Aggarwal, S., and J. Vincent, “Instant
Messaging / Presence Protocol Requirements,” February 2000.).

1.2. Functional Summary TOC
This non-normative section provides a developer-friendly, functional
summary of XMPP; refer to the sections that follow for a normative
definition of XMPP.
The purpose of XMPP is to enable the exchange of relatively small
pieces of structured data (called "XML stanzas") over a network between
any two (or more) entities. XMPP is implemented using a client-server
architecture, wherein a client needs to connect to a server in order to
gain access to the network and thus be allowed to exchange XML stanzas
with other entities (which can be associated with other servers). The
process whereby a client connects to a server, exchanges XML stanzas,
and ends the connection is:

1. Determine the hostname and port at which to connect

2. Open a TCP connection

3. Open an XML stream

4. Complete TLS negotiation for channel encryption (recommended)

5. Complete SASL negotiation for authentication

6. Bind a resource to the stream

7. Exchange an unbounded number of XML stanzas with other entities
on the network

8. Close the XML stream

9. Close the TCP connection
within XMPP, one server can optionally connect to another server to
enable inter-domain or inter-server communication. For this to happen,
the two servers need to negotiate a connection between themselves and
then exchange XML stanzas; the process for doing so is:

1. Determine the hostname and port at which to connect

2. Open a TCP connection

3. Open an XML stream

4., Complete TLS negotiation for channel encryption (recommended)

5. Complete SASL negotiation for authentication *

6. Exchange an unbounded number of XML stanzas both directly for
the servers and indirectly on behalf of entities associated
with each server (e.g., connected clients)

7. Close the XML stream
8. Close the TCP connection

* Note: Depending on local service policies, it is possible that a
deployed server will use the older server dialback protocol to
provide weak identity verification in cases where SASL negotiation
would not result in strong authentication (e.g., because TLS
negotiation was not mandated by the peer server, or because the
certificate presented by the peer server during TLS negotiation is
self-signed and thus provides only weak identity); for details, see
[XEP-0220] (Saint-Andre, P. and J. Miller, “Server Dialback,”
October 2008.).

In the sections following discussion of XMPP architecture and XMPP
addresses, this document specifies how clients connect to servers and
specifies the basic semantics of XML stanzas. However, this document
does not define the "payloads" of the XML stanzas that might be
exchanged once a connection is successfully established; instead, those
payloads are defined by various XMPP extensions. For example,
[rfc3921bis] (Saint-Andre, P., “Extensible Messaging and Presence
Protocol (XMPP): Instant Messaging and Presence,” March 2009.) defines
extensions for basic instant messaging and presence functionality. In
addition, various specifications produced in the XSF's XEP series
[XEP-0001] (Saint-Andre, P., “XMPP Extension Protocols,” January 2008.)
define extensions for a wide range of more advanced functionality.

1.3. Conventions TOC

The following capitalized keywords are to be interpreted as described
in [TERMS] (Bradner, S., “Key words for use in RFCs to Indicate
Requirement Levels,” March 1997.): "MUST", "SHALL", "REQUIRED"; "MUST
NOT", "SHALL NOT"; "SHOULD", "RECOMMENDED"; "SHOULD NOT", "NOT
RECOMMENDED"; "MAY", "OPTIONAL".

The term "whitespace" is used to refer to any character that matches
production [3] content of [XML] (Paoli, J., Maler, E., Sperberg-
McQueen, C., Yergeau, F., and T. Bray, “Extensible Markup Language
(XML) 1.0 (Fourth Edition),” August 2006.), i.e., any instance of SP,
HT, CR, and LF.

Following the "XML Notation" used in [IRI] (Duerst, M. and M. Suignard,

“Internationalized Resource Identifiers (IRIs),” January 2005.) to
represent characters that cannot be rendered in ASCII-only documents,
some examples in this document use the form "&#x...." as a notational

device to represent Unicode characters (e.g., the string "ř"
stands for the Unicode character LATIN SMALL LETTER R WITH CARON).

In examples, lines have been wrapped for improved readability, "[...]"
means elision, and the following prepended strings are used (these
prepended strings are not to be sent over the wire):

*C: = a client
*E: = any XMPP entity
*I: = an initiating entity
*P: = a peer server
*R: = a receiving entity
*S: = a server
*S1: = serverl
*S2: = server2
1.4. Acknowledgements _TOC

The editor of this document finds it impossible to appropriately
acknowledge the many individuals who have provided comments regarding
the protocols defined herein. However, thanks are due to those who have
who have provided implementation feedback, bug reports, requests for
clarification, and suggestions for improvement since the publication of
the RFC this document supersedes. The editor has endeavored to address
all such feedback, but is solely responsible for any remaining errors
and ambiguities.

1.5. Discussion Venue TOC

The document editor and the broader XMPP developer community welcome
discussion and comments related to the topics presented in this
document. The preferred forum is the <standards@xmpp.org> mailing list,
for which archives and subscription information are available at
http://mail.jabber.org/mailman/listinfo/standards.

T0C

http://mail.jabber.org/mailman/listinfo/standards

2. Architecture

2.1. Overview TOC

XMPP assumes a client-server architecture, wherein a client utilizing
XMPP accesses a server (normally over a [TCP] (Postel, J.,
“Transmission Control Protocol,” September 1981.) connection) and
servers can also communicate with each other over TCP connections.

A simplified architectural diagram for a typical deployment is shown
here, where the entities have the following significance:

*romeo@example.net -- an XMPP user.
*example.net -- an XMPP server.
*im.example.com -- an XMPP server.
*juliet@im.example.com -- an XMPP user.
example.net ---------------- im.example.com

I I

I I
romeo@example.net juliet@im.example.com

Note: Architectures that employ XML streams (XML Streams) and XML
stanzas (XML Stanzas) but that establish peer-to-peer connections
directly between clients using technologies based on [LINKLOCAL]
(Cheshire, S., Aboba, B., and E. Guttman, “Dynamic Configuration of
IPv4 Link-Local Addresses,” May 2005.) have been deployed, but such
architectures are not XMPP and are best described as "XMPP-like";
for details, see [XEP-0174] (Saint-Andre, P., “Link-Local
Messaging,” September 2007.). In addition, XML streams can be
established end-to-end over any reliable transport, including
extensions to XMPP itself; for details, see [XEP-0246] (Saint-Andre,

P., “End-to-End XML Streams,” June 2008.).

2.2. Server TOC

A SERVER is an entity whose primary responsibilities are to:

*Manage XML streams (XML Streams) with local clients and deliver
XML stanzas (XML Stanzas) to those clients over the negotiated
XML streams.

*Subject to local service policies on server-to-server
communication, manage XML streams (XML Streams) with foreign
servers and route XML stanzas (XML Stanzas) to those servers over
the negotiated XML streams.

Depending on the application, the secondary responsibilities of an XMPP
server can include:

*Storing XML data that is used by clients (e.g., contact lists for
users of XMPP-based instant messaging and presence applications
as defined in [rfc3921bis] (Saint-Andre, P., “Extensible
Messaging and Presence Protocol (XMPP): Instant Messaging and
Presence,” March 2009.)); in this case, the relevant XML stanza
is handled directly by the server itself on behalf of the client
and is not routed to a foreign server or delivered to a local
entity.

*Hosting local services that also use XMPP as the basis for
communication but that provide additional functionality beyond
that defined in this document or in [rfc3921bis] (Saint-Andre,
P., “Extensible Messaging and Presence Protocol (XMPP): Instant
Messaging and Presence,” March 2009.); examples include multi-
user conferencing services as specified in [XEP-0045] (Saint-
Andre, P., “Multi-User Chat,” July 2007.) and publish-subscribe
services as specified in [XEP-0060] (Millard, P., Saint-Andre,
P., and R. Meijer, “Publish-Subscribe,” September 2007.).

2.3. Client TOC

A CLIENT is an entity that establishes an XML stream with a server by
authenticating using the credentials of a local account and that then
completes resource binding (Resource Binding) in order to enable
delivery of XML stanzas via the server to the client. A client then
uses XMPP to communicate with its server, other clients, and any other
accessible entities on a network. Multiple clients can connect
simultaneously to a server on behalf of a local account, where each
client is differentiated by the resource identifier portion of an XMPP
address (e.g., <node@domain/home> vs. <node@domain/work>), as defined
under Section 3 (Addresses) and Section 8 (Resource Binding). The
RECOMMENDED port for TCP connections between a client and a server is
5222, as registered with the IANA (see Section 16.9 (Port Numbers)).

2.4. Network TOC

Because each server is identified by a network address and because
server-to-server communication is a straightforward extension of the
client-to-server protocol, in practice the system consists of a network
of servers that inter-communicate. Thus, for example,
<juliet@im.example.com> is able to exchange messages, presence, and
other information with <romeo@example.net>. This pattern is familiar
from messaging protocols (such as [SMTP] (Klensin, J., “Simple Mail
Transfer Protocol,” April 2001.)) that make use of network addressing
standards. Communication between any two servers is OPTIONAL. The
RECOMMENDED port for TCP connections between servers is 5269, as
registered with the IANA (see Section 16.9 (Port Numbers)).

3. Addresses TOC

3.1. Overview TOC

An ENTITY is anything that is network-addressable and that can
communicate using XMPP. For historical reasons, the native address of
an XMPP entity is called a JABBER IDENTIFIER or JID. A valid JID
contains a set of ordered elements formed of an XMPP node identifier,
domain identifier, and resource identifier.

The syntax for a JID is defined as follows using the Augmented Backus-
Naur Form as specified in [ABNF] (Crocker, D. and P. Overell,
“Augmented BNF for Syntax Specifications: ABNF,” January 2008.).

jid [node "@"] domain ["/" resource]

node = 1*(nodepoint)
; a "nodepoint" is a UTF-8 encoded Unicode code
; point that satisfies the Nodeprep profile of
; stringprep

domain = fqdn / address-literal
fqdn = *(ldhlabel ".") toplabel
ldhlabel = letdig [*61(1ldh) letdig]
toplabel = ALPHA *61(1ldh) letdig
letdig = ALPHA / DIGIT

1dh = ALPHA / DIGIT / "-"

address-literal = IPv4address / IPv6address
; the "IPv4address" and "IPv6address" rules are
; defined in RFC 3986

resource = 1*(resourcepoint)
; a "resourcepoint" is a UTF-8 encoded Unicode
; code point that satisfies the Resourceprep
; profile of stringprep

All JIDs are based on the foregoing structure. One common use of this
structure is to identify a messaging and presence account, the server
that hosts the account, and a connected resource (e.g., a specific
device) in the form of <node@domain/resource>. However, node types
other than clients are possible; for example, a specific chat room
offered by a multi-user conference service (see [XEP-0045] (Saint-
Andre, P., “Multi-User Chat,” July 2007.)) could be addressed as
<room@service> (where "room" is the name of the chat room and "service"
is the hostname of the multi-user conference service) and a specific
occupant of such a room could be addressed as <room@service/nick>
(where "nick" is the occupant's room nickname). Many other JID types
are possible (e.g., <domain/resource> could be a server-side script or
service).

Each allowable portion of a JID (node identifier, domain identifier,
and resource identifier) MUST NOT be more than 1023 bytes in length,
resulting in a maximum total size (including the '@' and '/'
separators) of 3071 bytes.

Note: While the format of a JID is consistent with [URI] (Berners-
Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier
(URI): Generic Syntax,” January 2005.), an entity's address on an
XMPP network MUST be represented as a JID (without a URI scheme) and
not a [URI] (Berners-Lee, T., Fielding, R., and L. Masinter,
“Uniform Resource Identifier (URI): Generic Syntax,” January 2005.)
or [IRI] (Duerst, M. and M. Suignard, “Internationalized Resource
Identifiers (IRIs),” January 2005.) as specified in [XMPP-URI]
(Saint-Andre, P., “Internationalized Resource Identifiers (IRIs) and
Uniform Resource Identifiers (URIs) for the Extensible Messaging and
Presence Protocol (XMPP),” February 2008.); the latter specification

is provided only for identification and interaction outside the
context of the XMPP wire protocol itself.

3.2. Domain Identifier TOC

The DOMAIN IDENTIFIER portion of a JID is that portion after the '@'
character (if any) and before the '/' character (if any); it is the
primary identifier and is the only REQUIRED element of a JID (a mere
domain identifier is a valid JID). Typically a domain identifier
identifies the "home" server to which clients connect for XML routing
and data management functionality. However, it is not necessary for an
XMPP domain identifier to identify an entity that provides core XMPP
server functionality (e.g., a domain identifier can identity an entity
such as a multi-user conference service, a publish-subscribe service,
or a user directory).

Note: A single server can service multiple domain identifiers, i.e.,
multiple local domains; this is typically referred to as virtual
hosting.

The domain identifier for every server or service that will communicate
over a network SHOULD be a fully qualified domain name (see [DNS]
(Mockapetris, P., “Domain names - implementation and specification,”
November 1987.)); while the domain identifier MAY be either an Internet
Protocol (IPv4 or IPv6) address or a text label that is resolvable on a
local network (commonly called an "unqualified hostname"), it is
possible that domain identifiers that are IP addresses will not be
acceptable to other services for the sake of interdomain communication.
Furthermore, domain identifiers that are unqualified hostnames MUST NOT
be used on public networks but MAY be used on private networks.

Note: If the domain identifier includes a final character considered
to be a label separator (dot) by [IDNA] (Faltstrom, P., Hoffman, P.,

and A. Costello, “Internationalizing Domain Names in Applications
(IDNA),” March 2003.) or [DNS] (Mockapetris, P., “Domain names -
implementation and specification,” November 1987.), this character
MUST be stripped from the domain identifier before the JID of which
it is a part is used for the purpose of routing an XML stanza,
comparing against another JID, or constructing an [XMPP-URI] (Saint-
Andre, P., “Internationalized Resource Identifiers (IRIs) and
Uniform Resource Identifiers (URIs) for the Extensible Messaging and
Presence Protocol (XMPP),” February 2008.); in particular, the
character MUST be stripped before any other canonicalization steps
are taken, such as application of the [NAMEPREP] (Hoffman, P. and M.
Blanchet, “Nameprep: A Stringprep Profile for Internationalized
Domain Names (IDN),” March 2003.) profile of [STRINGPREP] (Hoffman,

P. and M. Blanchet, “Preparation of Internationalized Strings
("stringprep"),” December 2002.) or completion of the ToASCII
operation as described in [IDNA] (Faltstrom, P., Hoffman, P., and A.

Costello, “Internationalizing Domain Names in Applications (IDNA),”

March 2003.).

A domain identifier MUST be an "internationalized domain name" as
defined in [IDNA] (Faltstrom, P., Hoffman, P., and A. Costello,
“Internationalizing Domain Names in Applications (IDNA),” March 2003.),
that is, "a domain name in which every label is an internationalized
label". When preparing a text label (consisting of a sequence of
Unicode code points) for representation as an internationalized label
in the process of constructing an XMPP domain identifier or comparing
two XMPP domain identifiers, an application MUST ensure that for each
text label it is possible to apply without failing the ToASCII
operation specified in [IDNA] (Faltstrom, P., Hoffman, P., and A.
Costello, “Internationalizing Domain Names in Applications (IDNA),”
March 2003.) with the UseSTD3ASCIIRules flag set (thus forbidding ASCII
code points other than letters, digits, and hyphens). If the ToASCII
operation can be applied without failing, then the label is an
internationalized label. An internationalized domain name (and
therefore an XMPP domain identifier) is constructed from its
constituent internationalized labels by following the rules specified
in [IDNA] (Faltstrom, P., Hoffman, P., and A. Costello,
“Internationalizing Domain Names in Applications (IDNA),” March 2003.).

Note: The ToASCII operation includes application of the [NAMEPREP
(Hoffman, P. and M. Blanchet, “Nameprep: A Stringprep Profile for
Internationalized Domain Names (IDN),” March 2003.) profile of
[STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of
Internationalized Strings ("stringprep"),” December 2002.) and
encoding using the algorithm specified in [PUNYCODE] (Costello, A.,
“Punycode: A Bootstring encoding of Unicode for Internationalized
Domain Names in Applications (IDNA),” March 2003.); for details,
see [IDNA] (Faltstrom, P., Hoffman, P., and A. Costello,
“Internationalizing Domain Names in Applications (IDNA),”

March 2003.). Although the output of the TOASCII operation is not
used in XMPP, it MUST be possible to apply that operation without
failing.

3.3. Node Identifier TOC

The NODE IDENTIFIER portion of a JID is an optional secondary
identifier placed before the domain identifier and separated from the
latter by the '@' character. Typically a node identifier uniquely
identifies the entity requesting and using network access provided by a

server (i.e., a local account), although it can also represent other
kinds of entities (e.g., a chat room associated with a multi-user
conference service). The entity represented by an XMPP node identifier
is addressed within the context of a specific domain.

A node identifier MUST be formatted such that the Nodeprep profile of
[STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of
Internationalized Strings ("stringprep"),” December 2002.) canh be
applied without failing (see Appendix A (Nodeprep)). Before comparing
two node identifiers, an application MUST first ensure that the
Nodeprep profile has been applied to each identifier (the profile need
not be applied each time a comparison is made, as long as it has been
applied before comparison).

3.4. Resource Identifier TOC

The RESOURCE IDENTIFIER portion of a JID is an optional tertiary
identifier placed after the domain identifier and separated from the
latter by the '/' character. A resource identifier can modify either a
<node@domain> address or a mere <domain> address. Typically a resource
identifier uniquely identifies a specific connection (e.g., a device or
location) or object (e.g., a participant in a multi-user conference
room) belonging to the entity associated with an XMPP node identifier
at a local domain.

When an XMPP address does not include a resource identifier (i.e., when
it is of the form <domain> or <node@domain>), it is referred to as a
BARE JID. When an XMPP address includes a resource identifier (i.e.,
when it is of the form <domain/resource> or <node@domain/resource>), 1is
referred to as a FULL JID.

A resource identifier MUST be formatted such that the Resourceprep
profile of [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of
Internationalized Strings ("stringprep"),” December 2002.) can be
applied without failing (see Appendix B (Resourceprep)). Before
comparing two resource identifiers, an application MUST first ensure
that the Resourceprep profile has been applied to each identifier (the
profile need not be applied each time a comparison is made, as long as
it has been applied before comparison).

Note: For historical reasons, the term "resource identifier" is used
in XMPP to refer to the optional portion of an XMPP address that
follows the domain identifier and the "/" separator character; this
use of the term "resource identifier" is not to be confused with the
meanings of "resource" and "identifier" provided in Section 1.1 of
[URI] (Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform
Resource Identifier (URI): Generic Syntax,” January 2005.).

XMPP entities SHOULD consider resource identifiers to be opaque strings
and SHOULD NOT impute meaning to any given resource identifier. In
paticular, the use of the '/' character as a separator between the
domain identifier and the resource identifier does not imply that
resource identifiers are hierarchical in the say that, say, HTTP
addresses are hierarchical; thus for example an XMPP address of the
form <node@domain/foo/bar> does not identify a resource "bar" that
exists below a resource "foo" in a hierarchy of resources associated
with the entity "node@domain".

3.5. Determination of Addresses TOC

After the parties to an XML stream have completed the appropriate
aspects of stream negotiation (typically SASL negotiation (SASL
Negotiation) and, if appropriate, resource binding (Resource Binding))
the receiving entity for a stream MUST determine the initiating
entity's JID.

For server-to-server communication, the initiating server's JID MUST be
the authorization identity (as defined by [SASL] (Melnikov, A. and K.
Zeilenga, “Simple Authentication and Security Layer (SASL),”

June 2006.)), either (1) as directly communicated by the initiating
server during SASL negotiation (SASL Negotiation) or (2) as derived by
the receiving server from the authentication identity if no
authorization identity was specified during SASL negotiation (SASL
Negotiation). (For information about the determination of addresses in
the absence of SASL negotiation when the older server dialback protocol
is used, see [XEP-0220] (Saint-Andre, P. and J. Miller, “Server
Dialback,” October 2008.).)

For client-to-server communication, the client's bare JID
(<node@domain>) MUST be the authorization identity (as defined by
[SASL] (Melnikov, A. and K. Zeilenga, “Simple Authentication and
Security Layer (SASL),” June 2006.)), either (1) as directly
communicated by the client during SASL negotiation (SASL Negotiation)
or (2) as derived by the server from the authentication identity if no
authorization identity was specified during SASL negotiation (SASL
Negotiation). The resource identifier portion of the full JID
(<node@domain/resource>) MUST be the resource identifier negotiated by
the client and server during resource binding (Resource Binding).

The receiving entity MUST ensure that the resulting JID (including node
identifier, domain identifier, resource identifier, and separator
characters) conforms to the rules and formats defined earlier in this
section; to meet this restriction, the receiving entity MAY replace the
JID sent by the initiating entity with the canonicalized JID as
determined by the receiving entity.

4. TCP Binding TOC

4.1. Scope TOC

As XMPP is defined in this specification, an initiating entity (client
or server) MUST open a Transmission Control Protocol [TCP] (Postel, J.,
“Transmission Control Protocol,” September 1981.) connection at the
receiving entity (server) before it negotiates XML streams with the
receiving entity. The rules specified in the following sections apply
to the TCP binding.

4.2. Hostname Resolution TOC

Before opening the TCP connection, the initiating entity first MUST
resolve the Domain Name System (DNS) hostname associated with the
receiving entity and determine the appropriate TCP port for
communication with the receiving entity. The process 1is:

1. Attempt to resolve the hostname using (a) a [DNS-SRV
(Gulbrandsen, A., Vixie, P., and L. Esibov, “A DNS RR for
specifying the location of services (DNS SRV),” February 2000.)
Service of "xmpp-client" (for client-to-server connections) or
"xmpp-server" (for server-to-server connections) and (b) a
Proto of "tcp", resulting in resource records such as "_xmpp-
client._tcp.example.net." or "_xmpp-
server._tcp.im.example.com.". The result of the SRV lookup will
be one or more combinations of a port and hostname, which
hostnames the initiating entity MUST resolve according to
returned SRV record weight (if the result of the SRV lookup is
a single RR with a Target of ".", i.e. the root domain, the
initiating entity MUST abort SRV processing but SHOULD attempt
a fallback resolution as described below). The initiating
entity uses the IP address(es) from the first successfully
resolved hostname (with the corresponding port number returned
by the SRV lookup) in order to connect to the receiving entity.
If the initiating entity fails to connect using one of the IP
addresses, the initiating entity uses the next resolved IP
address to connect. If the initiating entity fails to connect
using all resolved IP addresses, then the initiating entity
repeats the process of resolution and connection for the next
hostname returned by the SRV lookup.

2. If the SRV lookup aborts or fails, the fallback SHOULD be a
normal IPv4 or IPv6 address record resolution to determine the
IP address, where the port used is the "xmpp-client" port of
5222 for client-to-server connections or the "xmpp-server" port
5269 for server-to-server connections.

3. For client-to-server connections, the fallback MAY be a
[DNS-TXT] (Rosenbaum, R., “Using the Domain Name System To
Store Arbitrary String Attributes,” May 1993.) lookup for
alternative connection methods, for example as described in
[XEP-0156] (Hildebrand, J. and P. Saint-Andre, “Discovering
Alternative XMPP Connection Methods,” June 2007.).

Note: If the initiating entity has been explicitly configured to
associate a particular hostname (and potentially port) with the
original hostname of the receiving entity (say, to "hardcode" an
association between an original hostname of example.net and a
configured hostname and of webcm.example.com:80), the initiating
entity SHALL use the configured name instead of performing the
foregoing resolution process on the original name.

Note: Many XMPP servers are implemented in such a way that they can
host additional services (beyond those defined in this specification
and [rfc3921bis] (Saint-Andre, P., “Extensible Messaging and
Presence Protocol (XMPP): Instant Messaging and Presence,”

March 2009.)) at hostnames that are subdomains of the hostname of
the main XMPP service (e.g., conference.example.net for a [XEP-0045
(Saint-Andre, P., “Multi-User Chat,” July 2007.) service associated
with the example.net XMPP service) or subdomains of the first-level
domain of the underlying host (e.g., muc.example.com for a
[XEP-0045] (Saint-Andre, P., “Multi-User Chat,” July 2007.) service
associated with the im.example.com XMPP service). If an entity from
a remote domain wishes to use such additional services, it would
generate an appropriate XML stanza and the remote domain itself
would attempt to resolve the service's hostname via an SRV lookup on
resource records such as "_xmpp-server._tcp.conference.example.net."
or "_xmpp-server._tcp.muc.example.com.". Therefore if a service
wishes to enable entities from remote domains to access these
additional services, it needs to advertise the appropriate "_xmpp-
server" SRV records in addition to the "_xmpp-server" record for its
main XMPP service.

4.3. Client-to-Server Communication TOC

Because a client is subordinate to a server and therefore a client
authenticates to the server but the server does not necessarily

authenticate to the client, it is necessary to have only one TCP
connection between client and server. Thus the server MUST allow the
client to share a single TCP connection for XML stanzas sent from
client to server and from server to client (i.e., the inital stream and
response stream as specified under Section 5 (XML Streams)).

4.4. Server-to-Server Communication TOC

Because two servers are peers and therefore each peer MUST authenticate
with the other, the servers MUST use two TCP connections: one for XML
stanzas sent from the first server to the second server and another
(initiated by the second server) for XML stanzas from the second server
to the first server.

This rule applies only to XML stanzas (XML Stanzas). Therefore during
STARTTLS negotiation (STARTTLS Negotiation) and SASL negotiation (SASL
Negotiation) the servers would use one TCP connection, but after stream
setup that TCP connection would be used only for the initiating server
to send XML stanzas to the receiving server. In order for the receiving
server to send XML stanzas to the initiating server, the receiving
server would need to reverse the roles and negotiate an XML stream from
the receiving server to the initiating server.

4.5. Reconnection TOC

It can happen that an XMPP server goes offline while servicing TCP
connections from local clients and from other servers. Because the
number of such connections can be quite large, the reconnection
algorithm employed by entities that seek to reconnect can have a
significant impact on software and network performance. The following
guidelines are RECOMMENDED:

*The time to live (TTL) specified in Domain Name System records
MUST be honored, even if DNS results are cached; if the TTL has
not expired, an entity that seeks to reconnect MUST NOT re-
resolve the server hostname before reconnecting.

*The time that expires before an entity first seeks to reconnect
MUST be randomized (e.g., so that all clients do not attempt to
reconnect exactly 30 seconds after being disconnected).

*If the first reconnection attempt does not succeed, an entity
MUST back off increasingly on the time between subsequent
reconnection attempts.

Note: Because it is possible that a disconnected entity cannot
determine the cause of disconnection (e.g., because there was no
explicit stream error) or does not require a new stream for
immediate communication (e.g., because the stream was idle and
therefore timed out), it SHOULD NOT assume that is needs to
reconnect immediately.

4.6. Other Bindings TOC

There is no necessary coupling of an XML stream to a TCP connection.
For example, two entities could connect to each other via another
transport, such as [HTTP] (Fielding, R., Gettys, J., Mogul, J.,
Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee, “Hypertext
Transfer Protocol -- HTTP/1.1,” June 1999.) as specified in [XEP-0124
(Paterson, I., Smith, D., and P. Saint-Andre, “Bidirectional-streams
Over Synchronous HTTP (BOSH),” February 2007.) and [XEP-0206
(Paterson, I., “XMPP Over BOSH,” June 2007.). Although this
specification neither encourages nor discourages other bindings, it
defines only a binding of XMPP to TCP.

5. XML Streams TOC

5.1. Overview TOC

Two fundamental concepts make possible the rapid, asynchronous exchange
of relatively small payloads of structured information between
presence-aware entities: XML streams and XML stanzas. These terms are
defined as follows.

Definition of XML Stream: An XML STREAM is a container for the
exchange of XML elements between any two entities over a network.
The start of an XML stream is denoted unambiguously by an opening
STREAM HEADER (i.e., an XML <stream> tag with appropriate
attributes and namespace declarations), while the end of the XML
stream is denoted unambiguously by a closing XML </stream> tag.
During the life of the stream, the entity that initiated it can
send an unbounded number of XML elements over the stream, either
elements used to negotiate the stream (e.g., to complete TLS
negotiation (STARTTLS Negotiation) or SASL negotiation (SASL

Negotiation)) or XML stanzas. The INITIAL STREAM is negotiated
from the initiating entity (typically a client or server) to the
receiving entity (typically a server), and can be seen as
corresponding to the initiating entity's "connection" or
"session" with the receiving entity. The initial stream enables
unidirectional communication from the initiating entity to the
receiving entity; in order to enable information exchange from
the receiving entity to the initiating entity, the receiving
entity MUST negotiate a stream in the opposite direction (the
RESPONSE STREAM).

Definition of XML Stanza: An XML STANZA is a discrete semantic unit
of structured information that is sent from one entity to another
over an XML stream, and is the basic unit of meaning in XMPP. An
XML stanza exists at the direct child level of the root <stream/>
element; the start of any XML stanza is denoted unambiguously by
the element start tag at depth=1 of the XML stream (e.g.,
<presence>), and the end of any XML stanza is denoted
unambiguously by the corresponding close tag at depth=1 (e.g., </
presence>). The only XML stanzas defined herein are the <message/
>, <presence/>, and <iq/> elements qualified by the default
namespace for the stream, as described under Section 9 (XML
Stanzas); for example, an XML element sent for the purpose of TLS
negotiation (STARTTLS Negotiation) or SASL negotiation (SASL
Negotiation) is not considered to be an XML stanza, nor is a
stream error or a stream feature. An XML stanza MAY contain child
elements (with accompanying attributes, elements, and XML
character data) as necessary in order to convey the desired
information, which MAY be qualified by any XML namespace (see
[XML-NAMES] (Layman, A., Hollander, D., Tobin, R., and T. Bray,
“Namespaces in XML 1.1 (Second Edition),” August 2006.) as well
as Section 9.4 (Extended Content) herein).

Consider the example of a client's connection to a server. In order to
connect to a server, a client initiates an XML stream by sending a
stream header to the server, optionally preceded by a text declaration
specifying the XML version and the character encoding supported (see
Section 12.5 (Inclusion of Text Declaration) and Section 12.6
(Character Encoding)). Subject to local policies and service
provisioning, the server then replies with a second XML stream back to
the client, again optionally preceded by a text declaration. Once the
client has completed SASL negotiation (SASL Negotiation) and resource
binding (Resource Binding), the client can send an unbounded number of
XML stanzas over the stream. When the client desires to close the
stream, it simply sends a closing </stream> tag to the server as
further described under Section 5.7 (Closing a Stream).

In essence, then, an XML stream acts as an envelope for all the XML
stanzas sent during a connection. We can represent this in a simplistic
fashion as follows.

| <presence> [
| <show/> |
| </presence> |

| <message to='foo'> |
| <body/> |
| </message> |

| <ig to='bar'> |
| <query/> |
| </ig> |

| <iq from='bar'> [
| <query/> |
| </ig> |

Note: Those who are accustomed to thinking of XML in a document-
centric manner might view a client's connection to a server as
consisting of two open-ended XML documents: one from the client to
the server and one from the server to the client. On this analogy,
the two XML streams can be considered equivalent to two "documents"
(matching production [1] content of [XML] (Paoli, J., Maler, E.,
Sperberg-McQueen, C., Yergeau, F., and T. Bray, “Extensible Markup
Language (XML) 1.0 (Fourth Edition),” August 2006.)) that are built
up through the accumulation of XML stanzas, the root <stream/>
element can be considered equivalent to the "document entity" for
each "document" (as described in Section 4.8 of [XML] (Paoli, J.,
Maler, E., Sperberg-McQueen, C., Yergeau, F., and T. Bray,
“Extensible Markup Language (XML) 1.0 (Fourth Edition),”

August 2006.)), and the XML stanzas sent over the streams can be
considered equivalent to "fragments" of the "documents" as described
in [XML-FRAG] (Grosso, P. and D. Veillard, “XML Fragment
Interchange,” February 2001.). However, this perspective is merely
an analogy; XMPP does not deal in documents and fragments but in
streams and stanzas.

5.2. Stream Security TOC

For the purpose of stream security, both Transport Layer Security (see
Section 6 (STARTTLS Negotiation)) and the Simple Authentication and
Security Layer (see Section 7 (SASL Negotiation)) are mandatory to
implement. Use of these technologies results in high security as
described under Section 15.1 (High Security).

The initial stream and the response stream MUST be secured separately,
although security in both directions MAY be established via mechanisms
that provide mutual authentication.

The initiating entity MUST NOT attempt to send XML stanzas (XML
Stanzas) over the stream before the stream has been authenticated.
However, if it does attempt to do so, the receiving entity MUST NOT
accept such stanzas and MUST return a <not-authorized/> stream error.
This rule applies to XML stanzas only (i.e., <message/>, <presence/>,
and <iq/> elements qualified by the default namespace) and not to XML
elements used for stream negotiation (e.g., elements used to complete
TLS negotiation (STARTTLS Negotiation) or SASL negotiation (SASL

Negotiation)).

5.3. Stream Attributes TOC

The attributes of the root <stream/> element are defined in the
following sections.

Note: The attributes of the root <stream/> element are not prepended
by a 'stream:' prefix because, as explained in [XML-NAMES] (Layman,
A., Hollander, D., Tobin, R., and T. Bray, “Namespaces in XML 1.1
(Second Edition),” August 2006.), "[d]efault namespace declarations
do not apply directly to attribute names; the interpretation of
unprefixed attributes is determined by the element on which they
appear."

5.3.1. from TOC

The 'from' attribute communicates an XMPP identity of the entity
sending the stream element.

Note: It is possible for an entity to have more than one XMPP
identity (e.g., in the case of a server that provides virtual
hosting). It is also possible that an entity does not know the XMPP
identity of the principal controlling the entity (e.g., because the

XMPP identity is assigned at a level other than the XMPP application
layer, as in the General Security Service Application Program
Interface [GSS-API] (Linn, J., “Generic Security Service Application
Program Interface Version 2, Update 1,” January 2000.)).

For initial stream headers in client-to-server communication, if the
client knows the XMPP identity of the principal controlling the client
(typically an account name of the form <node@domain>), then it SHOULD
include the 'from' attribute and set its value to that identity. If the
client does not know the XMPP identity of the principal controlling the
client, then it MUST NOT include the 'from' attribute.

I: <?xml version='1.0'?>
<stream:stream

from='juliet@im.example.com'
to="im.example.com'
version='1.0"
xml:lang="en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>

For initial stream headers in server-to-server communication, a server
MUST include the 'from' attribute and MUST set its value to a hostname
serviced by the initiating entity.

I: <?xml version='1.0'?>
<stream:stream

from='example.net'
to="im.example.com'
version='1.0"
xml:lang="en'
xmlns="'jabber:server'
xmlns:stream="http://etherx.jabber.org/streams'>

For response stream headers in both client-to-server and server-to-
server communication, the receiving entity MUST include the 'from'
attribute and MUST set its value to a hostname serviced by the
receiving entity (which MAY be a hostname other than that specified in
the 'to' attribute of the initial stream header).

R: <?xml version='1.0'?>
<stream:stream

from="im.example.com'
id="'++TR84Sm6A3hnt3Q065SnAbbk3Y="
to='juliet@im.example.com'
version='1.0"
xml:lang="'en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>

Whether or not the 'from' attribute is included, each entity MUST
verify the identity of the other entity before exchanging XML stanzas
with it (see Section 15.3 (Client-to-Server Communication) and
Section 15.4 (Server-to-Server Communication)).

Note: It is possible that implementations based on an earlier
revision of this specification will not include the 'from' address
on stream headers; an entity SHOULD be liberal in accepting such
stream headers.

5.3.2. to TOC

For initial stream headers in both client-to-server and server-to-
server communication, the initiating entity MUST include the 'to'
attribute and MUST set its value to a hostname that the initiating
entity knows or expects the receiving entity to service.

I: <?xml version='1.0'?>
<stream:stream

from="juliet@im.example.com'
to="im.example.com'
version='1.0"
xml:lang="en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>

For response stream headers in client-to-server communication, if the
client included a 'from' attribute in the initial stream header then
the server MUST include a 'to' attribute in the response stream header
and MUST set its value to the bare JID specified in the 'from'
attribute of the initial stream header. If the client did not include a
'"from' attribute in the initial stream header then the server MUST NOT
include a 'to' attribute in the response stream header.

R: <?xml version='1.0'?>
<stream:stream

from="'im.example.com'
id="'++TR84Sm6A3hnt3Q065SnAbbk3Y="
to='juliet@im.example.com'
version='1.0"
xml:lang="'en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>

For response stream headers in server-to-server communication, the
receiving entity MUST include a 'to' attribute in the response stream
header and MUST set its value to the hostname specified in the 'from'
attribute of the initial stream header.

R: <?xml version='1.0'?>
<stream:stream

from="'im.example.com'
id="'g4qSvGvBxJ+xeAd7QKez0QJFFlw="
to='example.net'
version='1.0"'
xml:lang="en'
xmlns="'jabber:server'
xmlns:stream="http://etherx.jabber.org/streams'>

Whether or not the 'to' attribute is included, each entity MUST verify
the identity of the other entity before exchanging XML stanzas with it
(see Section 15.3 (Client-to-Server Communication) and Section 15.4
(Server-to-Server Communication)).

Note: It is possible that implementations based on an earlier
revision of this specification will not include the 'to' address on
stream headers; an entity SHOULD be liberal in accepting such stream
headers.

5.3.3. id T0C

The 'id' attribute communicates a unique identifier for the stream.
This identifier is called a STREAM ID. The stream ID MUST be generated
by the receiving entity when it sends a response stream header, MUST BE
unique within the receiving application (normally a server), and MUST
be both unpredictable and nonrepeating because it can be security-
critical (see [RANDOM] (Eastlake, D., Schiller, J., and S. Crocker,
“Randomness Requirements for Security,” June 2005.) for recommendations
regarding randomness for security purposes).

For initial stream headers, the initiating entity MUST NOT include the
'id' attribute; however, if the 'id' attribute is included, the
receiving entity MUST silently ignore it.

For response stream headers, the receiving entity MUST include the 'id'
attribute.

R: <?xml version='1.0'?>
<stream:stream

from="im.example.com'
id="++TR84Sm6A3hnt3Q065SnAbbk3Y="
to='juliet@im.example.com'
version='1.0"
xml:lang="en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>

5.3.4. xml:lang TOC

The 'xml:lang' attribute communicates an entity's preferred or default
language for any human-readable XML character data to be sent over the
stream. The syntax of this attribute is defined in Section 2.12 of
[XML] (Paoli, J., Maler, E., Sperberg-McQueen, C., Yergeau, F., and T.
Bray, “Extensible Markup Language (XML) 1.0 (Fourth Edition),”

August 2006.); in particular, the value of the 'xml:lang' attribute
MUST conform to the NMTOKEN datatype (as defined in Section 2.3 of
[XML] (Paoli, J., Maler, E., Sperberg-McQueen, C., Yergeau, F., and T.
Bray, “Extensible Markup Language (XML) 1.0 (Fourth Edition),”

August 2006.)) and MUST conform to the language identifier format
defined in [LANGTAGS] (Phillips, A. and M. Davis, “Tags for Identifying
Languages,” September 2006.).

For initial stream headers, the initiating entity SHOULD include the
'xml:lang' attribute.

I: <?xml version='1.0'?>
<stream:stream

from='juliet@im.example.com'
to="im.example.com'
version='1.0"'
xml:lang="en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>

For response stream headers, the receiving entity MUST include the
'xml:lang' attribute. If the initiating entity included an 'xml:lang'
attribute in its initial stream header and the receiving entity
supports that language in the human-readable XML character data that it

generates and sends to the initiating entity (e.g., in the <text/>
element for stream and stanza errors), the value of the 'xml:lang'
attribute MUST be identifier for the initiating entity's preferred
language; if the receiving entity supports a language that closely
matches the initiating entity's preferred language (e.g., "de" instead
of "de-CH"), then the value of the 'xml:lang' attribute SHOULD be the
identifier for the matching language but MAY be the identifier for the
default language of the receiving entity; if the receiving entity does
not support the initiating entity's preferred language or a closely
matching language (or the initiating entity did not include the
'xml:lang' attribute in its initial stream header), then the value of
the 'xml:lang' attribute MUST be the identifier for the default
language of the receiving entity.

R: <?xml version='1.0'?>
<stream:stream

from="'im.example.com'
id="'++TR84Sm6A3hnt3Q065SnAbbk3Y="
to='juliet@im.example.com'
version='1.0"
xml:lang="'en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>

If the initiating entity included the 'xml:lang' attribute in its
initial stream header, the receiving entity SHOULD remember that value
as the default xml:lang for all stanzas sent by the initiating entity.
As described under Section 9.1.5 (xml:lang), the initiating entity MAY
include the 'xml:lang' attribute in any XML stanzas it sends over the
stream. If the initiating entity does not include the 'xml:lang'
attribute in any such stanza, the receiving entity SHOULD add the
'xml:lang' attribute to the stanza, whose value MUST be the identifier
for the language preferred by the initiating entity (even if the
receiving entity does not support that language for human-readable XML
character data it generates and sends to the initiating entity, such as
in stream or stanza errors). If the initiating entity includes the
'xml:lang' attribute in any such stanza, the receiving entity MUST NOT
modify or delete it.

5.3.5. version TOC

The inclusion of the version attribute set to a value of at least "1.0"
signals support for the stream-related protocols defined in this
specification, including (TLS negotiation (STARTTLS Negotiation), SASL
negotiation (SASL Negotiation), Section 5.5 (Stream Features), and
stream errors (Stream Errors).

The version of XMPP specified herein is "1.0"; in particular, XMPP 1.0
encapsulates the stream-related protocols as well as the basic
semantics of the three defined XML stanza types (<message/>, <presence/
>, and <iq/>).

The numbering scheme for XMPP versions is "<major>.<minor>". The major
and minor numbers MUST be treated as separate integers and each number
MAY be incremented higher than a single digit. Thus, "XMPP 2.4" would
be a lower version than "XMPP 2.13", which in turn would be lower than
"XMPP 12.3". Leading zeros (e.g., "XMPP 6.01") MUST be ignored by
recipients and MUST NOT be sent.

The major version number will be incremented only if the stream and
stanza formats or required actions have changed so dramatically that an
older version entity would not be able to interoperate with a newer
version entity if it simply ignored the elements and attributes it did
not understand and took the actions specified in the older
specification.

The minor version number will be incremented only if significant new
capabilities have been added to the core protocol (e.g., a newly
defined value of the 'type' attribute for message, presence, or IQ
stanzas). The minor version number MUST be ignored by an entity with a
smaller minor version number, but MAY be used for informational
purposes by the entity with the larger minor version number (e.g., the
entity with the larger minor version number would simply note that its
correspondent would not be able to understand that value of the 'type'
attribute and therefore would not send it).

The following rules apply to the generation and handling of the
'version' attribute within stream headers:

1. The initiating entity MUST set the value of the 'version'
attribute in the initial stream header to the highest version
number it supports (e.g., if the highest version number it
supports is that defined in this specification, it MUST set the
value to "1.0").

2. The receiving entity MUST set the value of the 'version'
attribute in the response stream header to either the value
supplied by the initiating entity or the highest version number
supported by the receiving entity, whichever is lower. The
receiving entity MUST perform a numeric comparison on the major
and minor version numbers, not a string match on
"<major>.<minor>".

3. If the version number included in the response stream header is
at least one major version lower than the version number
included in the initial stream header and newer version
entities cannot interoperate with older version entities as
described, the initiating entity SHOULD generate an
<unsupported-version/> stream error.

4. If either entity receives a stream header with no 'version'
attribute, the entity MUST consider the version supported by
the other entity to be "0.9" and SHOULD NOT include a 'version'
attribute in the response stream header.

5.3.6. Summary of Stream Attributes TOC

The following table summarizes the attributes of the root <stream/>
element.

| to | JID of receiver | JID of initiator
| from | JID of initiator | JID of receiver

| id | silently ignored | stream identifier
| I I

I I I

xml:lang default language default language
version XMPP 1.0+ supported XMPP 1.0+ supported
[U, e o e e e e omoooo-- +
5.4. Namespace Declarations TOC

The stream element MUST possess both a streams namespace declaration
and a default namespace declaration (as "namespace declaration" is
defined in [XML-NAMES] (Layman, A., Hollander, D., Tobin, R., and T.
Bray, “Namespaces in XML 1.1 (Second Edition),” August 2006.)). For
detailed information regarding the streams namespace and default
namespace, see Section 12.2 (XML Namespace Names and Prefixes).

5.5. Stream Features TOC

If the initiating entity includes the 'version' attribute set to a
value of at least "1.0" in the initial stream header, after sending the
response stream header the receiving entity MUST send a <features/>
child element (prefixed by the streams namespace prefix) to the
initiating entity in order to announce any stream-level features that
can be negotiated or capabilities that otherwise need to be advertised.

R: <?xml version='1.0'?>
<stream:stream
from="im.example.com'
id="'++TR84Sm6A3hnt3Q065SnAbbk3Y="
to='juliet@im.example.com'
version='1.0"
xml:lang="'en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>
R: <stream:features>
<starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'>
<required/>
</starttls>
</stream:features>

Stream features are used mainly to advertise TLS negotiation (STARTTLS
Negotiation), SASL negotiation (SASL Negotiation), and resource binding
(Resource Binding); however, stream features also can be used to
advertise features associated with various XMPP extensions.

If it is mandatory for a feature to be successfully negotiated before
the initiating entity will be allowed to proceed with the sending of
XML stanzas or with further steps of the stream negotiation, the
advertisement of that feature SHOULD include an empty <required/> child
element but MAY include neither a <required/> element not an <optional/
> element (i.e., features default to required).

R: <stream:features>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
<required/>
</bind>
</stream:features>

If successful negotiation of a feature is discretionary, the
advertisement of that feature MUST include an empty <optional/> child
element.

R: <stream:features>
<session xmlns='urn:ietf:params:xml:ns:xmpp-session'>
<optional/>
</session>
</stream:features>

If an entity does not understand or support a feature that has been
advertised, it MUST still inspect the feature advertisement to
determine if negotiation of the feature is mandatory. If negotiation of
an unsupported feature is mandatory (as determined by inclusion of the
<required/> child element or the absence of an <optional/> child
element), then the entity MUST abort the stream negotiation process. If

negotiation of an unsupported feature is discretionary (as determined
by inclusion of the <optional/> child element or the absence of a child
element), the entity MUST silently ignore the associated feature
advertisement and proceed with the stream negotiation process.

Note: Implementations based on an earlier revision of this
specification do not include the <optional/> child element and they
include the <required/> child element only in the case of the
STARTTLS feature. Entities MUST accept stream feature advertisements
without the child elements, and SHOULD consider consider negotiation
of such features to be discretionary.

If it is necessary for a feature to be successfully negotiated before
the initiating entity is allowed to proceed with the sending a non-
security-related feature or with further steps of the stream
negotiation, the receiving entity SHOULD NOT advertise any other stream
features until the mandatory feature has been successfully negotiated;
however, if the mandatory feature is security-critical (e.g., STARTTLS
or SASL) then the receiving entity MUST NOT advertise any other stream
features until the security-critical feature has been successfully
negotiated.

The order of child elements contained in any given <features/> element
is not significant.

After completing negotiation of any stream feature (even stream
features that do not require a stream restart), the receiving entity
MUST send an updated list of stream features to the initiating entity.
However, if there are no features to be advertised then the receiving
entity MUST send an empty <features/> element.

R: <?xml version='1.0'?>
<stream:stream

from='im.example.com'
id="++TR84Sm6A3hnt3Q065SnAbbk3Y="
to='juliet@im.example.com'
version='1.0"'
xml:lang="'en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>

R: <stream:features/>
At any time after stream establishment, the receiving entity MAY send

additional or modified stream feature advertisements (e.g., because a
new feature has been enabled).

5.6. Restarts During Stream Negotiation

Certain stream features require the initiating entity to send a new
initial stream header on successful negotiation of the feature (e.g.,
after successful negotiation of TLS or SASL). Both parties MUST
consider the previous stream to be replaced on successful feature
negotiation but MUST NOT terminate the underlying TCP connection;
instead, the parties MUST reuse the existing connection, which might be
in a new state (e.g., encrypted as a result of TLS negotiation). When
the receiving entity receives the new initial stream header, it MUST
generate a new stream ID (instead of re-using the old stream ID) before
sending a new response stream header.

5.7. Closing a Stream TOC

An XML stream between two entities can be closed because a stream error
has occurred or in some cases in the absence of an error. Where
feasible, it is preferable to close a stream only if a stream error has
occurred.

A stream is closed by sending a closing </stream> tag over the TCP
connection.

S: </stream:stream>

After an entity sends a closing stream tag, it MUST NOT send further
data over that stream.

5.7.1. With Stream Error TOC

If a stream error has occurred, the entity that detects the error MUST
close the stream as described under Section 5.8.1 (Rules).

5.7.2. Without Stream Error TOC
At any time after XML streams have been negotiated between two
entities, either entity MAY close its stream to the other party in the
absence of a stream error by sending a closing stream tag.

P: </stream:stream>

The entity that sends the closing stream tag SHOULD wait for the other
party to also close its stream.

S: </stream:stream>

However, the entity that sends the first closing stream tag MAY
consider both streams to be void if the other party does not send its
closing stream tag within a reasonable amount of time (where the
definition of "reasonable" is a matter of implementation or
deployment).

After the entity that sent the first closing stream tag receives a
reciprocal closing stream tag from the other party (or if it considers
the stream to be void after a reasonable amount of time), it MUST
terminate the underlying TCP connection or connections.

5.7.3. Handling of Idle Streams TOC

An XML stream can become idle, i.e., neither entity has sent XMPP
traffic over the stream for some period of time. The idle timeout
period is a matter of implementation and local service policy; however,
it is RECOMMENDED to be liberal in accepting idle streams, since
experience has shown that doing so improves the reliability of
communications over XMPP networks. In particular, it is typically more
efficient to maintain a stream between two servers than it is to
aggressively timeout such a stream, especially with regard to
synchronization of presence information as described in [rfc3921bis]
(Saint-Andre, P., “Extensible Messaging and Presence Protocol (XMPP):
Instant Messaging and Presence,” March 2009.); therefore it is
RECOMMENDED to maintain such a stream since experience has shown that
server-to-server streams are cyclical and typically need to be re-
established every 24 to 48 hours if they are timed out.

An XML stream can appear idle at the XMPP level because the underlying
TCP connection has become idle (e.g., a client's network connection has
been lost). The typical method for detecting an idle TCP connection 1is
to send a space character (U+0020) over the TCP connection between XML
stanzas, which is allowed for XML streams as described under

Section 12.7 (Whitespace). The sending of such a space character is
called a WHITESPACE PING. The time between such whitespace pings (or
other connection-testing methods) is a matter of implementation and
local service policy; however, it is RECOMMENDED that these pings be
sent not more than once every 60 seconds.

To close an idle stream with a local client or remote server, a server
MUST close the stream without error as explained under Section 5.7.2
(Without Stream Error).

T0C

5.8. Stream Errors
The root stream element MAY contain an <error/> child element that is
prefixed by the streams namespace prefix. The error child shall be sent

by a compliant entity if it perceives that a stream-level error has
occurred.

5.8.1. Rules TOC

The following rules apply to stream-level errors.

5.8.1.1. Stream Errors Are Unrecoverable TOC

Stream-level errors are unrecoverable. Therefore, if an error occurs at
the level of the stream, the entity that detects the error MUST send a
<error/> element with an appropriate child element that specifies the
error condition and at the same time send a closing </stream> tag.

C: <message><body></message>

S: <stream:error>
<xml-not-well-formed
xmlns="urn:ietf:params:xml:ns:xmpp-streams'/>
</stream:error>
</stream:stream>

The entity that generates the stream error then SHOULD immediately
terminate the underlying TCP connection, although it MAY wait until
after it receives a closing </stream> tag from the entity to which it
sent the stream error.

C: </stream:stream>

5.8.1.2. Stream Errors Can Occur During Setup TOC

If the error is triggered by the initial stream header, the receiving
entity MUST still send the opening <stream> tag, include the <error/>
element as a child of the stream element, and send the closing </
stream> tag (preferably all at the same time).

C: <?xml version='1.0'?>
<stream:stream

from='juliet@im.example.com'
to='im.example.com'
version='1.0"'
xml:lang='en'
xmlns="'jabber:client'
xmlns:stream="http://wrong.namespace.example.org/'>

S: <?xml version='1.0'?>
<stream:stream
from="im.example.com'
id="'++TR84Sm6A3hnt3Q065SNAbbk3Y="
to='juliet@im.example.com'
version='1.0"
xml:lang="'en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'
<stream:error>
<invalid-namespace
xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
</stream:error>
</stream:stream>

5.8.1.3. Stream Errors When the Host is Unspecified or Unknown TOC

If the initiating entity provides no 'to' attribute or provides an
unknown host in the 'to' attribute and the error occurs during stream
setup, the receiving entity SHOULD provide an authoritative hostname in
the 'from' attribute of the stream header sent before termination, but
absent such an authoritative hostname MAY instead simply populate the
response stream's 'from' attribute with the value of the initial stream
header's 'to' attribute (where the value of the 'from' attribute MAY be
empty if the initiating entity provided no 'to' attribute).

C: <?xml version='1.0'?>
<stream:stream

from='juliet@im.example.com'
to="unknown.host.example.com'
version='1.0"'
xml:lang='en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>

S: <?xml version='1.0'?>
<stream:stream
from="im.example.com'
id="'++TR84Sm6A3hnt3Q065SNAbbk3Y="
to='juliet@im.example.com'
version='1.0"
xml:lang="'en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>
<stream:error>
<host-unknown
xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
</stream:error>
</stream:stream>

5.8.2. Syntax TOC

The syntax for stream errors is as follows, where "defined-condition"
is a placeholder for one of the conditions defined under Section 5.8.3
(Defined Stream Error Conditions).

<stream:error>
<defined-condition xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
[<text xmlns='urn:ietf:params:xml:ns:xmpp-streams'
xml:lang="'langcode'>
[... descriptive text ...]
</text>]
[application-specific condition element]
</stream:error>

The <error/> element:

*MUST contain a child element corresponding to one of the defined
stream error conditions (Defined Stream Error Conditions); this
element MUST be qualified by the 'urn:ietf:params:xml:ns:xmpp-
streams' namespace.

*MAY contain a <text/> child element containing XML character data
that describes the error in more detail; this element MUST be
qualified by the 'urn:ietf:params:xml:ns:xmpp-streams' namespace
and SHOULD possess an 'xml:lang' attribute specifying the natural
language of the XML character data.

*MAY contain a child element for an application-specific error
condition; this element MUST be qualified by an application-
defined namespace, and its structure is defined by that namespace
(see Section 5.8.4 (Application-Specific Conditions)).

The <text/> element is OPTIONAL. If included, it MUST be used only to
provide descriptive or diagnostic information that supplements the
meaning of a defined condition or application-specific condition. It
MUST NOT be interpreted programmatically by an application. It MUST NOT
be used as the error message presented to a human user, but MAY be
shown in addition to the error message associated with the defined
condition element (and, optionally, the application-specific condition
element).

5.8.3. Defined Stream Error Conditions TOC

The following stream-level error conditions are defined.

5.8.3.1. bad-format TOC

The entity has sent XML that cannot be processed.
(In the following example, the client sends an XMPP message that is not
well-formed XML.)

C: <message>
<body>No closing body tag!
</message>

S: <stream:error>
<bad-format
xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
</stream:error>
</stream:stream>

This error MAY be used instead of the more specific XML-related errors,
such as <bad-namespace-prefix/>, <invalid-xml/>, <restricted-xml/>,
<unsupported-encoding/>, and <xml-not-well-formed/>. However, the more
specific errors are RECOMMENDED.

5.8.3.2. bad-namespace-prefix TOC

The entity has sent a namespace prefix that is unsupported, or has sent
no namespace prefix on an element that requires such a prefix (see
Section 12.2 (XML Namespace Names and Prefixes)).

(In the following example, the client specifies a namespace prefix of
"foobar" for the XML streams namespace.)

C: <?xml version='1.0'?>
<stream:stream
from='juliet@im.example.com'
to='im.example.com'
version='1.0"'
xmlns="'jabber:client'
xmlns:foobar="http://etherx.jabber.org/streams'>

S: <?xml version='1.0'?>

<stream:stream
from="'im.example.com'
id="++TR84Sm6A3hnt3Q065SnAbbk3Y="
to='juliet@im.example.com'
version='1.0"'
xml:lang="'en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>

<stream:error>

<bad-namespace-prefix
xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
</stream:error>
</stream:stream>

5.8.3.3. conflict TOC

The server is either (1) closing the existing stream for this entity
because a new stream has been initiated that conflicts with the
existing stream, or (2) is refusing a new stream for this entity
because allowing the new stream would conflict with an existing stream
(e.g., because the server allows only a certain number of connections
from the same IP address).

C: <?xml version='1.0'?>
<stream:stream
from='juliet@im.example.com'
to='im.example.com'
version='1.0"'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>

S: <?xml version='1.0'?>

<stream:stream
from="'im.example.com'
id="'++TR84Sm6A3hnt3Q065SnAbbk3Y="
to='juliet@im.example.com'
version='1.0"
xml:lang="'en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>

<stream:error>

<conflict
xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
</stream:error>
</stream:stream>

5.8.3.4. connection-timeout TOC

The entity has not generated any traffic over the stream for some
period of time (configurable according to a local service policy) and
therefore the connection is being dropped.

P: <stream:error>
<connection-timeout
xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
</stream:error>
</stream:stream>

5.8.3.5. host-gone TOC

The value of the 'to' attribute provided in the initial stream header
corresponds to a hostname that is no longer serviced by the receiving
entity.

(In the following example, the peer specifies a 'to' address of
"foo.im.example.com" when connecting to the "im.example.com" server,
but the server no longer hosts a service at that address.)

P: <?xml version='1.0'"?>
<stream:stream
from='example.net'
to='foo.im.example.com'
version='1.0"'
xmlns="'jabber:server'
xmlns:stream="http://etherx.jabber.org/streams'>

S: <?xml version='1.0'?>

<stream:stream
from='im.example.com'
id="'g4qSvGvBxJ+xeAd7QKez0QJFFlw="
to="example.net'
version='1.0"'
xml:lang='en'
xmlns="'jabber:server'
xmlns:stream="http://etherx.jabber.org/streams'>

<stream:error>

<host-gone
xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
</stream:error>
</stream:stream>

5.8.3.6. host-unknown TOC

The value of the 'to' attribute provided in the initial stream header
does not correspond to a hostname that is serviced by the receiving
entity.

(In the following example, the peer specifies a 'to' address of
"example.org" when connecting to the "im.example.com" server, but the
server knows nothing of that address.)

P: <?xml version='1.0'?>
<stream:stream
from="'example.net'
to="example.org'
version='1.0"'
xmlns="'jabber:server'
xmlns:stream="http://etherx.jabber.org/streams'>

S: <?xml version='1.0'?>
<stream:stream
from="'im.example.com'
id="'g4qSvGvBxJ+xeAd7QKez0QJFFlw="
to="example.net'
version='1.0"
xml:lang="'en'
xmlns="'jabber:server'
xmlns:stream="http://etherx.jabber.org/streams'>
<stream:error>
<host-unknown
xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
</stream:error>
</stream:stream>

5.8.3.7. 1improper-addressing TOC

A stanza sent between two servers lacks a 'to' or 'from' attribute, the
'from' or 'to' attribute has no value, or the value is not a valid XMPP
address.

(In the following example, the peer sends a stanza without a 'to'
address.)

P: <message from='juliet@im.example.com'>
<body>Wherefore art thou?</body>
</message>

S: <stream:error>
<improper-addressing
xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
</stream:error>
</stream:stream>

TOC

5.8.3.8. internal-server-error

The server has experienced a misconfiguration or an otherwise-undefined
internal error that prevents it from servicing the stream.

S: <stream:error>
<internal-server-error
xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
</stream:error>
</stream:stream>

5.8.3.9. invalid-from TOC
The JID or hostname provided in a 'from' address is not a valid JID or
does not match an authorized JID or validated domain as negotiated
between servers via SASL or server dialback, or as negotiated between a
client and a server via authentication and resource binding.

(In the following example, a peer that has authenticated only as

"example.net" attempts to send a stanza from an address at
"example.org".)

P: <message from='romeo@example.org' to='juliet@im.example.com'>
<body>Neither, fair saint, if either thee dislike.</body>
</message>

S: <stream:error>
<invalid-from
xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
</stream:error>
</stream:stream>

5.8.3.10. invalid-id TOC
The stream ID or server dialback ID is invalid or does not match an ID
previously provided.

(In the following example, the server dialback ID is invalid; see
[XEP-0220] (Saint-Andre, P. and J. Miller, “Server Dialback,”

October 2008.).)

P: <db:verify
from='example.net'
to="im.example.com'
id="unknown-id'
type='invalid'/>

S: <stream:error>
<invalid-id
xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
</stream:error>
</stream:stream>

5.8.3.11. invalid-namespace TOC

The streams namespace name is something other than "http://
etherx.jabber.org/streams" (see Section 12.2 (XML Namespace Names and
Prefixes)) or the default namespace is not supported (e.g., something
other than "jabber:client" or "jabber:server").

(In the following example, the client specifies a streams namespace of
'"http://wrong.namespace.example.org/'.)

C: <?xml version='1.0'?>
<stream:stream
from='juliet@im.example.com'
to='im.example.com'
version='1.0"'
xmlns="'jabber:client'
xmlns:stream="http://wrong.namespace.example.org/'>

S: <?xml version='1.0'?>

<stream:stream
from="'im.example.com'
id="'++TR84Sm6A3hnt3Q065SnAbbk3Y="
to='juliet@im.example.com'
version='1.0"
xml:lang="'en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>

<stream:error>

<invalid-namespace
xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
</stream:error>
</stream:stream>

5.8.3.12. invalid-xml TOC

The entity has sent invalid XML over the stream to a server that
performs validation (see Section 12.4 (Validation)).
(In the following example, the peer attempts to send an IQ stanza of

type "subscribe" but the XML schema defines no such value for the
'"type' attribute.)

P: <ig from='example.net'
id="some-id'
to="im.example.com'
type="'subscribe'>

<ping xmlns='urn:xmpp:ping'/>
</iqg>

S: <stream:error>
<invalid-xml
xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
</stream:error>
</stream:stream>

5.8.3.13. not-authorized TOC

The entity has attempted to send XML stanzas before the stream has been
authenticated, or otherwise is not authorized to perform an action
related to stream negotiation; the receiving entity MUST NOT process
the offending stanza before sending the stream error.

(In the following example, the client attempts to send XML stanzas
before authenticating with the server.)

C: <?xml version='1.0'?>
<stream:stream
from='juliet@im.example.com'
to='im.example.com'
version='1.0"'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>

S: <?xml version='1.0'?>
<stream:stream

from="'im.example.com'
id="'++TR84Sm6A3hnt3Q065SnAbbk3Y="
to='juliet@im.example.com'
version='1.0"
xml:lang="'en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'

C: <message to='romeo@example.net'>
<body>Wherefore art thou?</body>
</message>

S: <stream:error>
<not-authorized
xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
</stream:error>
</stream:stream>

5.8.3.14. policy-violation TOC

The entity has violated some local service policy (e.g., the stanza
exceeds a configured size limit); the server MAY choose to specify the
policy in the <text/> element or in an application-specific condition
element.

(In the following example, the client sends an XMPP message that is too
large according to the server's local service policy.)

C: <message to='juliet@im.example.com' id='foo'>
<body>[... the-emacs-manual ...]</body>
</message>

S: <stream:error>
<policy-violation
xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
</stream:error>

S: </stream:stream>

5.8.3.15. remote-connection-failed TOC

The server is unable to properly connect to a remote entity that is
required for authentication or authorization, such as a remote
authentication database or (in server dialback) the authoritative
server.

C: <?xml version='1.0'?>
<stream:stream
from="juliet@im.example.com'
to="im.example.com'
version='1.0"
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>

S: <?xml version='1.0'?>

<stream:stream
from="im.example.com'
id="++TR84Sm6A3hnt3Q065SnAbbk3Y="
to='juliet@im.example.com'
version='1.0"
xml:lang="'en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>

<stream:error>

<remote-connection-failed
xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
</stream:error>
</stream:stream>

TOC

5.8.3.16.

resource-constraint

The server lacks the system resources necessary to service the

C: <?xml version='1.0'?>
<stream:stream

from='juliet@im.example.com'

to="im.example.com'

version='1.0"'

xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>

S: <?xml version='1.0'"?>
<stream:stream

from="'im.example.com'
id="++TR84Sm6A3hNnt3Q065SNAbbk3Y="
to='juliet@im.example.com'

version='1.0"'

xml:lang="en'

xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>

<stream:error>

<resource-constraint

xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>

</stream:error>
</stream:stream>

5.8.3.17.

restricted-xml

stream.

The entity has attempted to send restricted XML features such as a

comment,

processing instruction,

(see Section 12.1 (Restrictions)).

(In the following example,

an XML comment.)

C: <message to='juliet@im.example.com'>

<!--<subject/>-->
<body>This message has no subject.</body>

</message>

S: <stream:error>

<restricted-xml

xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>

</stream:error>
</stream:stream>

DTD subset, or XML entity reference

the client sends an XMPP message containing

5.8.3.18. see-other-host TOC

The server will not provide service to the initiating entity but is
redirecting traffic to another host; the XML character data of the
<see-other-host/> element returned by the server SHOULD specify the
alternate hostname or IP address at which to connect, which SHOULD be a
valid domain identifier but MAY also include a port number. When it
receives a see-other-host stream error, the initiating entity SHOULD
cleanly handle the disconnection and then reconnect to the host
specified in the <see-other-host/> element; if no port is specified,
the initiating entity SHOULD perform a [DNS-SRV] (Gulbrandsen, A.,
Vixie, P., and L. Esibov, “A DNS RR for specifying the location of
services (DNS SRV),"” February 2000.) lookup on the provided domain
identifier but MAY assume that it can connect to that domain identifier
at the standard XMPP ports (i.e., 5222 for client-to-server connections
and 5269 for server-to-server connections).

C: <?xml version='1.0'?>
<stream:stream
from="'juliet@im.example.com'
to='im.example.com'
version='1.0"'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>

S: <?xml version='1.0'?>
<stream:stream
from="'im.example.com'
id="++TR84Sm6A3hnt3Q065SnAbbk3Y="
to='juliet@im.example.com'
version='1.0"
xml:lang="'en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>
<stream:error>
<see-other-host
xmlns='urn:ietf:params:xml:ns:xmpp-streams'>
im.example.com:9090
</see-other-host>
</stream:error>
</stream:stream>

T0C

5.8.3.19. system-shutdown
The server is being shut down and all active streams are being closed.

S: <stream:error>
<system-shutdown
xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
</stream:error>
</stream:stream>

5.8.3.20. undefined-condition TOC

The error condition is not one of those defined by the other conditions
in this 1list; this error condition SHOULD be used only in conjunction
with an application-specific condition.

S: <stream:error>
<undefined-condition
xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
<app-error xmlns='http://example.com/ns'/>
</stream:error>
</stream:stream>

5.8.3.21. unsupported-encoding TOC

The initiating entity has encoded the stream in an encoding that is not
supported by the server (see Section 12.6 (Character Encoding)) or has
otherwise improperly encoded the stream (e.g., by violating the rules
of the [UTF-8] (Yergeau, F., “UTF-8, a transformation format of ISO
10646, " November 2003.) encoding).

(In the following example, the client attempts to encode data using
UTF-16 instead of UTF-8.)

C: <?xml version='1.0"' encoding='UTF-16'?>
<stream:stream
from='juliet@im.example.com'
to='im.example.com'
version='1.0"'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>

S: <?xml version='1.0'?>

<stream:stream
from="'im.example.com'
id="'++TR84Sm6A3hnt3Q065SnAbbk3Y="
to='juliet@im.example.com'
version='1.0"
xml:lang="'en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'

<stream:error>

<unsupported-encoding
xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
</stream:error>
</stream:stream>

5.8.3.22. unsupported-stanza-type TOC

The initiating entity has sent a first-level child of the stream that
is not supported by the server or consistent with the default
namespace.

(In the following example, the client attempts to send an XML stanza of
<pubsub/> when the default namespace is "jabber:client".)

C: <pubsub>
<publish node='princely_musings'>
<item id='ae890ac52d0df67ed7cfdf51b644e901"'>
<entry xmlns='http://www.w3.0rg/2005/Atom'>

<title>Soliloquy</title>
<summary>

To be, or not to be: that is the question:

Whether 'tis nobler in the mind to suffer

The slings and arrows of outrageous fortune,

Or to take arms against a sea of troubles,

And by opposing end them?
</summary>
<link rel='alternate' type='text/html’

href="http://denmark.example/2003/12/13/atom@3"' />
<id>tag:denmark.example, 2003:entry-32397</id>
<published>2003-12-13T18:30:02Z</published>
<updated>2003-12-13T18:30:02Z</updated>
</entry>
</item>
</publish>
</pubsub>

S: <stream:error>
<unsupported-stanza-type
xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
</stream:error>
</stream:stream>

5.8.3.23. unsupported-version TOC

The value of the 'version' attribute provided by the initiating entity
in the stream header specifies a version of XMPP that is not supported
by the server; the server MAY specify the version(s) it supports in the
<text/> element.

(In the following example, the client specifies an XMPP version of
"11.0" but the server supports only version "1.0" and "1.1".)

C: <?xml version='1.0'?>
<stream:stream
from='juliet@im.example.com'
to='im.example.com'
version='11.0"'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>

S: <?xml version='1.0'?>
<stream:stream
from="'im.example.com'
id="'++TR84Sm6A3hnt3Q065SnAbbk3Y="
to='juliet@im.example.com'
version='1.0"
xml:lang="'en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'
<stream:error>
<unsupported-version
xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
<text xmlns='urn:ietf:params:xml:ns:xmpp-streams'>
1.0, 1.1
</text>
</stream:error>
</stream:stream>

5.8.3.24. xml-not-well-formed TOC

The initiating entity has sent XML that violates the well-formedness
rules of [XML] (Paoli, J., Maler, E., Sperberg-McQueen, C., Yergeau,
F., and T. Bray, “Extensible Markup Language (XML) 1.0 (Fourth
Edition),” August 2006.) or [XML-NAMES] (Layman, A., Hollander, D.,
Tobin, R., and T. Bray, “Namespaces in XML 1.1 (Second Edition),”
August 2006.).

(In the following example, the client sends an XMPP message that is not
well-formed XML.)

C: <message>
<body>No closing body tag!
</message>

S: <stream:error>
<xml-not-well-formed
xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
</stream:error>
</stream:stream>

5.8.4. Application-Specific Conditions TOC

As noted, an application MAY provide application-specific stream error
information by including a properly-namespaced child in the error
element. The application-specific element SHOULD supplement or further
qualify a defined element. Thus the <error/> element will contain two
or three child elements.

C: <message>
<body>
My keyboard layout is:

QWERTYUIOP{} |
ASDFGHJKL:"
ZXCVBNM<>?
</body>
</message>

S: <stream:error>
<xml-not-well-formed
xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
<text xml:lang='en' xmlns='urn:ietf:params:xml:ns:xmpp-streams'>
Some special application diagnostic information!
</text>
<escape-your-data xmlns='http://example.com/ns'/>
</stream:error>
</stream:stream>

TOC

5.9. Simplified Stream Examples

This section contains two simplified examples of a stream-based
connection between a client and a server; these examples are included
for the purpose of illustrating the concepts introduced thus far.

A basic connection:

C: <?xml version='1.0'?>
<stream:stream

from="juliet@im.example.com'
to="im.example.com'
version='1.0"
xml:lang="en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'

S: <?xml version='1.0'?>
<stream:stream

from="'im.example.com'
id="'++TR84Sm6A3hNnt3Q065SNAbbk3Y="
to='juliet@im.example.com'
version='1.0"'
xml:lang="en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>

[... channel encryption ...]

[... authentication ...]

[... resource binding ...]

C: <message from='juliet@im.example.com/balcony'

to='romeo@example.net'
xml:lang='en'>
<body>Art thou not Romeo, and a Montague?</body>
</message>

S: <message from='romeo@example.net/orchard’
to='juliet@im.example.com/balcony'
xml:lang='en'>
<body>Neither, fair saint, if either thee dislike.</body>
</message>
C: </stream:stream>

S: </stream:stream>

A connection gone bad:

C: <?xml version='1.0'?>
<stream:stream

from='juliet@im.example.com'
to='im.example.com'
version='1.0"'
xml:lang='en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>

S: <?xml version='1.0'?>
<stream:stream

from="im.example.com'
id="++TR84Sm6A3hnt3Q065SNAbbk3Y="
to='juliet@im.example.com'
version='1.0"
xml:lang="'en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>

[... channel encryption ...]

[... authentication ...]

[... resource binding ...]

C: <message from='juliet@im.example.com/balcony'

to='romeo@example.net'
xml:lang='en'>
<body>No closing body tag!
</message>

S: <stream:error>
<xml-not-well-formed
xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
</stream:error>
</stream:stream>

More detailed examples are provided under Section 10 (Examples).

6. STARTTLS Negotiation TOC

6.1. Overview TOC

XMPP includes a method for securing the stream from tampering and
eavesdropping. This channel encryption method makes use of the
Transport Layer Security [TLS] (Dierks, T. and E. Rescorla, “The
Transport Layer Security (TLS) Protocol Version 1.2,” August 2008.)
protocol, specifically a "STARTTLS" extension that is modelled after
similar extensions for the [IMAP] (Crispin, M., “INTERNET MESSAGE
ACCESS PROTOCOL - VERSION 4revil,” March 2003.), [POP3] (Myers, J. and
M. Rose, “Post Office Protocol - Version 3,” May 1996.), and [ACAP
(Newman, C. and J. Myers, “ACAP -- Application Configuration Access
Protocol,” November 1997.) protocols as described in [USINGTLS]
(Newman, C., "“Using TLS with IMAP, POP3 and ACAP,” June 1999.). The XML
namespace name for the STARTTLS extension is
'urn:ietf:params:xml:ns:xmpp-tls'.

Support for STARTTLS is REQUIRED in XMPP client and server
implementations. An administrator of a given deployment MAY require the
use of TLS for client-to-server communication, server-to-server
communication, or both. A deployed client SHOULD use TLS to secure its
stream with a server prior to attempting the completion of SASL
negotiation (SASL Negotiation), and deployed servers SHOULD use TLS
between two domains for the purpose of securing server-to-server
communication.

6.2. Rules TOC

6.2.1. Data Formatting TOC

During STARTTLS negotiation, the entities MUST NOT send any whitespace
within the root stream element as separators between XML elements
(i.e., from the last character of the <starttls/> element qualified by
the 'urn:ietf:params:xml:ns:xmpp-tls' namespace at depth=1 of the
stream as sent by the initiating entity until the last character of the
<proceed/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-tls'
namespace at depth=l1 of the stream as sent by the receiving entity).
This prohibition helps to ensure proper security layer byte precision.
Any such whitespace shown in the STARTTLS examples provided in this
document is included only for the sake of readability.

T0C

6.2.2. Order of Negotiation

If the initiating entity chooses to use TLS, STARTTLS negotiation MUST
be completed before proceeding to SASL negotiation (SASL Negotiation);
this order of negotiation is required to help safeguard authentication
information sent during SASL negotiation, as well as to make it
possible to base the use of the SASL EXTERNAL mechanism on a
certificate (or other credentials) provided during prior TLS
negotiation.

6.3. Process TOC

6.3.1. Exchange of Stream Headers and Stream Features TOC

The initiating entity resolves the hostname of the receiving entity as

specified under Section 4 (TCP Binding), opens a TCP connection to the

advertised port at the resolved IP address, and sends an initial stream
header to the receiving entity; if the initiating entity is capable of

STARTTLS negotiation, it MUST include the 'version' attribute set to a

value of at least "1.0" in the initial stream header.

I: <stream:stream
from='juliet@im.example.com'
to="im.example.com'
version='1.0"'
xml:lang="en'
xmlns="'jabber:client'
xmlns:stream="http://etherx. jabber.org/streams'>

The receiving entity MUST send a response stream header to the
initiating entity over the TCP connection opened by the initiating
entity; if the receiving entity is capable of STARTTLS negotiation, it
MUST include the 'version' attribute set to a value of at least "1.0"
in the response stream header.

R: <stream:stream
from="1im.example.com'
id="t7AMCin9zjMNwQKDnplntZPIDEI="
to='juliet@im.example.com'
version='1.0"'
xml:lang="'en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'

The receiving entity then MUST send stream features to the initiating
entity. If the receiving entity supports TLS, the stream features MUST
include an advertisement for support of STARTTLS negotiation, i.e., a
<starttls/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-tls'
namespace.

If the receiving entity considers STARTTLS negotiation to be
discretionary, the <starttls/> element MUST contain an empty <optional/
> child element.

R: <stream:features>
<starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'>
<optional/>
</starttls>
</stream:features>

If the receiving entity considers STARTTLS negotiation to be mandatory,
the <starttls/> element MUST contain an empty <required/> child
element.

R: <stream:features>
<starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'>
<required/>
</starttls>
</stream:features>

6.3.2. Initiation of STARTTLS Negotiation TOC

6.3.2.1. STARTTLS Command T0C

In order to begin the STARTTLS negotiation, the initiating entity
issues the STARTTLS command (i.e., a <starttls/> element qualified by
the 'urn:ietf:params:xml:ns:xmpp-tls' namespace) to instruct the

receiving entity that it wishes to begin a STARTTLS negotiation to
secure the stream.

I: <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

The receiving entity MUST reply with either a <proceed/> element
(proceed case) or a <failure/> element (failure case) qualified by the
'urn:ietf:params:xml:ns:xmpp-tls' namespace.

6.3.2.2. Failure Case TOC

If the failure case occurs, the receiving entity MUST return a
<failure/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-tls'
namespace, terminate the XML stream, and terminate the underlying TCP
connection.

R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
R: </stream:stream>
Causes for the failure case include but are not limited to:
1. The initiating entity has sent a malformed STARTTLS command.

2. The receiving entity does not offer STARTTLS negotiation either
temporarily or permanently.

3. The receiving entity cannot complete STARTTLS negotiation
because of an internal error.

Note: STARTTLS failure is not triggered by TLS errors such as bad
certificate or unknown certificate authority; those errors are
generated and handled during the TLS negotiation itself as described
in [TLS] (Dierks, T. and E. Rescorla, “The Transport Layer Security
(TLS) Protocol Version 1.2,” August 2008.).

If the failure case occurs, the initiating entity MAY attempt to
reconnect as explained under Section 4.5 (Reconnection).

6.3.2.3. Proceed Case TOC

If the proceed case occurs, the receiving entity MUST return a
<proceed/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-tls'
namespace.

R: <proceed xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

The receiving entity MUST consider the TLS negotiation to have begun
immediately after sending the closing '>' character of the <proceed/>
element to the initiating entity. The initiating entity MUST consider
the TLS negotiation to have begun immediately after receiving the
closing '>' character of the <proceed/> element from the receiving
entity.

The entities now proceed to TLS negotiation as explained in the next
section.

6.3.3. TLS Negotiation TOC

6.3.3.1. Rules T0C

In order to complete TLS negotiation over the TCP connection, the
entities MUST follow the process defined in [TLS] (Dierks, T. and E.
Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,”
August 2008.).

The following rules apply:

1. The entities MUST NOT send any further XML data until the TLS
negotiation has either failed or succeeded.

2. The receiving entity MUST present a certificate.

3. The receiving entity SHOULD send a certificate request to the
initiating entity so that mutual authentication will be
possible.

4. The initiating entity MUST validate the certificate to
determine if the TLS negotiation shall succeed; see
Section 15.2.2 (Certificate Validation) regarding certificate
validation procedures.

5. The receiving entity SHOULD choose which certificate to present
based on the 'to' attribute of the initial stream header.

Note: See Section 15.6 (Mandatory-to-Implement Technologies)
regarding ciphers that MUST be supported for TLS; naturally, other
ciphers MAY be supported as well.

6.3.3.2. TLS Failure TOC

If the TLS negotiation results in failure, the receiving entity MUST
terminate the TCP connection.

The receiving entity MUST NOT send a closing </stream> tag before
terminating the TCP connection, since the receiving entity and
initiating entity MUST consider the original stream to be replaced upon
failure of the TLS negotiation.

6.3.3.3. TLS Success TOC

If the TLS negotiation is successful, then the entities MUST proceed as
follows.

1. The receiving entity MUST discard any knowledge obtained in an
insecure manner from the initiating entity before TLS took
effect.

2. The initiating entity MUST discard any knowledge obtained in an
insecure manner from the receiving entity before TLS took
effect.

3. The initiating entity MUST send a new initial stream header to
the receiving entity over the encrypted connection.

I: <stream:stream
from='juliet@im.example.com'
to="im.example.com'
version='1.0"'
xml:lang="'en'
xmlns="'jabber:client'
xmlns:stream="http://etherx. jabber.org/streams'>

Note: The initiating entity MUST NOT send a closing </stream>
tag before sending the new initial stream header, since the
receiving entity and initiating entity MUST consider the
original stream to be replaced upon success of the TLS
negotiation.

4. The receiving entity MUST respond with a new response stream
header over the encrypted connection.

R: <stream:stream
from="im.example.com'
id="'vgKi/bkYME80Aj4r1XMkpucAge4="
to='juliet@im.example.com'
version='1.0'
xml:lang="'en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'

5. The receiving entity also MUST send stream features to the
initiating entity, which MUST NOT include the STARTTLS feature
but which SHOULD include the SASL stream feature as described
under Section 7 (SASL Negotiation).

R: <stream:features>
<mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<mechanism>EXTERNAL</mechanism>
<mechanism>PLAIN</mechanism>
<required/>
</mechanisms>
</stream:features>

7. SASL Negotiation TOC

7.1. Overview TOC

XMPP includes a method for authenticating a stream by means of an XMPP-
specific profile of the Simple Authentication and Security Layer
protocol (see [SASL] (Melnikov, A. and K. Zeilenga, “Simple
Authentication and Security Layer (SASL),” June 2006.)). SASL provides
a generalized method for adding authentication support to connection-
based protocols, and XMPP uses an XML namespace profile of SASL that
conforms to the profiling requirements of [SASL] (Melnikov, A. and K.
Zeilenga, “Simple Authentication and Security Layer (SASL),”

June 2006.).

Support for SASL negotiation is REQUIRED in XMPP client and server
implementations.

7.2. Rules TOC

7.2.1. Mechanism Preferences TOC

Any entity that will act as a SASL client or a SASL server MUST
maintain an ordered list of its preferred SASL mechanisms according to
the client or server, where the list is ordered by the perceived
strength of the mechanisms. A server MUST offer and a client MUST try
SASL mechanisms in the order of their perceived strength. For example,
if the server offers the ordered list "PLAIN DIGEST-MD5 GSSAPI" or
"DIGEST-MD5 GSSAPI PLAIN" but the client's ordered list is "GSSAPI
DIGEST-MD5", the client shall try GSSAPI first and then DIGEST-MD5 but
shall never try PLAIN (since PLAIN is not on its list).

7.2.2. Mechanism Offers TOC

If the receiving entity considers TLS negotiation (STARTTLS
Negotiation) to be mandatory before use of a particular SASL
authentication mechanism will be acceptable, the receiving entity MUST
NOT advertise that mechanism in its list of available SASL
authentication mechanisms prior to successful TLS negotiation.

If during prior TLS negotiation the initiating entity presented a
certificate that is acceptable to the receiving entity for purposes of
strong identity verification in accordance with local service policies,
the receiving entity MUST offer the SASL EXTERNAL mechanism to the
initiating entity during SASL negotiation (refer to [SASL] (Melnikov,
A. and K. Zeilenga, “Simple Authentication and Security Layer (SASL),”
June 2006.)) and SHOULD prefer that mechanism. However, the EXTERNAL
mechanism MAY be offered under other circumstances as well.

See Section 15.6 (Mandatory-to-Implement Technologies) regarding
mechanisms that MUST be supported; naturally, other SASL mechanisms MAY
be supported as well. Best practices for the use of several SASL
mechanisms in the context of XMPP are described in [XEP-0175] (Saint-
Andre, P., “Best Practices for Use of SASL ANONYMOUS,"” September 2006.)
and [XEP-0178] (Saint-Andre, P. and P. Millard, “Best Practices for Use
of SASL EXTERNAL with Certificates,” February 2007.).

T0C

7.2.3. Data Formatting
The following data formattting rules apply to the SASL negotiation:

1. During SASL negotiation, the entities MUST NOT send any
whitespace within the root stream element as separators between
XML elements (i.e., from the last character of the <auth/>
element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl'
namespace at depth=1 of the stream as sent by the initiating
entity until the last character of the <success/> element
qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl' namespace
at depth=1 of the stream as sent by the receiving entity). This
prohibition helps to ensure proper security layer byte
precision. Any such whitespace shown in the SASL examples
provided in this document is included only for the sake of
readability.

2. Any XML character data contained within the XML elements MUST
be encoded using base64, where the encoding adheres to the
definition in Section 4 of [BASE64] (Josefsson, S., “The
Basel6, Base32, and Base64 Data Encodings,” October 2006.) and
where the padding bits are set to zero.

3. As formally specified in the XML schema for the
'urn:ietf:params:xml:ns:xmpp-sasl' namespace under Appendix C.4
(SASL Namespace), the receiving entity MAY include one or more
application-specific child elements inside the <mechanisms/>
element to provide information that might be needed by the
initiating entity in order to complete successful SASL
negotiation using one or more of the offered mechanisms;
however, the syntax and semantics of all such elements are out
of scope for this specification.

7.2.4. Security Layers TOC

Upon successful SASL negotiation that involves negotiation of a
security layer, both the initiating entity and the receiving MUST
discard any application-layer state (i.e, state from the XMPP layer,
excluding state from the TLS negotiation or SASL negotiation).

T0C

7.2.5. Simple Usernames

It is possible that provision of a "simple username" is supported by

the selected SASL mechanism (e.g., this is supported by the DIGEST-MD5
and CRAM-MD5 mechanisms but not by the EXTERNAL and GSSAPI mechanisms).
The simple username provided during authentication MUST be as follows:

Client-to-server communication: The initiating entity's registered
account name, i.e., a user name or node name as described under
Section 3.3 (Node Identifier) (this is not a bare JID of the form
<node@domain> but only the node portion of the JID). The simple
username MUST adhere to the Nodeprep (Nodeprep) profile of
[STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of
Internationalized Strings ("stringprep"),” December 2002.).

Server-to-server communication: The initiating entity's sending
domain, i.e., IP address or fully qualified domain name as
contained in an XMPP domain identifier. The simple username MUST
adhere to the [NAMEPREP] (Hoffman, P. and M. Blanchet, “Nameprep:
A Stringprep Profile for Internationalized Domain Names (IDN),”
March 2003.) profile of [STRINGPREP] (Hoffman, P. and M.
Blanchet, “Preparation of Internationalized Strings
("stringprep"),” December 2002.).

7.2.6. Authorization Identities TOC

If the initiating entity wishes to act on behalf of another entity and
the selected SASL mechanism supports transmission of an authorization
identity, the initiating entity MUST provide an authorization identity
during SASL negotiation. If the initiating entity does not wish to act
on behalf of another entity, it MUST NOT provide an authorization
identity. As specified in [SASL] (Melnikov, A. and K. Zeilenga, “Simple
Authentication and Security Layer (SASL),” June 2006.), the initiating
entity MUST NOT provide an authorization identity unless the
authorization identity is different from the default authorization
identity derived from the authentication identity. If provided, the
value of the authorization identity MUST be a bare JID of the form
<domain> (i.e., an XMPP domain identifier only) for servers and a bare
JID of the form <node@domain> (i.e., node identifier and domain
identifier) for clients.

Note: The authorization identity communited during SASL negotiation
is used to determine the canonical address for the initiating client
or server according to the receiving server, as described under
Section 3.5 (Determination of Addresses).

7.2.7. Realms TOC

The receiving entity MAY include a realm when negotiating certain SASL
mechanisms. If the receiving entity does not communicate a realm, the
initiating entity MUST NOT assume that any realm exists. The realm MUST
be used only for the purpose of authentication; in particular, an
initiating entity MUST NOT attempt to derive an XMPP hostname from the
realm information provided by the receiving entity.

7.2.8. Round Trips TOC

[SASL] (Melnikov, A. and K. Zeilenga, “Simple Authentication and
Security Layer (SASL),” June 2006.) specifies that a using protocol
such as XMPP can define two methods by which the protocol can save
round trips where allowed for the SASL mechanism:

1. When the SASL client (the XMPP "initiating entity") requests an
authentication exchange, it can include "initial response" data
with its request if appropriate for the SASL mechanism in use.
In XMPP this is done by including the initial response as the
XML character data of the <auth/> element.

2. At the end of the authentication exchange, the SASL server (the
XMPP "receiving entity") can include "additional data with
success" if appropriate for the SASL mechanism in use. In XMPP
this is done by including the additional data as the XML
character data of the <success/> element.

For the sake of protocol efficiency, it is RECOMMENDED for XMPP clients

and servers to use these methods, however they MUST support the less
efficient modes as well.

7.3. Process TOC

The process for SASL negotiation is as follows.

T0C

7.3.1. Exchange of Stream Headers and Stream Features

If SASL negotiation follows successful STARTTLS negotation (STARTTLS
Negotiation), then the SASL negotiation occurs over the encrypted
stream that has already been negotiated. If not, the initiating entity
resolves the hostname of the receiving entity as specified under
Section 4 (TCP Binding), opens a TCP connection to the advertised port
at the resolved IP address, and sends an initial stream header to the
receiving entity; if the initiating entity is capable of STARTTLS
negotiation, it MUST include the 'version' attribute set to a value of
at least "1.0" in the initial stream header.

I: <stream:stream
from='juliet@im.example.com'
to="im.example.com'
version='1.0"'
xml:lang="'en'
xmlns="'jabber:client'
xmlns:stream="http://etherx. jabber.org/streams'>

The receiving entity MUST send a response stream header to the
initiating entity; if the receiving entity is capable of SASL
negotiation, it MUST include the 'version' attribute set to a value of
at least "1.0" in the response stream header.

R: <stream:stream
from="im.example.com'
id="'vgKi/bkYME80Aj4r1XMkpucAged="
to='juliet@im.example.com'
version='1.0"'
xml:lang="en'
xmlns="'jabber:client'
xmlns:stream="http://etherx. jabber.org/streams'

The receiving entity also MUST send stream features to the initiating
entity. If the receiving entity supports SASL, the stream features MUST
include an advertisement for support of SASL negotiation, i.e., a
<mechanisms/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-
sasl' namespace.

The <mechanisms/> element MUST contain one <mechanism/> child element
for each authentication mechanism the receiving entity offers to the
initiating entity. The order of <mechanism/> elements in the XML
indicates the preference order of the SASL mechanisms according to the
receiving entity; however the initiating entity MUST maintain its own
preference order independent of the preference order of the receiving
entity.

R: <stream:features>
<mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<mechanism>EXTERNAL</mechanism>
<mechanism>PLAIN</mechanism>
<required/>
</mechanisms>
</stream:features>

If the receiving entity considers SASL negotiation to be discretionary,
the <mechanisms/> element MUST contain an empty <optional/> child
element.

R: <stream:features>
<mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<mechanism>EXTERNAL</mechanism>
<mechanism>PLAIN</mechanism>
<optional/>
</mechanisms>
</stream:features>

If the receiving entity considers SASL negotiation to be mandatory, the
<mechanisms/> element MUST contain an empty <required/> child element.

R: <stream:features>
<mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<mechanism>EXTERNAL</mechanism>
<mechanism>PLAIN</mechanism>
<required/>
</mechanisms>
</stream:features>

7.3.2. Initiation TOC

In order to begin the SASL negotiation, the initiating entity sends an
<auth/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl'
namespace and includes an appropriate value for the 'mechanism'
attribute. This element MAY contain XML character data (in SASL
terminology, the "initial response") if the mechanism supports or
requires it; if the initiating entity needs to send a zero-length
initial response, it MUST transmit the response as a single equals sign
character ("="), which indicates that the response is present but
contains no data.

I: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl'
mechanism="'PLAIN'>UjBtMzBSMGNrcw==</auth>

7.3.3. Challenge-Response Sequence TOC

If necessary, the receiving entity challenges the initiating entity by
sending a <challenge/> element qualified by the
'urn:ietf:params:xml:ns:xmpp-sasl' namespace; this element MAY contain
XML character data (which MUST be generated in accordance with the
definition of the SASL mechanism chosen by the initiating entity).

The initiating entity responds to the challenge by sending a <response/
> element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl'
namespace; this element MAY contain XML character data (which MUST be
generated in accordance with the definition of the SASL mechanism
chosen by the initiating entity).

If necessary, the receiving entity sends more challenges and the
initiating entity sends more responses.

This series of challenge/response pairs continues until one of three
things happens:

*The initiating entity aborts the handshake.
*The receiving entity reports failure of the handshake.
*The receiving entity reports success of the handshake.

These scenarios are described in the following sections.

7.3.4. Abort TOC

The initiating entity aborts the handshake by sending an <abort/>
element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl' namespace.

I: <abort xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

Upon receiving an <abort/> element, the receiving entity MUST return a
<failure/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl'
namespace and containing an <aborted/> child element.

R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>
<aborted/>
</failure>

7.3.5. Failure TOC

The receiving entity reports failure of the handshake by sending a
<failure/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl’
namespace (the particular cause of failure MUST be communicated in an
appropriate child element of the <failure/> element as defined under
Section 7.4 (SASL Errors)).

R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<not-authorized/>
</failure>

Where appropriate for the chosen SASL mechanism, the receiving entity
SHOULD allow a configurable but reasonable number of retries (at least
2 and no more than 5); this enables the initiating entity (e.g., an
end-user client) to tolerate incorrectly-provided credentials (e.g., a
mistyped password) without being forced to reconnect.

If the initiating entity attempts a reasonable number of retries with
the same SASL mechanism and all attempts fail, it MAY fall back to the
next mechanism in its ordered list by sending a new <auth/> request to
the receiving entity. If there are no remaining mechanisms in its list,
the initiating entity SHOULD instead send an <abort/> element to the
receiving entity.

If the initiating entity exceeds the number of retries, the receiving
entity MUST return a stream error (which SHOULD be <policy-violation/>
but MAY be <not-authorized/>).

7.3.6. Success TOC

The receiving entity reports success of the handshake by sending a
<success/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl’
namespace; this element MAY contain XML character data (in SASL
terminology, "additional data with success") if the chosen SASL
mechanism supports or requires it; if the receiving entity needs to
send additional data of zero length, it MUST transmit the data as a
single equals sign character ("=").

R: <success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

Note: The authorization identity communited during SASL negotiation
is used to determine the canonical address for the initiating client

or server according to the receiving server, as described under
Section 3.5 (Determination of Addresses).

Upon receiving the <success/> element, the initiating entity MUST
initiate a new stream over the existing TCP connection by sending a new
initial stream header to the receiving entity.

I: <stream:stream
from='juliet@im.example.com'
to="'im.example.com'
version='1.0"'
xml:lang='en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'

Note: The initiating entity MUST NOT send a closing </stream> tag
before sending the new initial stream header, since the receiving
entity and initiating entity MUST consider the original stream to be
replaced upon sending or receiving the <success/> element.

Upon receiving the new initial stream header from the initiating
entity, the receiving entity MUST respond by sending a new response XML
stream header to the initiating entity.

R: <stream:stream
from="im.example.com'
id="'gPybza0zBmaADgxKXu9UClbprpo="
to='juliet@im.example.com'
version='1.0"'
xml:lang="en'
xmlns="'jabber:client'
xmlns:stream="http://etherx. jabber.org/streams'>

The receiving entity MUST also send stream features, containing any
further available features or containing no features (via an empty
<features/> element).

R: <stream:features>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
<required/>
</bind>
</stream:features>

T0C

7.4. SASL Errors
The syntax of SASL errors is as follows:

<failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<defined-condition/>
[<text xml:lang='langcode'>
OPTIONAL descriptive text
</text>]
</failure>

Where "defined-condition" is one of the SASL-related error conditions
defined in the following sections.

Inclusion of a defined condition is REQUIRED.

Inclusion of the <text/> element is OPTIONAL, and can be used to
provide application-specific information about the error condition,
which information MAY be displayed to a human but only as a supplement
to the defined condition.

7.4.1. aborted TOC

The receiving entity acknowledges an <abort/> element sent by the
initiating entity; sent in reply to the <abort/> element.

I: <abort xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<aborted/>
</failure>

7.4.2. account-disabled TOC

The account of the initiating entity has been temporarily disabled;
sent in reply to an <auth/> element (with or without initial response
data) or a <response/> element.

I: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl'
mechanism="'PLAIN'>UjBtMzBSMGNrcw==</auth>

R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<account-disabled/>
<text xml:lang='en'>Call 212-555-1212 for assistance.</text>
</failure>

7.4.3. credentials-expired TOC

The authentication failed because the initiating entity provided
credentials that have expired; sent in reply to a <response/> element
or an <auth/> element with initial response data.

I: <response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>

[...]

</response>

R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<credentials-expired/>
</failure>

7.4.4. encryption-required _ToC

The mechanism requested by the initiating entity cannot be used unless
the underlying stream is encrypted; sent in reply to an <auth/> element
(with or without initial response data).

I: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl'
mechanism="'PLAIN'>UjBtMzBSMGNrcw==</auth>

R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<encryption-required/>
</failure>

7.4.5. 1incorrect-encoding TOC

The data provided by the initiating entity could not be processed
because the [BASE64] (Josefsson, S., “The Basel6, Base32, and Base64
Data Encodings,” October 2006.) encoding is incorrect (e.g., because
the encoding does not adhere to the definition in Section 4 of [BASE64]
(Josefsson, S., “The Basel6, Base32, and Base64 Data Encodings,”
October 2006.)); sent in reply to a <response/> element or an <auth/>
element with initial response data.

I: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl'
mechanism='DIGEST-MD5'>[...]</auth>

R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>

<incorrect-encoding/>
</failure>

7.4.6. invalid-authzid

The authzid provided by the initiating entity is invalid, either

because it is incorrectly formatted or because the initiating entity
does not have permissions to authorize that ID; sent in reply to a

T0C

<response/> element or an <auth/> element with initial response data.

I: <response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>

[...]

</response>

R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<invalid-authzid/>
</failure>

7.4.7. invalid-mechanism

The initiating entity did not provide a mechanism or requested a

mechanism that is not supported by the receiving entity; sent in reply

to an <auth/> element.

I: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl'
mechanism="'CRAM-MD5"'/>

R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<invalid-mechanism/>
</failure>

TOC

7.4.8. malformed-request

The request is malformed (e.g., the <auth/> element includes initial
response data but the mechanism does not allow that, or the data sent
violates the syntax for the specified SASL mechanism); sent in reply to
an <abort/>, <auth/>, <challenge/>, or <response/> element.

(In the following example, the XML character data of the <auth/>
element contains more than 255 UTF-8-encoded Unicode characters and
therefore violates the "token" production for the SASL ANONYMOUS
mechanism as specified in [ANONYMOUS] (Zeilenga, K., “Anonymous Simple
Authentication and Security Layer (SASL) Mechanism,” June 2006.).)

I: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl'
mechanism="ANONYMOUS'>[... some-long-token ...]J</auth>

R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<malformed-request/>
</failure>

7.4.9. mechanism-too-weak TOC

The mechanism requested by the initiating entity is weaker than server
policy permits for that initiating entity; sent in reply to an <auth/>
element (with or without initial response data).

I: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl'
mechanism="'PLAIN'>UjBtMzBSMGNrcw==</auth>

R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<mechanism-too-weak/>
</failure>

7.4.10. not-authorized TOC

The authentication failed because the initiating entity did not provide
proper credentials or the receiving entity has detected an attack but
wishes to disclose as little information as possible to the attacker;
sent in reply to a <response/> element or an <auth/> element with
initial response data.

I: <response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>

[...]

</response>

R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<not-authorized/>
</failure>

Note: This error condition includes but is not limited to the case
of incorrect credentials or an unknown username. In order to
discourage directory harvest attacks, no differentiation is made
between incorrect credentials and an unknown username.

7.4.11. temporary-auth-failure TOC

The authentication failed because of a temporary error condition within
the receiving entity, and it is advisable for the initiating entity to
try again later; sent in reply to an <auth/> element or a <response/>
element.

I: <response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>

[...]

</response>

R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<temporary-auth-failure/>
</failure>

7.4.12. transition-needed TOC

The authentication failed because the mechanism cannot be used until
the initiating entity provides (for one time only) a plaintext password
so that the receiving entity can build a hashed password for use in
future authentication attempts; sent in reply to an <auth/> element
with or without initial response data.

I: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl'
mechanism='CRAM-MD5'>[...]</auth>

R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<transition-needed/>
</failure>

Note: An XMPP client MUST treat a <transition-needed/> error with
extreme caution, SHOULD NOT provide a plaintext password over an XML
stream that is not encrypted via Transport Layer Security, and MUST
warn a human user before allowing the user to provide a plaintext
password over an unencrypted connection.

7.5. SASL Definition TOC

The profiling requirements of [SASL] (Melnikov, A. and K. Zeilenga,
“Simple Authentication and Security Layer (SASL),” June 2006.) require
that the following information be supplied by the definition of a using
protocol.

service name: '"xmpp"

initiation sequence: After the initiating entity provides an
opening XML stream header and the receiving entity replies in
kind, the receiving entity provides a list of acceptable
authentication methods. The initiating entity chooses one method
from the list and sends it to the receiving entity as the value
of the 'mechanism' attribute possessed by an <auth/> element,
optionally including an initial response to avoid a round trip.

exchange sequence: Challenges and responses are carried through the
exchange of <challenge/> elements from receiving entity to
initiating entity and <response/> elements from initiating entity
to receiving entity. The receiving entity reports failure by
sending a <failure/> element and success by sending a <success/>
element; the initiating entity aborts the exchange by sending an
<abort/> element. Upon successful negotiation, both sides
consider the original XML stream to be closed and new stream
headers are sent by both entities.

security layer negotiation: The security layer takes effect
immediately after sending the closing '>' character of the
<success/> element for the receiving entity, and immediately
after receiving the closing '>' character of the <success/>

element for the initiating entity. The order of layers is first
[TCP] (Postel, J., “Transmission Control Protocol,”

September 1981.), then [TLS] (Dierks, T. and E. Rescorla, “The
Transport Layer Security (TLS) Protocol Version 1.2,”

August 2008.), then [SASL] (Melnikov, A. and K. Zeilenga, “Simple

Authentication and Security Layer (SASL),” June 2006.), then
XMPP.

use of the authorization identity: The authorization identity can
be used in XMPP to denote the non-default <node@domain> of a
client or the sending <domain> of a server; an empty string is
equivalent to an absent authorization identity.

8. Resource Binding TOC

8.1. Overview TOC

After a client authenticates with a server, it MUST bind a specific
resource to the stream so that the server can properly address the
client (see Section 3 (Addresses)). That is, there MUST be an XMPP
resource identifier associated with the bare JID (<node@domain>) of the
client, so that the address for use over that stream is a full JID of
the form <node@domain/resource>. This ensures that the server can
deliver XML stanzas to and receive XML stanzas from the client (see
Section 11 (Server Rules for Processing XML Stanzas)).

After a client has bound a resource to the stream, it is referred to as
a CONNECTED RESOURCE. A server SHOULD allow an entity to maintain
multiple connected resources simultaneously, where each connected
resource is differentiated by a distinct resource identifier; however,
a server MUST enable the administrator of an XMPP service to limit the
number of connected resources in order to prevent certain denial of
service attacks as described under Section 15.13 (Denial of Service).
If, before completing the resource binding step, the client attempts to
send an outbound XML stanza (i.e., a stanza not directed to the server
itself or to the client's own account), the server MUST NOT process the
stanza and MUST either ignore the stanza or return a <not-authorized/>
stream error to the client.

Support for resource binding is REQUIRED in XMPP client and server
implementations.

8.2. Advertising Support TOC

Upon sending a new response stream header to the client after
successful SASL negotiation, the server MUST include a <bind/> element
qualified by the 'urn:ietf:params:xml:ns:xmpp-bind' namespace in the
stream features it presents to the client; this <bind/> element MUST
include an empty <required/> element to explicitly indicate that it is
mandatory for the client to complete resource binding at this stage of
the stream negotiation process.

Note: The server MUST NOT include the resource binding stream
feature until after successful SASL negotiation.

S: <stream:stream
from="'im.example.com'
id="gPybza0zBmaADgxKXu9UClbprpo="
to='juliet@im.example.com'
version='1.0"
xml:lang="'en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'>

S: <stream:features>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
<required/>
</bind>
</stream:features>

Upon being so informed that resource binding is required, the client
MUST bind a resource to the stream as described in the following
sections.

8.3. Generation of Resource Identifiers TOC

A resource identifier MUST at a minimum be unique among the connected
resources for that <node@domain>. Enforcement of this policy is the
responsibility of the server.

A resource identifier can be security-critical. For example, if a
malicious entity can guess a client's resource identifier then it might
be able to determine if the client (and therefore the controlling
principal) is online or offline, thus resulting in a presence leak as
described under Section 15.14 (Presence Leaks). To prevent that
possibility, a client can either (1) generate a random resource
identifier on its own or (2) ask the server to generate a resource
identifier on its behalf, which MUST be random (see [RANDOM] (Eastlake,

D., Schiller, J., and S. Crocker, “Randomness Requirements for

Security,” June 2005.)). When generating a random resource identifier,
it is RECOMMENDED that the resource identifier be a Universally Unique
Identifier (UUID), for which the format specified in [UUID] (Leach, P.,

Mealling, M., and R. Salz, “A Universally Unique IDentifier (UUID) URN
Namespace,” July 2005.) is RECOMMENDED.

8.4. Server-Generated Resource Identifier TOC

A server that supports resource binding MUST be able to generate an
XMPP resource identifier on behalf of a client.

8.4.1. Success Case TOC

A client requests a server-generated resource identifier by sending an
IQ stanza of type "set" (see Section 9.2.3 (IQ Semantics)) containing
an empty <bind/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-
bind' namespace.

C: <iqg id='bind_1' type='set'>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'/>
</iqgq>

Once the server has generated an XMPP resource identifier for the
client, it MUST return an IQ stanza of type "result" to the client,
which MUST include a <jid/> child element that specifies the full JID
for the connected resource as determined by the server.

S: <ig id='bind_1' type='result'>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>

<jid>
juliet@im.example.com/4db06f06-1ead-11dc-aca3-000bcd821bfb
</jid>
</bind>
</iqgq>
8.4.2. Error Cases TOC

When a client asks the server to generate a resource identifer during
resource binding, the following stanza error conditions are possible:

*The account has reached a limit on the number of simultaneous
connected resources allowed.

*The client is otherwise not allowed to bind a resource to the
stream.

8.4.2.1. Resource Constraint TOC

If the account has reached a limit on the number of simultaneous
connected resources allowed, the server MUST return a <resource-
constraint/> error.

S: <iqg id='bind_2' type='error'>
<error type='cancel'>
<resource-constraint
xmlns="urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</iqgq>

8.4.2.2. Not Allowed T0C

If the client is otherwise not allowed to bind a resource to the
stream, the server MUST return a <not-allowed/> error.

S: <iqg id='bind_2' type='error'>
<error type='cancel'>
<not-allowed
xmlns="urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</iqgq>

8.5. Client-Submitted Resource Identifier TOC

Instead of asking the server to generate a resource identifier on its
behalf, a client MAY attempt to submit a resource identifier that it
has generated or that the controlling user has provided.

8.5.1. Success Case TOC

A client asks its server to accept a client-submitted resource
identifier by sending an IQ stanza of type "set" containing a <bind/>
element with a child <resource/> element containing non-zero-length XML
character data.

C: <iqg id='bind_2' type='set'>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
<resource>balcony</resource>
</bind>
</iqgq>

The server SHOULD accept the client-submitted resource identifier. It
does so by returning an IQ stanza of type "result" to the client,
including a <jid/> child element that specifies the full JID for the
connected resource and contains without modification the client-
submitted text.

S: <ig id='bind_2' type='result'>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
<jid>juliet@im.example.com/balcony</jid>
</bind>
</iqgq>

8.5.2. Error Cases TOC

When a client attempts to submit its own XMPP resource identifier
during resource binding, the following stanza error conditions are
possible in addition to those described under Section 8.4.2 (Error

Cases):

*The provided resource identifier cannot be processed by the
server, e.g. because it is not in accordance with the
Resourceprep (Resourceprep) profile of [STRINGPREP] (Hoffman, P.
and M. Blanchet, “Preparation of Internationalized Strings
("stringprep"),” December 2002.)).

*The provided resource identifier is already in use.

T0C

8.5.2.1. Bad Request

If the provided resource identifier cannot be processed by the server,
the server MAY return a <bad-request/> error (but SHOULD instead apply
the Resourceprep (Resourceprep) profile of [STRINGPREP] (Hoffman, P.
and M. Blanchet, “Preparation of Internationalized Strings
("stringprep"),” December 2002.) or otherwise process the resource
identifier so that it is in conformance).

S: <iqg id='bind_2' type='error'>
<error type='modify'>
<bad-request xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</iqgq>

8.5.2.2. Conflict TOC

If there is already a connected resource of the same name, the server
MUST do one of the following:

1. Not accept the resource identifier provided by the client but
instead override it with an XMPP resource identifier that the
server generates.

2. Terminate the current resource and allow the newly-requested
resource.

3. Disallow the newly-requested resource and maintain the current
resource.

Which of these the server does is up to the implementation, although it
is RECOMMENDED to implement case #1.

S: <iqg id='bind_2' type='result'>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
<jid>
juliet@im.example.com/balcony 4dbe6f06-1ead4-1l1dc-aca3-000bcd821bfb
</jid>
</bind>
</iqgq>

In case #2, the server MUST send a <conflict/> stream error to the
current resource and return an IQ stanza of type "result" (indicating
success) to the newly-requested resource.

S: <iq id='bind_2' type='result'/>

In case #3, the server MUST send a <conflict/> stanza error to the
newly-requested resource but maintain the XML stream for that
connection so that the newly-requested resource has an opportunity to
negotiate a non-conflicting resource identifier before sending another
request for resource binding.

S: <iqg id='bind_2' type='error'>
<error type='modify'>
<conflict xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</iqgq>

8.5.3. Retries TOC

If an error occurs when a client submits a resource identifier, the
server SHOULD allow a configurable but reasonable number of retries (at
least 2 and no more than 5); this enables the client to tolerate
incorrectly-provided resource identifiers (e.g., bad data formats or
duplicate text strings) without being forced to reconnect.

After the client has reached the retry limit, the server MUST return a
<policy-violation/> stream error to the client.

8.6. Binding Multiple Resources TOC

A server MAY support binding of multiple resources to the same stream.
This functionality is desirable in certain environments (e.g., for
devices that are unable to open more than one TCP connection or when a
machine runs a local XMPP client daemon that is used by multiple
applications).

8.6.1. Support TOC

If a server supports binding of multiple resources to a stream, it MUST
enable a client to unbind resources. A server that supports unbinding
MUST also support binding of multiple resources. Thus a client can
discover whether a server supports binding of multiple resources by
determining if the server advertises a stream feature of <unbind/>, as
follows.

S: <stream:features>

<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
<required/>

</bind>

<unbind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
<optional/>

</unbind>

</stream:features>

If a server supports binding of mulitple resources, it MUST also send
the unbind feature advertisement after resource binding has been
completed.

8.6.2. Binding an Additional Resource TOC

A connected client binds an additional resource by following the
protocol for binding of the original resource, i.e., by sending an IQ
stanza of type "set" containing a <bind/> element qualified by the
'urn:ietf:params:xml:ns:xmpp-bind' namespace (either empty to request
server generation of the resource identifier or containing a <resource/
> element with XML character data to request a client-submitted
resource identifier).

8.6.3. Unbinding a Resource TOC

8.6.3.1. Success Case TOC

A client unbinds a resource by sending an IQ stanza of type "set"
containing an <unbind/> element qualified by the
'urn:ietf:params:xml:ns:xmpp-bind' namespace, which in turn contains a
child element of <resource/> whose XML character data specifies the
resource to be unbound:

C: <iqg id="unbind_1' type='set'>
<unbind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
<resource>someresource</resource>
</unbind>
</iqgq>

If no error occurs, the server MUST unbind the resource and no longer
accept stanzas whose 'from' address specifies the full JID associated
with that resource.

S: <iq id='unbind_1' type='result'/>

When a client unbinds the only resource associated with the stream, the
server SHOULD close the stream and terminate the TCP connection.

S: <iqg id='unbind_1' type='result'/>

S: </stream:stream>

8.6.3.2. Error Cases TOC

8.6.3.2.1. Unbind Not Supported TOC

If the server understands the 'urn:ietf:params:xml:ns:xmpp-bind'
namespace but does not understand the <unbind/> element, it MUST return
a stanza error, which MUST be <feature-not-implemented/>.

S: <iqg id='unbind_1' type='error'>
<error type='modify'>
<feature-not-implemented
xmlns="urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</iqgq>

8.6.3.2.2. No Such Resource TOC

If there is no such resource for that stream, the server MUST return an
error of <item-not-found/>.

S: <iqg id='unbind_1' type='error'>
<error type='cancel'>
<item-not-found xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</iqgq>

8.6.4. From Addresses TOC

When a client binds multiple resources to the same stream, proper
management of 'from' addresses is imperative. In particular, a client
MUST specify a 'from' address on every stanza it sends over a stream to
which it has bound multiple resources, where the 'from' address is the
full JID (<node@domain.tld/resource>) associated with the relevant
resource. If a client does not specify a 'from' address on a stanza it
sends over a stream to which it has bound multiple resources, the
server MUST return the stanza to the client with an <unknown-sender/>
stanza error.

C: <message to='romeo@example.net'>
<body>Wherefore art thou?</body>
</message>

S: <message from='romeo@example.net'
type='error'>
<body>Wherefore art thou?</body>
<error type='modify'>
<unknown-sender xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</message>

Naturally, the rules regarding validation of asserted 'from' addresses
still apply (see Section 11 (Server Rules for Processing XML Stanzas)).

9. XML Stanzas T0C

After a client has connected to a server or two servers have connected
to each other, either party can send XML stanzas over the negotiated
stream. Three kinds of XML stanza are defined for the 'jabber:client'
and 'jabber:server' namespaces: <message/>, <presence/>, and <iq/>. In
addition, there are five common attributes for these stanza types.
These common attributes, as well as the basic semantics of the three
stanza types, are defined herein; more detailed information regarding
the syntax of XML stanzas for instant messaging and presence
applications is provided in [rfc3921bis] (Saint-Andre, P., “Extensible
Messaging and Presence Protocol (XMPP): Instant Messaging and
Presence,” March 2009.), and for other applications in the relevant
XMPP extension specifications.

A server MUST NOT process a partial stanza and MUST NOT attach meaning
to the transmission timing of any part of a stanza (before receipt of
the close tag).

Support for the XML stanza syntax and semantics defined herein is
REQUIRED in XMPP client and server implementations.

9.1. Common Attributes TOC

The following five attributes are common to message, presence, and IQ
stanzas.

9.1.1. to T0C

The 'to' attribute specifies the JID of the intended recipient for the
stanza.

<message to='romeo@example.net'>
<body>Art thou not Romeo, and a Montague?</body>
</message>

For information about server processing of inbound and outbound XML
stanzas based on the nature of the 'to' address, refer to Section 11
(Server Rules for Processing XML Stanzas).

9.1.1.1. Client-to-Server Streams TOC

The following rules apply to inclusion of the 'to' attribute in the
context of XML streams qualified by the 'jabber:client' namespace
(i.e., client-to-server streams).

1. A stanza with a specific intended recipient MUST possess a 'to'
attribute whose value is an XMPP address.

2. A stanza sent from a client to a server for direct processing
by the server on behalf of the client (e.g., presence sent to
the server for broadcasting to other entities) MUST NOT possess
a 'to' attribute.

T0C

9.1.1.2. Server-to-Server Streams

The following rules apply to inclusion of the 'to' attribute in the
context of XML streams qualified by the 'jabber:server' namespace
(i.e., server-to-server streams).

1. A stanza MUST possess a 'to' attribute whose value is an XMPP
address; if a server receives a stanza that does not meet this
restriction, it MUST generate an <improper-addressing/> stream
error.

2. The domain identifier portion of the JID in the 'to' atttribute
MUST match a hostname serviced by the receiving server; if a
server receives a stanza that does not meet this restriction,
it MUST generate a <host-unknown/> or <host-gone/> stream
error.

9.1.2. from TOC
The 'from' attribute specifies the JID of the sender.

<message from='juliet@im.example.com/balcony'
to='romeo@example.net'>
<body>Art thou not Romeo, and a Montague?</body>
</message>

9.1.2.1. Client-to-Server Streams TOC

The following rules apply to the 'from' attribute in the context of XML
streams qualified by the 'jabber:client' namespace (i.e., client-to-
server streams).

1. When the server receives an XML stanza from a client and the
stanza does not include a 'from' attribute, the server MUST add
a 'from' attribute to the stanza, where the value of the 'from'
attribute is the full JID (<node@domain/resource>) determined
by the server for the connected resource that generated the
stanza (see Section 3.5 (Determination of Addresses)), or the
bare JID (<node@domain>) in the case of subscription-related
presence stanzas (see [rfc3921bis] (Saint-Andre, P.,
“Extensible Messaging and Presence Protocol (XMPP): Instant
Messaging and Presence,” March 2009.)); the only exception to

this rule occurs when multiple resources are bound to the same
stream as described under Section 8.6 (Binding Multiple

Resources).

2. When the server receives an XML stanza from a client and the
stanza includes a 'from' attribute, the server MUST either (a)
validate that the value of the 'from' attribute provided by the
client is that of a connected resource for the associated
entity or (b) override the provided 'from' attribute by adding
a 'from' attribute as specified under Rule #1.

3. When the server generates a stanza from the server for delivery
to the client on behalf of the account of the connected client
(e.g., in the context of data storage services provided by the
server on behalf of the client), the stanza MUST either (a) not
include a 'from' attribute or (b) include a 'from' attribute
whose value is the account's bare JID (<node@domain>).

4. When the server generates a stanza from the server itself for
delivery to the client, the stanza MUST include a 'from'
attribute whose value is the bare JID (i.e., <domain>) of the
server.

5. A server MUST NOT send to the client a stanza without a 'from'
attribute if the stanza was not generated by the server (e.g.,
if it was generated by another client or another server);
therefore, when a client receives a stanza that does not
include a 'from' attribute, it MUST assume that the stanza is
from the server to which the client is connected.

9.1.2.2. Server-to-Server Streams TOC

The following rules apply to the 'from' attribute in the context of XML
streams qualified by the 'jabber:server' namespace (i.e., server-to-
server streams).

1. A stanza MUST possess a 'from' attribute whose value is an XMPP
address; if a server receives a stanza that does not meet this
restriction, it MUST generate an <improper-addressing/> stream
error.

2. The domain identifier portion of the JID contained in the
'"from' attribute MUST match the hostname of the sending server
(or any validated domain thereof) as communicated in the SASL
negotiation (see Section 7 (SASL Negotiation)), server dialback
(see [XEP-0220] (Saint-Andre, P. and J. Miller, “Server

Dialback,” October 2008.), or similar means; if a server
receives a stanza that does not meet this restriction, it MUST
generate an <invalid-from/> stream error.

Enforcement of these rules helps to prevent certain denial of service
attacks as described under Section 15.13 (Denial of Service).

9.1.3. id T0C

The 'id' attribute MAY be used by a sending entity for internal
tracking of stanzas that it sends and receives (especially for tracking
the request-response interaction inherent in the semantics of IQ
stanzas). The value of the 'id' attribute MAY be unique globally,
within a domain, or within a stream. The semantics of IQ stanzas impose
additional restrictions; see Section 9.2.3 (IQ Semantics).

9.1.4. type TOC

The 'type' attribute specifies the purpose or context of the message,
presence, or IQ stanza. The particular allowable values for the 'type'
attribute vary depending on whether the stanza is a message, presence,
or IQ stanza. The defined values for message and presence stanzas are
specific to instant messaging and presence applications and therefore
are specified in [rfc3921bis] (Saint-Andre, P., “Extensible Messaging
and Presence Protocol (XMPP): Instant Messaging and Presence,”

March 2009.), whereas the values for IQ stanzas specify the role of an
IQ stanza in a structured request-response exchange and therefore are
specified under Section 9.2.3 (IQ Semantics). The only 'type' value
common to all three stanzas is "error'"; see Section 9.3 (Stanza

Errors).

9.1.5. xml:lang TOC

A stanza SHOULD possess an 'xml:lang' attribute (as defined in Section
2.12 of [XML] (Paoli, J., Maler, E., Sperberg-McQueen, C., Yergeau, F.,
and T. Bray, "“Extensible Markup Language (XML) 1.0 (Fourth Edition),”
August 2006.)) if the stanza contains XML character data that is
intended to be presented to a human user (as explained in [CHARSET
(Alvestrand, H., “IETF Policy on Character Sets and Languages,”

January 1998.), "internationalization is for humans"). The value of the

'xml:lang' attribute specifies the default language of any such human-
readable XML character data.

<presence from='romeo@example.net/orchard' xml:lang='en'>
<show>dnd</show>
<status>Wooing Juliet</status>

</presence>

The value of the 'xml:lang' attribute MAY be overridden by the
'xml:lang' attribute of a specific child element.

<presence from='romeo@example.net/orchard' xml:lang='en'>
<show>dnd</show>
<status>Wooing Juliet</status>
<status xml:lang='cs'>Dvořím se Julii</status>
</presence

If an outbound stanza generated by a client does not possess an
'xml:lang' attribute, the client's server SHOULD add an 'xml:lang'
attribute whose value is that specified for the stream as defined under
Section 5.3.4 (xml:lang).

C: <presence from='romeo@example.net/orchard'>
<show>dnd</show>
<status>Wooing Juliet</status>
</presence>

S: <presence from='romeo@example.net/orchard'
to='juliet@im.example.com'
xml:lang='en'>

<show>dnd</show>
<status>Wooing Juliet</status>
</presence>

If an inbound stanza received received by a client or server does not
possess an 'xml:lang' attribute, an implementation MUST assume that the
default language is that specified for the stream as defined under
Section 5.3.4 (xml:lang).

The value of the 'xml:lang' attribute MUST conform to the NMTOKEN
datatype (as defined in Section 2.3 of [XML] (Paoli, J., Maler, E.,
Sperberg-McQueen, C., Yergeau, F., and T. Bray, “Extensible Markup
Language (XML) 1.0 (Fourth Edition),” August 2006.)) and MUST conform
to the format defined in [LANGTAGS] (Phillips, A. and M. Davis, “Tags
for Identifying Languages,” September 2006.).

A server MUST NOT modify or delete 'xml:lang' attributes on stanzas it
receives from other entities.

T0C

9.2. Basic Semantics

9.2.1. Message Semantics TOC

The <message/> stanza can be seen as a "push" mechanism whereby one
entity pushes information to another entity, similar to the
communications that occur in a system such as email. All message
stanzas SHOULD possess a 'to' attribute that specifies the intended
recipient of the message; upon receiving such a stanza, a server SHOULD
route or deliver it to the intended recipient (see Section 11 (Server
Rules for Processing XML Stanzas) for general routing and delivery
rules related to XML stanzas).

9.2.2. Presence Semantics TOC

The <presence/> stanza can be seen as a specialized broadcast or
"publish-subscribe" mechanism, whereby multiple entities receive
information (in this case, network availability information) about an
entity to which they have subscribed. In general, a publishing entity
(client) SHOULD send a presence stanza with no 'to' attribute, in which
case the server to which the entity is connected SHOULD broadcast or
multiplex that stanza to all subscribed entities. However, a publishing
entity MAY also send a presence stanza with a 'to' attribute, in which
case the server SHOULD route or deliver that stanza to the intended
recipient. See Section 11 (Server Rules for Processing XML Stanzas) for
general routing and delivery rules related to XML stanzas, and
[rfc3921bis] (Saint-Andre, P., “Extensible Messaging and Presence
Protocol (XMPP): Instant Messaging and Presence,” March 2009.) for
rules specific to presence applications.

9.2.3. IQ Semantics TOC

Info/Query, or IQ, is a request-response mechanism, similar in some
ways to the Hypertext Transfer Protocol [HTTP] (Fielding, R., Gettys,
J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-
Lee, “Hypertext Transfer Protocol -- HTTP/1.1,” June 1999.). The
semantics of IQ enable an entity to make a request of, and receive a
response from, another entity. The data content of the request and
response is defined by the schema or other structural definition
associated with the XML namespace that qualifies the direct child

element of the IQ element (see Section 9.4 (Extended Content)), and the
interaction is tracked by the requesting entity through use of the 'id'
attribute. Thus, IQ interactions follow a common pattern of structured
data exchange such as get/result or set/result (although an error can
be returned in reply to a request if appropriate):

Requesting Responding
Entity Entity

<iq id='1' type='get'>
[... payload ...]

<iq id='1' type='result'>
[... payload ...]

<iq id='2' type='set'>
[... payload ...]

<iq id='2"' type='error'>
[... condition ...]

To enforce these semantics, the following rules apply:
1. The 'id' attribute is REQUIRED for IQ stanzas.

2. The 'type' attribute is REQUIRED for IQ stanzas. The value MUST
be one of the following (if the value is other than one of the
following strings, the recipient or an intermediate router MUST
return a stanza error of <bad-request/>):

*get -- The stanza requests information, inquires about what
data is needed in order to complete further operations, etc.

*set -- The stanza provides data that is needed for an
operation to be completed, sets new values, replaces
existing values, etc.

*result -- The stanza is a response to a successful get or
set request.

*error -- The stanza reports an error that has occurred
regarding processing or delivery of a previously-sent get or
set request (see Section 9.3 (Stanza Errors)).

3. An entity that receives an IQ request of type "get" or "set"
MUST reply with an IQ response of type "result" or "error". The
response MUST preserve the 'id' attribute of the request.

4. An entity that receives a stanza of type "result" or "error"
MUST NOT respond to the stanza by sending a further IQ response
of type "result" or "error"; however, the requesting entity MAY
send another request (e.g., an IQ of type "set" to provide
required information discovered through a get/result pair).

5. An IQ stanza of type "get" or "set" MUST contain exactly one
child element, which specifies the semantics of the particular
request.

6. An IQ stanza of type "result" MUST include zero or one child
elements.

7. An IQ stanza of type "error" MAY include the child element
contained in the associated "get" or "set" and MUST include an
<error/> child; for details, see Section 9.3 (Stanza Errors).

9.3. Stanza Errors TOC

Stanza-related errors are handled in a manner similar to stream errors
(Stream Errors). Unlike stream errors, stanza errors are recoverable;
therefore they do not result in termination of the XML stream and
underlying TCP connection. Instead, the entity that discovers the error
condition returns an ERROR STANZA to the sender, i.e., a stanza of the
same kind (message, presence, or IQ) whose 'type' attribute is set to a
value of "error" and which contains an <error/> child element that
specifies the error condition. The specified error condition provides a
hint regarding actions that the sender can take to remedy the error if
possible.

9.3.1. Rules TOC

The following rules apply to stanza errors:

1. The receiving or processing entity that detects an error
condition in relation to a stanza SHOULD return an error stanza
(and MUST do so for IQ stanzas).

2. The entity that generates an error stanza MAY include the
original XML sent so that the sender can inspect and, if
necessary, correct the XML before attempting to resend.

3. An error stanza MUST contain an <error/> child element.

4. An <error/> child MUST NOT be included if the 'type' attribute
has a value other than "error" (or if there is no 'type'
attribute).

5. An entity that receives an error stanza MUST NOT respond to the

stanza with a further error stanza; this helps to prevent
looping.

9.3.2. Syntax T0C

The syntax for stanza-related errors is:

<stanza-kind from='intended-recipient' to='sender' type='error'>
[OPTIONAL to include sender XML here]
<error type='error-type'>
<defined-condition xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
[<text xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'
xml:lang="'langcode'>
OPTIONAL descriptive text
</text>]
[OPTIONAL application-specific condition element]
</error>
</stanza-kind>

The "stanza-kind" MUST be one of message, presence, or iq.
The "error-type MUST be one of the following:

*auth -- retry after providing credentials
*cancel -- do not retry (the error cannot be remedied)
*continue -- proceed (the condition was only a warning)

*modify -- retry after changing the data sent

*wait -- retry after waiting (the error is temporary)
The <error/> element:

*MUST contain a child element corresponding to one of the stanza
error conditions defined under Section 9.3.3 (Defined
Conditions); this element MUST be qualified by the
'urn:ietf:params:xml:ns:xmpp-stanzas' namespace.

*MAY contain a <text/> child element containing XML character data
that describes the error in more detail; this element MUST be
qualified by the 'urn:ietf:params:xml:ns:xmpp-stanzas' namespace
and SHOULD possess an 'xml:lang' attribute specifying the natural
language of the XML character data.

*MAY contain a child element for an application-specific error
condition; this element MUST be qualified by an application-
specific namespace that defines the syntax and semantics of the
element.

The <text/> element is OPTIONAL. If included, it MUST be used only to
provide descriptive or diagnostic information that supplements the
meaning of a defined condition or application-specific condition. It
MUST NOT be interpreted programmatically by an application. It MUST NOT
be used as the error message presented to a human user, but MAY be
shown in addition to the error message associated with the defined
condition element (and, optionally, the application-specific condition
element).

9.3.3. Defined Conditions TOC

The following conditions are defined for use in stanza errors.

9.3.3.1. bad-request TOC

The sender has sent a stanza containing XML that does not conform to
the appropriate schema or that cannot be processed (e.g., an IQ stanza
that includes an unrecognized value of the 'type' attribute, or an
element that is qualified by a recognized namespace but that violates
the defined syntax for the element); the associated error type SHOULD
be "modify".

C: <iqg from='juliet@im.example.com/balcony'
id="some-id'
to="im.example.com'
type="'subscribe'>
<ping xmlns='urn:xmpp:ping'/>
</iqgq>

S: <iq from='im.example.com'

id="some-id'
to='juliet@im.example.com/balcony'
type='error'>

<error type='modify'>
<bad-request xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>

</error>

</iqgq>

9.3.3.2. conflict TOC

Access cannot be granted because an existing resource exists with the
same name or address; the associated error type SHOULD be '"cancel".

C: <iq id='bind_2' type='set'>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
<resource>balcony</resource>
</bind>
</ig>

S: <iqg id='bind_2' type='error'>
<error type='cancel'>
<conflict xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</iqgq>

9.3.3.3. feature-not-implemented TOC

The feature represented in the XML stanza is not implemented by the
intended recipient or an intermediate server and therefore the stanza
cannot be processed (e.g., the entity understands the namespace but
does not recognize the element name); the associated error type SHOULD
be "cancel" or "modify".

C: <iqg from='juliet@im.example.com/balcony'
id="'subscriptionsl'
to="pubsub.example.com'

type='get'>
<pubsub xmlns='http://jabber.org/protocol/pubsub'>
<subscriptions/>
</pubsub>
</iqgq>

E: <iq from='pubsub.example.com
id="'subscriptionsl'
to='juliet@im.example.com/balcony'
type='error'>
<error type='cancel'>
<feature-not-implemented
xmlns="urn:ietf:params:xml:ns:xmpp-stanzas'/>
<unsupported
xmlns="'http://jabber.org/protocol/pubsub#errors'
feature='retrieve-subscriptions'/>
</error>
</iqgq>

9.3.3.4. forbidden TOC

The requesting entity does not possess the required permissions to
perform the action; the associated error type SHOULD be "auth".

C: <presence
from="juliet@im.example.com/balcony'
to='characters@muc.example.com/JulieC'>

<x xmlns='http://jabber.org/protocol/muc'/>
</presence>

E: <presence

from='characters@muc.example.com/JulieC’
to='juliet@im.example.com/balcony'
type='error'>

<error type='auth'>
<forbidden xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>

</error>

</presence>

9.3.3.5. gone TOC

The recipient or server can no longer be contacted at this address,
typically on a permanent basis; the associated error type SHOULD be
"cancel" or "modify" and the error stanza SHOULD include a new address
as the XML character data of the <gone/> element (which MUST be a URI
or IRI at which the entity can be contacted, typically an XMPP IRI as
specified in [XMPP-URI] (Saint-Andre, P., “Internationalized Resource
Identifiers (IRIs) and Uniform Resource Identifiers (URIs) for the
Extensible Messaging and Presence Protocol (XMPP),” February 2008.)).

C: <presence
from="juliet@im.example.com/balcony'
to='characters@muc.example.com/JulieC'>

<x xmlns='http://jabber.org/protocol/muc'/>
</presence>

E: <presence

from='characters@muc.example.com/JulieC’
to='juliet@im.example.com/balcony'
type='error'>

<error type='modify'>
<gone xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'>

xmpp:conference.example.com

</gone>

</error>

</presence>

9.3.3.6. internal-server-error TOC

The server could not process the stanza because of a misconfiguration
or an otherwise-undefined internal server error; the associated error
type SHOULD be "wait" or "cancel".

C: <presence
from='juliet@im.example.com/balcony'
to='characters@muc.example.com/JulieC'>

<X xmlns='http://jabber.org/protocol/muc'/>
</presence>

E: <presence
from="'characters@muc.example.com/JulieC'
to='juliet@im.example.com/balcony'
type='error'>

<error type='wait'>
<internal-server-error
xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</presence>

9.3.3.7. item-not-found TOC

The addressed JID or item requested cannot be found; the associated
error type SHOULD be '"cancel" or "modify".

C: <iq id='unbind_1' type='set'>
<unbind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
<resource>someresource</resource>
</unbind>
</ig>

S: <iqg id='unbind_1' type='error'>
<error type='cancel'>
<item-not-found xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</iqgq>

Note: An application MUST NOT return this error if doing so would
provide information about the intended recipient's network
availability to an entity that is not authorized to know such
information; instead it MUST return a <service-unavailable/> error.

9.3.3.8. jid-malformed

The sending entity has provided or communicated an XMPP address (e.g.,
a value of the 'to' attribute) or aspect thereof (e.g., an XMPP
resource identifier) that does not adhere to the syntax defined under
Section 3 (Addresses); the associated error type SHOULD be "modify".

C: <presence
from="juliet@im.example.com/balcony'
to="'ch@r@cters@muc.example.com/JulieC'>

<x xmlns='http://jabber.org/protocol/muc'/>
</presence>

E: <presence

from="'ch@r@cters@muc.example.com/JulieC'
to='juliet@im.example.com/balcony'
type='error'>

<error type='modify'>
<jid-malformed

xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</presence>

9.3.3.9. not-acceptable TOC

The recipient or server understands the request but is refusing to
process it because it does not meet criteria defined by the recipient
or server (e.g., a local policy regarding stanza size limits or
acceptable words in messages); the associated error type SHOULD be
"modify".

C: <message to='juliet@im.example.com' id='foo'>
<body>[... the-emacs-manual ...]</body>
</message>

S: <message from='juliet@im.example.com' id='foo'>
<error type='modify'>
<not-acceptable
xmlns="urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</message>

TOC

9.3.3.10. not-allowed

The recipient or server does not allow any entity to perform the action
(e.g., sending to entities at a blacklisted domain); the associated
error type SHOULD be "cancel".

C: <presence
from="'juliet@im.example.com/balcony'
to='characters@muc.example.com/JulieC'>

<X xmlns='http://jabber.org/protocol/muc'/>
</presence>

E: <presence

from="'characters@muc.example.com/JulieC'
to='juliet@im.example.com/balcony'
type='error'>

<error type='cancel'>
<not-allowed xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>

</error>

</presence>

9.3.3.11. not-authorized TOC

The sender needs to provide proper credentials before being allowed to
perform the action, or has provided improper credentials; the
associated error type SHOULD be "auth".

C: <presence
from="'juliet@im.example.com/balcony'
to='characters@muc.example.com/JulieC'>

<X xmlns='http://jabber.org/protocol/muc'/>
</presence>

E: <presence
from="'characters@muc.example.com/JulieC'
to='juliet@im.example.com/balcony'>
<error type='auth'>
<not-authorized xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</presence>

TOC

9.3.3.12. not-modified

The item requested has not changed since it was last requested; the
associated error type SHOULD be "continue".

C: <iq from='juliet@capulet.com/balcony'
id='roster2'
type='get'>
<query xmlns='jabber:iqg:roster'>
<headers xmlns='http://jabber.org/protocol/shim'>
<header name='If-None-Match'>
some-long-opaque-string
</header>
</headers>
</query>
</iqgq>

S: <iqg type='error'
to='juliet@capulet.com/balcony'
id='roster2'>
<query xmlns='jabber:iq:roster'>
<headers xmlns='http://jabber.org/protocol/shim'>
<header name='If-None-Match'>
some-long-opaque-string
</header>
</headers>
</query>
<error type='modify'>
<not-modified xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</iqgq>

9.3.3.13. payment-required TOC
The requesting entity is not authorized to access the requested service

because payment is required; the associated error type SHOULD be
"auth".

C: <ig from='romeo@example.net/foo'

id="items1'
to="pubsub.example.com'
type='get'>

<pubsub xmlns='http://jabber.org/protocol/pubsub'>
<items node='my_musings'/>

</pubsub>

</iqgq>

E: <iq from='pubsub.example.com'

id="items1'
to='romeo@example.net/foo'
type='error'>

<error type='auth'>
<payment-required

xmlns="urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</ig>

9.3.3.14. recipient-unavailable TOC

The intended recipient is temporarily unavailable; the associated error
type SHOULD be "wait".

C: <presence
from="'"juliet@im.example.com/balcony'
to='characters@muc.example.com/JulieC'>

<x xmlns='http://jabber.org/protocol/muc'/>
</presence>

E: <presence

from='characters@muc.example.com/JulieC'
to='juliet@im.example.com/balcony'>

<error type='wait'>
<recipient-unavailable

xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</presence>

Note: An application MUST NOT return this error if doing so would
provide information about the intended recipient's network
availability to an entity that is not authorized to know such
information; instead it MUST return a <service-unavailable/> error.

9.3.3.15. redirect TOC

The recipient or server is redirecting requests for this information to
another entity, typically in a temporary fashion (the <gone/> condition
is used for permanent addressing failures); the associated error type
SHOULD be "modify" and the error stanza SHOULD contain the alternate
address in the XML character data of the <redirect/> element (which
MUST be a URI or IRI at which the entity can be contacted, typically an
XMPP IRI as specified in [XMPP-URI] (Saint-Andre, P.,
“Internationalized Resource Identifiers (IRIs) and Uniform Resource
Identifiers (URIs) for the Extensible Messaging and Presence Protocol
(XMPP),"” February 2008.)).

C: <presence
from="'juliet@im.example.com/balcony'
to='characters@muc.example.com/JulieC'>

<x xmlns='http://jabber.org/protocol/muc'/>
</presence>

E: <presence
from="'characters@muc.example.com/JulieC'
to='juliet@im.example.com/balcony'
type='error'>
<error type='modify'>
<redirect xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'>
xmpp:characters@conference.example.org
</redirect>
</error>
</presence>

9.3.3.16. registration-required TOC

The requesting entity is not authorized to access the requested service
because prior registration is required; the associated error type
SHOULD be "auth".

C: <presence
from='juliet@im.example.com/balcony'
to='characters@muc.example.com/JulieC'>

<X xmlns='http://jabber.org/protocol/muc'/>
</presence>

E: <presence

from="'characters@muc.example.com/JulieC'
to='juliet@im.example.com/balcony'>

<error type='auth'>
<registration-required

xmlns="urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</presence>

9.3.3.17. remote-server-not-found TOC

A remote server or service specified as part or all of the JID of the
intended recipient does not exist; the associated error type SHOULD be
"cancel".

C: <presence
from='juliet@im.example.com/balcony'
to='characters@muc.example.com/JulieC'>

<X xmlns='http://jabber.org/protocol/muc'/>
</presence>

E: <presence

from="'characters@muc.example.com/JulieC'
to='juliet@im.example.com/balcony'>

<error type='wait'>
<remote-server-not-found

xmlns="urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</presence>

9.3.3.18. remote-server-timeout TOC

A remote server or service specified as part or all of the JID of the
intended recipient (or required to fulfill a request) could not be

contacted within a reasonable amount of time; the associated error type
SHOULD be "wait".

C: <presence
from="juliet@im.example.com/balcony'
to='characters@muc.example.com/JulieC'>

<x xmlns='http://jabber.org/protocol/muc'/>
</presence>

E: <presence

from='characters@muc.example.com/JulieC’
to='juliet@im.example.com/balcony'>

<error type='wait'>
<remote-server-timeout

xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</presence>

9.3.3.19. resource-constraint TOC

The server or recipient lacks the system resources necessary to service
the request; the associated error type SHOULD be "wait" or "modify".

C: <iqg from='romeo@example.net/foo'

id="items1'
to="'pubsub.example.com'
type='get'>

<pubsub xmlns='http://jabber.org/protocol/pubsub'>
<items node='my_musings'/>

</pubsub>

</iqgq>

E: <igq from='pubsub.example.com'

id="items1'
to='romeo@example.net/foo'
type='error'>

<error type='wait'>
<resource-constraint

xmlns="urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</iq>

TOC

9.3.3.20. service-unavailable

The server or recipient does not currently provide the requested
service; the associated error type SHOULD be "cancel".

C: <message from='romeo@example.net/foo'
to='juliet@im.example.com'>
<body>Hello?</body>
</message>

S: <message from='juliet@im.example.com/foo'
to='romeo@example.net'>
<error type='cancel'>
<service-unavailable
xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</message>

An application MUST return a <service-unavailable/> error instead of
<item-not-found/> or <recipient-unavailable/> if sending one of the
latter errors would provide information about the intended recipient's
network availability to an entity that is not authorized to know such
information.

9.3.3.21. subscription-required TOC

The requesting entity is not authorized to access the requested service
because a prior subscription is required; the associated error type
SHOULD be "auth".

C: <message
from='romeo@example.net/orchard'’
to="'playbot@shakespeare.example.com'

<body>help</body>
</message>

E: <message

from="'playbot@shakespeare.example.com'
to='romeo@example.net/orchard'
type='error'>

<error type='auth'>
<subscription-required

xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</message>

9.3.3.22. undefined-condition TOC

The error condition is not one of those defined by the other conditions
in this list; any error type can be associated with this condition, and
it SHOULD be used only in conjunction with an application-specific
condition.

C: <message
from="northumberland@shakespeare.example'
id='richard2-4.1.247'
to='kingrichard@royalty.england.example'>
<body>My lord, dispatch; read o'er these articles.</body>
<amp xmlns='http://jabber.org/protocol/amp'>
<rule action='notify'
condition="'deliver'
value="'stored'/>
</amp>

S: <message from='example.org'
id="amp1'
to="northumberland@example.net/field'
type='error'>
<amp xmlns='http://jabber.org/protocol/amp'
from='kingrichard@example.org'
status='error'
to="northumberland@example.net/field'>
<rule action='error'
condition="'deliver'
value='stored'/>
</amp>
<error type='modify'>
<undefined-condition
xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
<failed-rules xmlns='http://jabber.org/protocol/amp#errors'>
<rule action='error'
condition="'deliver'
value="'stored'/>
</failed-rules>
</error>
</message>

TOC

9.3.3.23. unexpected-request

The recipient or server understood the request but was not expecting it
at this time (e.g., the request was out of order); the associated error
type SHOULD be "wait" or "modify".

C: <ig from='romeo@example.net/foo'
id="unsub1'
to="'pubsub.example.com'
type='set'>
<pubsub xmlns='http://jabber.org/protocol/pubsub'>
<unsubscribe
node="my_musings'
jid='romeo@example.net'/>
</pubsub>
</iqgq>

E: <iqg from='pubsub.example.com'
id="unsub1'
to='romeo@example.net/foo'
type='error'>
<error type='cancel'>
<unexpected-request
xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
<not-subscribed
xmlns="http://jabber.org/protocol/pubsub#errors'/>
</error>
</iqg>

9.3.3.24. unknown-sender TOC

The stanza 'from' address specified by a connected client is not valid
for the stream (e.g., the stanza does not include a 'from' address when
multiple resources are bound to the stream as described under

Section 8.6.4 (From Addresses)); the associated error type SHOULD be
"modify".

C: <message to='romeo@example.net'>
<body>Wherefore art thou?</body>
</message>

S: <message from='romeo@example.net'
type='error'>
<body>Wherefore art thou?</body>
<error type='modify'>
<unknown-sender xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</message>

9.3.4. Application-Specific Conditions TOC

As noted, an application MAY provide application-specific stanza error
information by including a properly-namespaced child in the error
element. The application-specific element SHOULD supplement or further
qualify a defined element. Thus, the <error/> element will contain two
or three child elements.

<iq id='some-id' type='error'>
<error type='modify'>
<bad-request xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
<too-many-parameters xmlns='http://example.com/ns'/>
</error>
</ig>

<message type='error' id='another-id'>
<error type='modify'>
<undefined-condition
xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
<text xml:lang='en'
xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'>

[... application-specific information ...]
</text>
<too-many-parameters xmlns='http://example.com/ns'/>
</error>
</message>

An entity that receives an application-specific error condition it does
not understand MUST ignore the condition.

9.4. Extended Content TOC

While the message, presence, and IQ stanzas provide basic semantics for
messaging, availability, and request-response interactions, XMPP uses
XML namespaces (see [XML-NAMES] (Layman, A., Hollander, D., Tobin, R.,
and T. Bray, “Namespaces in XML 1.1 (Second Edition),” August 2006.) to
extend the basic stanza syntax for the purpose of providing additional
functionality. Thus a message or presence stanza MAY contain one or
more optional child elements specifying content that extends the
meaning of the message (e.g., an XHTML-formatted version of the message
body as described in [XEP-0071] (Saint-Andre, P., “XHTML-IM,”

September 2007.)), and an IQ stanza of type "get" or "set" MUST contain
one such child element. This child element MAY have any name and MUST
possess a namespace declaration (other than "jabber:client",
"jabber:server", or "http://etherx.jabber.org/streams") that defines
all data contained within the child element. Such a child element is
said to be EXTENDED CONTENT and its namespace name is said to be an
EXTENDED NAMESPACE.

Support for any given extended namespace is OPTIONAL on the part of any
implementation. If an entity does not understand such a namespace, the
entity's expected behavior depends on whether the entity is (1) the
recipient or (2) an entity that is routing the stanza to the recipient.

Recipient: 1If a recipient receives a stanza that contains a child
element it does not understand, it MUST silently ignore that
particular XML data, i.e., it MUST NOT process it or present it
to a user or associated application (if any). In particular:

*If an entity receives a message or presence stanza that
contains XML data qualified by a namespace it does not
understand, the portion of the stanza that qualified by the
unknown namespace MUST be ignored.

*If an entity receives a message stanza whose only child
element is qualified by a namespace it does not understand,
it MUST ignore the entire stanza.

*If an entity receives an IQ stanza of type "get" or "set"
containing a child element qualified by a namespace it does
not understand, the entity MUST return an IQ stanza of type
"error" with an error condition of <service-unavailable/>.

Router: If a routing entity (typically a server) handles a stanza
that contains a child element it does not understand, it MUST
ignore the associated XML data by routing or delivering it
untouched to the recipient.

9.5. Stanza Size TOC

XMPP is optimized for the exchange of relatively large numbers of
relatively small stanzas. A client or server MAY enforce a maximum
stanza size. The maximum stanza size MUST NOT be smaller than 10000
bytes, from the opening "<" character to the closing ">" character. If
an entity receives a stanza that exceeds its maximum stanza size, it
MUST return a <not-acceptable/> stanza error or a <policy-violation/>
stream error.

10. Examples TOC

10.1. Client-to-Server TOC

The following examples show the XMPP data flow for a client negotiating
an XML stream with a server, exchanging XML stanzas, and closing the
negotiated stream. The server is "im.example.com", the server requires
use of TLS, the client authenticates via the SASL PLAIN mechanism as
"juliet@im.example.com", and the client binds a client-submitted
resource to the stream. It is assumed that before sending the initial
stream header, the client has already resolved an SRV record of _xmpp-
client._tcp.im.example.com and has opened a TCP connection to the
advertised port at the resolved IP address.

Note: The alternate steps shown are provided only to illustrate the

protocol for failure cases; they are not exhaustive and would not
necessarily be triggered by the data sent in the examples.

10.1.1. TLS TOC

Step 1: Client initiates stream to server:

C: <stream:stream
from='juliet@im.example.com'
to="im.example.com'
version='1.0"'
xml:lang='en'
xmlns="'jabber:client'
xmlns:stream="http://etherx. jabber.org/streams'>

Step 2: Server responds by sending a response stream header to client:

S: <stream:stream
from="im.example.com'
id="t7AMCin9zjMNwQKDnplntZPIDEI="
to='juliet@im.example.com'
version='1.0"'
xml:lang="'en'
xmlns="'jabber:client'
xmlns:stream="http://etherx. jabber.org/streams'

Step 3: Server sends stream features to client (STARTTLS extension only
at this point):

S: <stream:features>
<starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'>
<required/>
</starttls>
</stream:features>

Step 4: Client sends STARTTLS command to server:
C: <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
Step 5: Server informs client that it is allowed to proceed:
S: <proceed xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

Step 5 (alt): Server informs client that STARTTLS negotiation has
failed and closes both XML stream and TCP connection:

S: <failure xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
S: </stream:stream>

Step 6: Client and server attempt to complete TLS negotiation over the
existing TCP connection (see [TLS] (Dierks, T. and E. Rescorla, “The
Transport Layer Security (TLS) Protocol Version 1.2,” Augqust 2008.) for
details).

Step 7: If TLS negotiation is successful, client initiates a new stream
to server:

C: <stream:stream
from='juliet@im.example.com'
to="im.example.com'
version='1.0"'
xml:lang='en'
xmlns="'jabber:client'
xmlns:stream="http://etherx. jabber.org/streams'>

Step 7 (alt): If TLS negotiation is unsuccessful, server closes TCP
connection.

10.1.2. SASL T0C

Step 8: Server responds by sending a stream header to client along with
any available stream features:

S: <stream:stream
from="im.example.com'
id="'vgKi/bkYME80OAj4r1XMkpucAge4="
to='juliet@im.example.com'
version='1.0"'
xml:lang="en'
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'

S: <stream:features>
<mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<mechanism>DIGEST-MD5</mechanism>
<mechanism>PLAIN</mechanism>
<required/>
</mechanisms>
</stream:features>

Step 9: Client selects an authentication mechanism, in this case
[PLAIN] (Zeilenga, K., “The PLAIN Simple Authentication and Security
Layer (SASL) Mechanism,” August 2006.):

C: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl'
mechanism='PLAIN'>UjBtMzBSMGNrcw==</auth>

Step 10: Server informs client of success:
S: <success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

Step 10 (alt): Server returns error to client:

S: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<not-authorized/>
</failure>

Step 11: Client initiates a new stream to server:

C: <stream:stream
from='juliet@im.example.com'
to="'im.example.com'
version='1.0"'
xml:lang='en'
xmlns="'jabber:client'
xmlns:stream="http://etherx. jabber.org/streams'

10.1.3. Resource Binding TOC

Step 12: Server responds by sending a stream header to client along
with supported features (in this case resource binding):

S: <stream:stream
from="im.example.com'
id="gPybza0zBmaADgxKXu9QuUClbprpo="
to='juliet@im.example.com'
version='1.0"'
xml:lang="en'
xmlns="'jabber:client'
xmlns:stream="http://etherx. jabber.org/streams'>

S: <stream:features>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
<required/>
</bind>
</stream:features>

Upon being so informed that resource binding is mandatory, the client
needs to bind a resource to the stream; here we assume that the client
submits a human-readable text string.

Step 13: Client binds a resource:

C: <iqg id='bind_1' type='set'>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
balcony
</bind>
</iqgq>

Step 14: Server accepts submitted resource identifier and informs
client of successful resource binding:

S: <iq id='bind_1' type='result'>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
<jid>
juliet@im.example.com/balcony
</jid>
</bind>
</iqgq>

10.1.4. Stanza Exchange TOC

Now the client is allowed to send XML stanzas over the negotiated
stream.

C: <message from='juliet@im.example.com/balcony'
to='romeo@example.net'
xml:lang='en'>
<body>Art thou not Romeo, and a Montague?</body>
</message>

If necessary, sender's server negotiates XML streams with intended
recipient's server (see Section 10.2 (Server-to-Server Examples)).
The intended recipient replies and the message is delivered to the
client.

E: <message from='romeo@example.net/orchard'’
to="'juliet@im.example.com/balcony'
xml:lang='en'>
<body>Neither, fair saint, if either thee dislike.</body>
</message>

The client can subsequently send and receive an unbounded number of
subsequent XML stanzas over the stream.

10.1.5. Close TOC
Desiring to send no further messages, the client closes the stream.

C: </stream:stream>

Consistent with the recommended stream closing handshake, the server
closes the stream as well:

S: </stream:stream>

Client now terminates the underlying TCP connection.

10.2. Server-to-Server Examples TOC

The following examples show the data flow for a server negotiating an
XML stream with another server, exchanging XML stanzas, and closing the
negotiated stream. The initiating server ("Serverl") is im.example.com;
the receiving server ("Server2") is example.net and it requires use of
TLS; im.example.com presents a certificate and authenticates via the
SASL EXTERNAL mechanism. It is assumed that before sending the initial
stream header, Serverl has already resolved an SRV record of _xmpp-
server._tcp.example.net and has opened a TCP connection to the
advertised port at the resolved IP address.

Note: The alternate steps shown are provided only to illustrate the

protocol for failure cases; they are not exhaustive and would not
necessarily be triggered by the data sent in the examples.

10.2.1. TLS T0C

Step 1: Serverl initiates stream to Server2:

S1: <stream:stream
from="im.example.com'
to="example.net'
version='1.0"
xmlns="'jabber:server'
xmlns:stream="'http://etherx.jabber.org/streams'>

Step 2: Server2 responds by sending a response stream header to
Serverl:

S2: <stream:stream
from='example.net'
id="hTiXkW+1h9k2SqdGkk/Azi®0J/Q="
to="'im.example.com'
version='1.0"
xmlns="'jabber:server'
xmlns:stream="http://etherx.jabber.org/streams'>

Step 3: Server2 sends stream features to Serverl:

S2: <stream:features>
<starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'>
<required/>
</starttls>
</stream:features>

Step 4: Serverl sends the STARTTLS command to Server2:
S1: <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
Step 5: Server2 informs Serverl that it is allowed to proceed:
S2: <proceed xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

Step 5 (alt): Server2 informs Serverl that STARTTLS negotiation has
failed and closes stream:

S2: <failure xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
S2: </stream:stream>

Step 6: Serverl and Server2 attempt to complete TLS negotiation via TCP
(see [TLS] (Dierks, T. and E. Rescorla, “The Transport Layer Security
(TLS) Protocol Version 1.2,” August 2008.) for details).

Step 7: If TLS negotiation is successful, Serverl initiates a new
stream to Server2:

S1: <stream:stream
from="im.example.com'
to="example.net'
version='1.0"'
xmlns="'jabber:server'
xmlns:stream="http://etherx.jabber.org/streams'>

Step 7 (alt): If TLS negotiation is unsuccessful, Server2 closes TCP
connection.

10.2.2. SASL TOC

Step 8: Server2 sends a response stream header to Serverl along with
available stream features (including a preference for the SASL EXTERNAL
mechanism):

S2: <stream:stream
from="'example.net'
id="RChdjlgj/TIBchT9Keu31zDihH4="
to="im.example.com'
version='1.0"'
xmlns="'jabber:server'
xmlns:stream="http://etherx.jabber.org/streams'>

S2: <stream:features>
<mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<mechanism>EXTERNAL</mechanism>
<required/>
</mechanisms>
</stream:features>

Step 9: Serverl selects the EXTERNAL mechanism, in this case with an
authorization identity encoded according to [BASE64] (Josefsson, S.,
“The Basel6, Base32, and Base64 Data Encodings,” October 2006.):

S1: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl'
mechanism="EXTERNAL'/>eG1lwcC51leGFtcGx1lLmNvbQ</auth>

The decoded authorization identity is "im.example.com".
Step 10: Server2 determines that the authorization identity provided by
Serverl matches the information in the presented certificate and
therefore returns success:

S2: <success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>
Step 10 (alt): Server2 informs Serverl of failed authentication:

S2: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>

<not-authorized/>
</failure>

S2: </stream:stream>

Step 11: Serverl initiates a new stream to Server2:

S1: <stream:stream
from="im.example.com'
to="example.net'
version='1.0"'
xmlns="'jabber:server'
xmlns:stream="http://etherx.jabber.org/streams'>

Step 12: Server2 responds by sending a stream header to Serverl along
with any additional features (or, in this case, an empty features
element):

S2: <stream:stream
from="'example.net'
id="MbbV2FeojySpUIP6J91gaa+TWHM="
to="im.example.com'
version='1.0"'
xmlns="'jabber:server'
xmlns:stream="http://etherx.jabber.org/streams'>

S2: <stream:features/>

10.2.3. Stanza Exchange TOC

Now Serverl is allowed to send XML stanzas to Server2 over the
negotiated stream; here we assume that the transferred stanzas are
those shown earlier for client-to-server communication, albeit over a
server-to-server stream qualified by the 'jabber:server' namespace.
Serverl sends XML stanza to Server2:

S1: <message from='juliet@im.example.com/balcony'
to='romeo@example.net'
xml:lang='en'>
<body>Art thou not Romeo, and a Montague?</body>
</message>

The intended recipient replies and the message is delivered from
Server2 to Serverl.
Server2 sends XML stanza to Serverl:

S2: <message from='romeo@example.net/orchard'
to='juliet@im.example.com/balcony'
xml:lang='en'>
<body>Neither, fair saint, if either thee dislike.</body>
</message>

10.2.4. Close TOC

Desiring to send no further messages, Serverl closes the stream. (In
practice, the stream would most likely remain open for some time, since
Serverl and Server2 do not immediately know if the stream will be
needed for further communication.)

S1: </stream:stream>

Consistent with the recommended stream closing handshake, Server2
closes the stream as well:

S2: </stream:stream>

Serverl now terminates the underlying TCP connection.

11. Server Rules for Processing XML Stanzas TOC

An XMPP server MUST ensure in-order processing of XML stanzas between
any two entities. This includes stanzas sent by a client to its server
for direct processing by the server (e.g., in-order processing of a
roster get and initial presence as described in [rfc3921bis] (Saint-
Andre, P., "Extensible Messaging and Presence Protocol (XMPP): Instant
Messaging and Presence,” March 2009.)).

Beyond the requirement for in-order processing, each server
implementation will contain its own logic for processing stanzas it
receives. Such logic determines whether the server needs to ROUTE a
given stanza to another domain, DELIVER it to a local entity (typically
a connected client associated with a local account), or HANDLE it
directly within the server itself. The following rules apply.

Note: Particular XMPP applications MAY specify delivery rules that
modify or supplement the following rules; for example, a set of
delivery rules for instant messaging and presence applications is
defined in [rfc3921bis] (Saint-Andre, P., “Extensible Messaging and
Presence Protocol (XMPP): Instant Messaging and Presence,”

March 2009.).

T0C

11.1. No 'to' Address

11.1.1. Overview TOC

If the stanza possesses no 'to' attribute, the server MUST handle it
directly on behalf of the entity that sent it, where the meaning of
"handle it directly" depends on whether the stanza is message,
presence, or IQ. Because all stanzas received from other servers MUST
possess a 'to' attribute, this rule applies only to stanzas received
from a local entity (such as a client) that is connected to the server.

11.1.2. Message TOC

If the server receives a message stanza with no 'to' attribute, it MUST
treat the message as if the 'to' address were the bare JID
<node@domain> of the sending entity.

11.1.3. Presence TOC

If the server receives a presence stanza with no 'to' attribute, it
MUST broadcast it to the entities that are subscribed to the sending
entity's presence, if applicable ([rfc3921bis] (Saint-Andre, P.,
“Extensible Messaging and Presence Protocol (XMPP): Instant Messaging
and Presence,” March 2009.) defines the semantics of such broadcasting
for presence applications).

11.1.4. 1IQ TOC

If the server receives an IQ stanza with no 'to' attribute, it MUST
process the stanza on behalf of the account from which received the
stanza, as follows:

1. If the IQ stanza is of type "get" or "set" and the server
understands the namespace that qualifies the payload, the
server MUST handle the stanza on behalf of the sending entity
or return an appropriate error to the sending entity. While the
meaning of "handle" is determined by the semantics of the
qualifying namespace, in general the server shall respond to

the IQ stanza of type '"get" or "set" by returning an
appropriate IQ stanza of type "result" or "error", responding
as if the server were the bare JID of the sending entity. As an
example, if the sending entity sends an IQ stanza of type '"get"
where the payload is qualified by the 'jabber:iq:roster'
namespace (as described in [rfc3921bis] (Saint-Andre, P.,
“Extensible Messaging and Presence Protocol (XMPP): Instant
Messaging and Presence,” March 2009.)), then the server shall
return the roster associated with the sending entity's bare JID
to the particular resource of the sending entity that requested
the roster.

2. If the IQ stanza is of type "get" or "set" and the server does
not understand the namespace that qualifies the payload, the
server MUST return an error to the sending entity, which MUST
be <service-unavailable/>.

3. If the IQ stanza is of type "error" or "result", the server
MUST handle the error or result as appropriate for the request-
response interaction, responding as if the server were the bare
JID of the sending entity.

11.2. Local Domain TOC

If the hostname of the domain identifier portion of the JID contained
in the 'to' attribute matches one of the configured hostnames of the
server itself, the server MUST first determine if the hostname is
serviced by the server or by a specialized local service. If the
latter, the server MUST route the stanza to that service. If the
former, the server MUST proceed as follows.

11.2.1. Mere Domain TOC
If the JID contained in the 'to' attribute is of the form <domain>,

then the server MUST either handle the stanza as appropriate for the
stanza kind or return an error stanza to the sender.

T0C

11.2.2. Domain with Resource

If the JID contained in the 'to' attribute is of the form <domain/
resource>, then the server MUST either handle the stanza as appropriate
for the stanza kind or return an error stanza to the sender.

11.2.3. Node at Domain TOC
Note: For addresses of this type, more detailed rules in the context
of instant messaging and presence applications are provided in
[rfc3921bis] (Saint-Andre, P., “Extensible Messaging and Presence
Protocol (XMPP): Instant Messaging and Presence,” March 2009.).

11.2.3.1. No Such User TOC
If there is no local account associated with the <node@domain>, how the
stanza shall be processed depends on the stanza type.

*For a message stanza, the server MUST return a <service-
unavailable/> stanza error to the sender.

*For a presence stanza, the server SHOULD silently discard the
stanza.

*For an IQ stanza, the server MUST return a <service-unavailable/>
stanza error to the sender.

11.2.3.2. Bare JID TOC
If the JID contained in the 'to' attribute is of the form
<node@domain>, how the stanza shall be processed depends on the stanza
type.

*For a message stanza, if there exists at least one connected
resource for the node the server SHOULD deliver it to at least
one of the connected resources. If there exists no connected
resource, the server MUST either return an error or store the

message offline for delivery when the account next has a
connected resource.

*For a presence stanza, if there exists at least one connected
resource for the node the server SHOULD deliver it to at least
one of the connected resources. If there exists no connected
resource, the server MUST silently discard the stanza.

*For an IQ stanza, the server MUST handle it directly on behalf of
the intended recipient.

11.2.3.3. Full JID TOC

If the JID contained in the 'to' attribute is of the form <node@domain/
resource> and there is no connected resource that exactly matches the
full JID, the stanza shall be processed as if the JID were of the form
<node@domain>.

If the JID contained in the 'to' attribute is of the form <node@domain/
resource> and there is a connected resource that exactly matches the
full JID, the server SHOULD deliver the stanza to that connected
resource.

11.3. Foreign Domain TOC

If the hostname of the domain identifier portion of the JID contained
in the 'to' attribute does not match one of the configured hostnames of
the server itself, the server SHOULD attempt to route the stanza to the
foreign domain (subject to local service provisioning and security
policies regarding inter-domain communication, since such communication
is optional for any given deployment). There are two possible cases.

11.3.1. Existing Stream TOC
If a server-to-server stream already exists between the two domains,

the sender's server shall attempt to route the stanza to the
authoritative server for the foreign domain over the existing stream.

11.3.2. No Existing Stream TOC

If there exists no server-to-server stream between the two domains, the
sender's server shall proceed as follows:

1. Resolve the hostname of the foreign domain (as defined under
Section 15.4 (Server-to-Server Communication)).

2. Negotiate a server-to-server stream between the two domains (as
defined under Section 6 (STARTTLS Negotiation) and Section 7
(SASL Negotiation)).

3. Route the stanza to the authoritative server for the foreign
domain over the newly-established stream.

11.3.3. Error Handling TOC

If routing of a stanza to the intended recipient's server 1is
unsuccessful, the sender's server MUST return an error to the sender.
If resolution of the foreign domain is unsuccessful, the stanza error
MUST be <remote-server-not-found/>. If resolution succeeds but streams
cannot be negotiated, the stanza error MUST be <remote-server-timeout/
>,

If stream negotiation with the intended recipient's server is
successful but the foreign server cannot deliver the stanza to the
recipient, the foreign server shall return an appropriate error to the
sender by way of the sender's server.

12. XML Usage TOC

12.1. Restrictions TOC

The Extensible Messaging and Presence Protocol (XMPP) defines a class
of data objects called XML streams as well as the behavior of computer
programs that process XML streams. XMPP is an application profile or
restricted form of the Extensible Markup Language [XML] (Paoli, J.,
Maler, E., Sperberg-McQueen, C., Yergeau, F., and T. Bray, “Extensible
Markup Language (XML) 1.0 (Fourth Edition),” August 2006.), and a
complete XML stream (including start and end stream tags) is a
conforming XML document.

However, XMPP does not deal with XML documents but with XML streams.
Because XMPP does not require the parsing of arbitrary and complete XML
documents, there is no requirement that XMPP needs to support the full
feature set of [XML] (Paoli, J., Maler, E., Sperberg-McQueen, C.,

Yergeau, F., and T. Bray, “Extensible Markup Language (XML) 1.0 (Fourth
Edition),” August 2006.). In particular, the following features of XML
are prohibited in XMPP:

*comments (as defined in Section 2.5 of [XML] (Paoli, J., Maler,
E., Sperberg-McQueen, C., Yergeau, F., and T. Bray, “Extensible
Markup Language (XML) 1.0 (Fourth Edition),” August 2006.))

*processing instructions (Section 2.6 therein)
*internal or external DTD subsets (Section 2.8 therein)

*internal or external entity references (Section 4.2 therein) with
the exception of predefined entities (Section 4.6 therein)

An XMPP implementation MUST behave as follows with regard to these
features:

1. An XMPP implementation MUST NOT inject characters matching such
features into an XML stream.

2. If an XMPP implementation receives characters matching such
features over an XML stream, it MUST return a stream error,
which SHOULD be <restricted-xml/> but MAY be <bad-format/>.

12.2. XML Namespace Names and Prefixes TOC

XML namespaces (see [XML-NAMES] (Layman, A., Hollander, D., Tobin, R.,
and T. Bray, “Namespaces in XML 1.1 (Second Edition),” August 2006.))
are used within XMPP streams to create strict boundaries of data
ownership. The basic function of namespaces is to separate different
vocabularies of XML elements that are structurally mixed together.
Ensuring that XMPP streams are namespace-aware enables any allowable
XML to be structurally mixed with any data element within XMPP. XMPP-
specific rules for XML namespace names and prefixes are defined in the
following subsections.

12.2.1. Streams Namespace TOC

A streams namespace declaration is REQUIRED in all XML stream headers
and the name of the streams namespace MUST be 'http://
etherx.jabber.org/streams'. If this rule is violated, the entity that
receives the offending stream header MUST return a stream error to the

sending entity, which SHOULD be <invalid-namespace/> but MAY be <bad-
format/>.

The element names of the <stream/> element and its <features/> and
<error/> children MUST be qualified by the streams namespace prefix in
all instances. If this rule is violated, the entity that receives the
offending element MUST return a stream error to the sending entity,
which SHOULD be <bad-format/>.

An implementation SHOULD generate only the 'stream:' prefix for these
elements, and for historical reasons MAY accept only the 'stream:'
prefix. If an entity receives a stream header with a streams namespace
prefix it does not accept, it MUST return a stream error to the sending

entity, which SHOULD be <bad-namespace-prefix/> but MAY be <bad-format/
>,

12.2.2. Default Namespace TOC

A default namespace declaration is REQUIRED and defines the allowable
first-level children of the root stream element. This namespace
declaration MUST be the same for the initial stream and the response
stream so that both streams are qualified consistently. The default
namespace declaration applies to the stream and all first-level child
element sent within a stream unless explicitly qualified by the streams
namespace or another namespace.

A server implementation MUST support the following two default
namespaces:

*jabber:client -- this default namespace is declared when the
stream is used for communication between a client and a server

*jabber:server -- this default namespace is declared when the
stream is used for communication between two servers

A client implementation MUST support the 'jabber:client' default
namespace.

If an implementation accepts a stream that is qualified by the
'jabber:client' or 'jabber:server' namespace, it MUST support the
common attributes (Common Attributes) and basic semantics (Basic
Semantics) of all three core stanza types (message, presence, and IQ).
For historical reasons, an implementation MAY refuse to support any
other default namespaces. If an entity receives a stream header with a
default namespace it does not support, it MUST return an <invalid-
namespace/> stream error.

An implementation MUST NOT generate namespace prefixes for elements
qualified by the default namespace if the default namespace is
'jabber:client' or 'jabber:server'.

Note: The 'jabber:client' and 'jabber:server' namespaces are nearly
identical but are used in different contexts (client-to-server
communication for 'jabber:client' and server-to-server communication
for 'jabber:server'). The only difference between the two is that
the 'to' and 'from' attributes are OPTIONAL on stanzas sent over XML
streams qualified by the 'jabber:client' namespace, whereas they are
REQUIRED on stanzas sent over XML streams qualified by the
'jabber:server' namespace.

An implementation MAY support a default namespace other than
"jabber:client" or "jabber:server". However, because such namespaces
would define applications other than XMPP, they are to be defined in
separate specifications.

12.2.3. Extended Namespaces TOC

An EXTENDED NAMESPACE is an XML namespace that qualifies extended
content as defined under Section 9.4 (Extended Content). For example,
in the following stanza, the extended namespace is 'jabber:iq:roster':

<ig from='juliet@capulet.com/balcony'
id='roster1'

type='get'>
<query xmlns='jabber:iq:roster'/>
</igq>

An XML stanza MAY contain XML data qualified by more than one extended
namespace, either at the direct child level of the stanza (for presence
and message stanzas) or in any mix of levels (for all stanzas).

<presence from='juliet@capulet.com/balcony'>

<c xmlns='http://jabber.org/protocol/caps'
node="http://exodus.jabberstudio.org/caps'
ver='0.9'/>
<x xmlns='vcard-temp:x:update'>
<photo>shal-hash-of-image</photo>

</x>

</presence>

<message to='juliet@capulet.com'>
<body>Hello?</body>
<html xmlns='http://jabber.org/protocol/xhtml-im'>
<body xmlns='http://www.w3.0rg/1999/xhtml'>
<p style='font-weight:bold'>Hello?</t>
</body>
</html>
</message>

<iqg from='juliet@capulet.com/balcony'
id="'roster2'
type='get'>
<query xmlns='jabber:iq:roster'>
<headers xmlns='http://jabber.org/protocol/shim'>
<header name='If-None-Match'>some-long-opaque-string</header>
</headers>
</query>
</iqgq>

An implementation SHOULD NOT generate namespace prefixes for elements
qualified by content (as opposed to stream) namespaces other than the
default namespace. However, if included, the namespace declarations for
those prefixes MUST be included on the stanza root or a child thereof,
not at the level of the stream element (this helps to ensure that any
such namespace declaration is routed and delivered with the stanza,
instead of assumed from the stream).

12.3. Well-Formedness TOC
There are two varieties of well-formedness:

*"XML-well-formedness" in accordance with the definition of "well-
formed" in Section 2.1 of [XML] (Paoli, J., Maler, E., Sperberg-
McQueen, C., Yergeau, F., and T. Bray, “Extensible Markup
Language (XML) 1.0 (Fourth Edition),” August 2006.).

*""Namespace-well-formedness" in accordance with the definition of
"namespace-well-formed" in Section 7 of [XML-NAMES] (Layman, A.,
Hollander, D., Tobin, R., and T. Bray, “Namespaces in XML 1.1
(Second Edition),” August 2006.).

The following rules apply.
An XMPP entity MUST NOT generate data that is not XML-well-formed. An
XMPP entity MUST NOT accept data that is not XML-well-formed; instead

it MUST return an <xml-not-well-formed/> stream error and close the
stream over which the data was received.

An XMPP entity MUST NOT generate data that is not namespace-well-
formed. An XMPP server SHOULD NOT route or deliver data that is not
namespace-well-formed, and SHOULD return a stanza error of <not-
acceptable/> or a stream error of <xml-not-well-formed/> in response to
the receipt of such data.

Note: Because these restrictions were underspecified in an earlier
revision of this specification, it is possible that implementations
based on that revision will send data that does not comply with the
restrictions; an entity SHOULD be liberal in accepting such data.

12.4. Validation TOC

A server is not responsible for ensuring that XML data delivered to a
client or routed to another server is valid, in accordance with the
definition of "valid" provided in Section 2.8 of [XML] (Paoli, J.,
Maler, E., Sperberg-McQueen, C., Yergeau, F., and T. Bray, “Extensible
Markup Language (XML) 1.0 (Fourth Edition),” August 2006.). An
implementation MAY choose to accept or provide only validated data, but
such behavior is OPTIONAL. A client SHOULD NOT rely on the ability to
send data that does not conform to the schemas, and SHOULD ignore any
non-conformant elements or attributes on the incoming XML stream.

Note: The terms "valid" and "well-formed" are distinct in XML.

12.5. 1Inclusion of Text Declaration TOC

Implementations SHOULD send a text declaration before sending a stream
header. Applications MUST follow the rules provided in [XML] (Paoli,
J., Maler, E., Sperberg-McQueen, C., Yergeau, F., and T. Bray,
“Extensible Markup Language (XML) 1.0 (Fourth Edition),” August 2006.)
regarding the circumstances under which a text declaration is included.

12.6. Character Encoding TOC

Implementations MUST support the UTF-8 transformation of Universal
Character Set [UCS2] (International Organization for Standardization,
“Information Technology - Universal Multiple-octet coded Character Set

(UCS) - Amendment 2: UCS Transformation Format 8 (UTF-8),"

October 1996.) characters, as required by [CHARSET] (Alvestrand, H.,
“IETF Policy on Character Sets and Languages,” January 1998.) and
defined in [UTF-8] (Yergeau, F., “UTF-8, a transformation format of ISO
10646, " November 2003.). Implementations MUST NOT attempt to use any
other encoding. If one party to an XML stream detects that the other
party has attempted to send XML data with an encoding other than UTF-8,
it MUST return a stream error, which SHOULD be <unsupported-encoding/>
but MAY be <bad-format/>.

Note: Because it is mandatory for an XMPP implementation to support all
and only the UTF-8 encoding and because UTF-8 always has the same byte
order, an implementation MUST NOT send a byte order mark ("BOM") at the
beginning of the data stream. If an entity receives the Unicode
character U+FEFF anywhere in an XML stream (including as the first
character of the stream), it MUST interpret that character as a zero
width no-break space, not as a byte order mark.

12.7. Whitespace TOC

Except where explicitly disallowed (e.g., during TLS negotiation
(STARTTLS Negotiation) and SASL negotiation (SASL Negotiation)), either
entity MAY send whitespace within the root stream element as separators
between XML stanzas or between any other first-level elements sent over
the stream. One common use for sending such whitespace is explained
under Section 5.7.3 (Handling of Idle Streams).

12.8. XML Versions TOC

XMPP is an application profile of XML 1.0. A future version of XMPP
might be defined in terms of higher versions of XML, but this
specification addresses XML 1.0 only.

13. Compliance Requirements TOC

This section summarizes the specific aspects of the Extensible
Messaging and Presence Protocol that MUST be supported by servers and
clients in order to be considered compliant implementations, as well as
additional protocol aspects that SHOULD be supported. For compliance
purposes, we draw a distinction between core protocols (which MUST be
supported by any server or client, regardless of the specific
application) and instant messaging and presence protocols (which MUST

be supported only by instant messaging and presence applications built
on top of the core protocols). Compliance requirements that apply to
all servers and clients are specified in this section; compliance
requirements for instant messaging and presence applications are
specified in the corresponding section of [rfc3921bis] (Saint-Andre,
P., “Extensible Messaging and Presence Protocol (XMPP): Instant
Messaging and Presence,” March 2009.).

13.1. Servers TOC

A server MUST support the following core protocols in order to be
considered compliant:

*Conformance with [IDNA] (Faltstrom, P., Hoffman, P., and A.
Costello, “Internationalizing Domain Names in Applications
(IDNA),” March 2003.) for domain identifiers, the Nodeprep
(Nodeprep) profile of [STRINGPREP] (Hoffman, P. and M. Blanchet,
“Preparation of Internationalized Strings ("stringprep"),”
December 2002.) for node identifiers, and the Resourceprep
(Resourceprep) profile of [STRINGPREP] (Hoffman, P. and M.
Blanchet, “Preparation of Internationalized Strings
("stringprep"),” December 2002.) for resource identifiers, as
well as enforcement thereof for clients that authenticate with
the server

*XML streams (XML Streams), including TLS negotiation (STARTTLS
Negotiation), SASL negotiation (SASL Negotiation), stream
features (Stream Features), and Resource Binding (Resource

Binding)

*The basic semantics of the three defined stanza types (i.e.,
<message/>, <presence/>, and <iq/>)

*Generation (and, where appropriate, handling) of error syntax and
semantics related to streams, TLS, SASL, and XML stanzas

For backward compatibility with the large deployed base of XMPP
servers, server developers are advised to implement the server dialback
protocol first specified in [RFC3920] (Saint-Andre, P., Ed.,
“Extensible Messaging and Presence Protocol (XMPP): Core,”

October 2004.) and now documented in [XEP-0220] (Saint-Andre, P. and J.
Miller, “Server Dialback,” October 2008.), since that protocol is
widely used for weak identity verification of peer servers in the
absence of domain certificates.

13.2. Clients TOC

A client MUST support the following core protocols in order to be
considered compliant:

*XML streams (XML Streams), including TLS negotiation (STARTTLS
Negotiation), SASL negotiation (SASL Negotiation), stream
features (Stream Features), and Resource Binding (Resource

Binding)

*The basic semantics of the three defined stanza types (i.e.,
<message/>, <presence/>, and <iq/>)

*Handling (and, where appropriate, generation) of error syntax and
semantics related to streams, TLS, SASL, and XML stanzas

In addition, a client SHOULD support the following core protocols:

*Conformance with [IDNA] (Faltstrom, P., Hoffman, P., and A.
Costello, “Internationalizing Domain Names in Applications
(IDNA),” March 2003.) for domain identifiers, the Nodeprep
(Nodeprep) profile of [STRINGPREP] (Hoffman, P. and M. Blanchet,
“Preparation of Internationalized Strings ("stringprep"),”
December 2002.) for node identifiers, and the Resourceprep
(Resourceprep) profile of [STRINGPREP] (Hoffman, P. and M.
Blanchet, “Preparation of Internationalized Strings
("stringprep"),” December 2002.) for resource identifiers.

14. Internationalization Considerations TOC

As specified under Section 12.6 (Character Encoding), XML streams MUST
be encoded in UTF-8.

As specified under Section 5.3 (Stream Attributes), an XML stream
SHOULD include an 'xml:lang' attribute specifying the default language
for any XML character data that is intended to be presented to a human
user. As specified under Section 9.1.5 (xml:lang), an XML stanza SHOULD
include an 'xml:lang' attribute if the stanza contains XML character
data that is intended to be presented to a human user. A server SHOULD
apply the default 'xml:lang' attribute to stanzas it routes or delivers
on behalf of connected entities, and MUST NOT modify or delete
'xml:lang' attributes on stanzas it receives from other entities.

As specified under Section 3 (Addresses), a server MUST support and
enforce [IDNA] (Faltstrom, P., Hoffman, P., and A. Costello,
“Internationalizing Domain Names in Applications (IDNA),” March 2003.)
for domain identifiers, the Nodeprep (Nodeprep) profile of [STRINGPREP]

(Hoffman, P. and M. Blanchet, “Preparation of Internationalized Strings
("stringprep"),” December 2002.) for node identifiers, and the
Resourceprep (Resourceprep) profile of [STRINGPREP] (Hoffman, P. and M.
Blanchet, “Preparation of Internationalized Strings ("stringprep"),”
December 2002.) for resource identifiers; this enables XMPP addresses
to include a wide variety of Unicode characters outside the US-ASCII
range.

15. Security Considerations TOC

15.1. High Security TOC

For the purposes of XMPP communication (client-to-server and server-to-
server), the term "high security" refers to the use of security
technologies that provide both mutual authentication and integrity
checking; in particular, when using certificate-based authentication to
provide high security, a chain-of-trust SHOULD be established out-of-
band, although a shared certification authority signing certificates
could allow a previously unknown certificate to establish trust in-
band. See Section 15.2 (Certificates) regarding certificate validation
procedures.

Implementations MUST support high security. Service provisioning SHOULD
use high security, subject to local security policies.

15.2. Certificates TOC

Channel encryption of an XML stream using Transport Layer Security as
described under Section 6 (STARTTLS Negotiation), and in some cases
also authentication as described under Section 7 (SASL Negotiation), is
commonly based on a digital certificate presented by the receiving
entity (or, in the case of mutual authentication, both the receiving
entity and the initiating entity). This section describes best
practices regarding the generation of digital certificates to be
presented by XMPP entities and the verification of digital certificates
presented by XMPP entities.

T0C

15.2.1. Certificate Generation

15.2.1.1. Server Certificates TOC

In a digital certificate to be presented by an XMPP server (i.e., a
SERVER CERTIFICATE), it is RECOMMENDED for the certificate to include
one or more JIDs (i.e., domain identifiers) associated with domains
serviced at the server. The representations described in the following
sections are RECOMMENDED. These representations are provided in
preference order.

15.2.1.1.1. SRVName T0C

A server's domain identifier SHOULD be represented as an SRVName, i.e.,
as an otherName field of type "id-on-dnsSRV" as specified in [X509-SRV]
(Santesson, S., “Internet X.509 Public Key Infrastructure Subject
Alternative Name for Expression of Service Name,” August 2007.).

15.2.1.1.2. dNSName T0C

A server's domain identifier SHOULD be represented as a dNSName, i.e.,
as a subjectAltName extension of type dNSName.

The dNSName MAY contain the wildcard character '*'. The wildcard
character applies only to the left-most domain name component or
component fragment and matches any single component or component
fragment. For instance, a dNSName of *.example.com matches
foo.example.com but not bar.foo.example.com or example.com itself;
similarly, a dNSName of im*.example.net matches iml.example.net and
im2.example.net but not chat.example.net or example.net itself.

15.2.1.1.3. XmppAddr TOC

A server's domain identifier MAY be represented as an XmppAddr, i.e.,
as a UTF8String within an otherName entity inside the subjectAltName,
using the [ASN.1] (CCITT, “Recommendation X.208: Specification of
Abstract Syntax Notation One (ASN.1),” 1988.) Object Identifier "id-on-
xmppAddr" specified under Section 15.2.1.3 (ASN.1 Object Identifier).

In server certificates, this representation is included only for the
sake of backward-compatibility.

15.2.1.1.4. Common Name TOC

A server's domain identifier SHOULD NOT be represented as a Common
Name; instead, the Common Name field SHOULD be reserved for
representation of a human-friendly name.

15.2.1.1.5. Examples TOC

For our first (relatively simple) example, consider a company called
"Example Products, Inc." It hosts an XMPP service at "im.example.com"
(i.e., user addresses at the service are of the form
"user@im.example.com"), and SRV lookups for the xmpp-client and xmpp-
server services at "im.example.com" yield one machine, called
"x.example.com", as follows:

_xmpp-client._tcp.im.example.com. 400 IN SRV 20 0 5222 x.example.com
_xmpp-server._tcp.im.example.com. 400 IN SRV 20 0 5269 x.example.com

The certificate presented by x.example.com contains the following
representations:

*An otherName type of SRVName (id-on-dnsSRV) containing an
IA5String (ASCII) string of: "_xmpp-client.im.example.com"

*An otherName type of SRVName (id-on-dnsSRV) containing an
IA5String (ASCII) string of: "_xmpp-server.im.example.com"

*A dNSName containing an ASCII string of "im.example.com"

*An otherName type of XmppAddr (id-on-xmppAddr) containing a UTF-8
string of: "im.example.com"

*A CN containing an ASCII string of "Example Products, Inc."

For our second (more complex) example, consider an ISP called "Example
Internet Services". It hosts an XMPP service at "example.net" (i.e.,
user addresses at the service are of the form "user@example.net"), but
SRV lookups for the xmpp-client and xmpp-server services at
"example.net" yield two machines ('"x1.example.net" and
"x2.example.net"), as follows:

_xmpp-client._tcp.example.
_xmpp-client._tcp.example.
_Xmpp-server._tcp.example.

net.
net.
net.

68400 IN SRV 20 0 5222 x1.example.
68400 IN SRV 20 0 5222 x2.example.
68400 IN SRV 20 0 5269 x1.example.

net.
net.
net.

_Xmpp-server._tcp.example.net.

Example Internet Services also hosts chatrooms at chat.example.net, and
provides an xmpp-server SRV record for that service as well (thus
enabling entity from foreign domains to access that service). It also
might provide other such services in the future, so it wishes to
represent a wildcard in its certificate to handle such growth.

The certificate presented by either x1.example.net or x2.example.net
contains the following representations:

*An otherName type of SRVName (id-on-dnsSRV) containing an
IA5String (ASCII) string of: "_xmpp-client.example.net"

*An otherName type of SRVName (id-on-dnsSRV) containing an
IA5String (ASCII) string of: "_xmpp-server.example.net"

*An otherName type of SRVName (id-on-dnsSRV) containing an
IA5String (ASCII) string of: "_xmpp-server.chat.example.net"

*A dNSName containing an ASCII string of "example.net"
A dNSName containing an ASCII string of ".example.net"

*An otherName type of XmppAddr (id-on-xmppAddr) containing a UTF-8
string of: "example.net"

*An otherName type of XmppAddr (id-on-xmppAddr) containing a UTF-8
string of: "chat.example.net"

*A CN containing an ASCII string of "Example Internet Services"

15.2.1.2. Client Certificates TOC

In a digital certificate to be presented by an XMPP client controlled
by a human user (i.e., a CLIENT CERTIFICATE), it is RECOMMENDED for the
certificate to include one or more JIDs associated with an XMPP user.
If included, a JID MUST be represented as an XmppAddr, i.e., as a
UTF8String within an otherName entity inside the subjectAltName, using
the [ASN.1] (CCITT, “Recommendation X.208: Specification of Abstract
Syntax Notation One (ASN.1),” 1988.) Object Identifier "id-on-xmppAddr"
specified under Section 15.2.1.3 (ASN.1 Object Identifier).

68400 IN SRV 20 0 5269 x2.example.net.

15.2.1.3. ASN.1 Object Identifier TOC

The [ASN.1] (CCITT, “Recommendation X.208: Specification of Abstract
Syntax Notation One (ASN.1),” 1988.) Object Identifier "id-on-xmppAddr"
(also called an XmppAddr) is defined as follows.

id-pkix OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
dod(6) internet(1) security(5) mechanisms(5) pkix(7) }

id-on OBJECT IDENTIFIER ::= { id-pkix 8 } -- other name forms
id-on-xmppAddr OBJECT IDENTIFIER ::= { id-on 5 }
XmppAddr ::= UTF8String

As an alternative to the "id-on-xmppAddr" notation, this Object
Identifier MAY be represented in dotted display format (i.e.,
"1.3.6.1.5.5.7.8.5") or in the Uniform Resource Name notation specified
in JURN-0ID] (Mealling, M., “A URN Namespace of Object Identifiers,”
February 2001.) (i.e., "urn:0id:1.3.6.1.5.5.7.8.5").

Thus for example the JID "juliet@im.example.com" as included in a
certificate could be formatted in any of the following three ways:

id-on-xmppAddr: subjectAltName=otherName:id-on-
xmppAddr; UTF8: juliet@im.example.com

dotted display format: subjectAltName=otherName:
1.3.6.1.5.5.7.8.5;UTF8:juliet@im.example.com

URN notation: subjectAltName=otherName:urn:oid:
1.3.6.1.5.5.7.8.5;UTF8:juliet@im.example.com

Use of the "id-on-xmppAddr" format is RECOMMENDED in the generation of
certificates, but all three formats MUST be supported for the purpose
of certificate validation.

15.2.2. Certificate Validation TOC

When an XMPP entity is presented with a server certificate or client
certificate by a peer for the purpose of encryption or authentication
of XML streams as described under Section 6 (STARTTLS Negotiation) and
Section 7 (SASL Negotiation), the entity MUST validate the certificate
to determine if the certificate shall be considered a TRUSTED
CERTIFICATE, i.e., a certificate that is acceptable for encryption and/

or authentication in accordance with the XMPP entity's local service
policies or configured settings.

For both server certificates and client certificates, the validating
entity MUST verify the integrity of the certificate, MUST verify that
the certificate has been properly signed by the issuing Certificate
Authority, and MUST support certificate revocation messages. An
implementation MUST enable a human user to view information about the
full chain of certificates.

The following sections describe certificate validation rules for
server-to-server and client-to-server streams.

15.2.2.1. Server-to-Server Streams TOC

When an XMPP entity (client or server) validates a certificate
presented by an XMPP server, there are three possible cases, as
discussed in the following sections.

15.2.2.1.1. Case #1 TOC

If the server certificate appears to be certified by a chain of
certificates terminating in a trust anchor (as described in Section 6.1
of [X509] (Housley, R., Polk, W., Ford, W., and D. Solo, “Internet X.
509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile,” April 2002.)), the entity MUST check the
certificate for any instances of the SRVName, dNSName, and XmppAddr (in
that order of preference) as described under Section 15.2.1.1.1
(SRVName), Section 15.2.1.1.2 (dNSName), and Section 15.2.1.1.3
(XmppAddr). There are three possible sub-cases:

Sub-Case #1: The entity finds at least one SRVName, dNSName, or
XmppAddr that matches the hostname to which it attempted to
connect; the entity MUST use this represented domain identifier
as the validated identity of the XMPP server. The server
certificate MUST be checked against the hostname as provided by
the entity (client or server), not the hostname as resolved via
the Domain Name System; e.g., if a user specifies a hostname of
"example.net" but a [DNS-SRV] (Gulbrandsen, A., Vixie, P., and L.

Esibov, “A DNS RR for specifying the location of services (DNS
SRV),"” February 2000.) lookup returns "x1.example.net", the
certificate MUST be checked as "example.net". A user-oriented
client MAY provide a configuration setting that enables a human
user to explicitly specify a hostname to be checked for
connection purposes.

Sub-Case #2:

The entity finds no SRVName, dNSName, or XmppAddr that
matches the hostname to which it attempted to connect and a human
user has not permanently accepted the certificate during a
previous connection attempt; the entity MUST NOT use the
represented domain identifier (if any) as the validated identity
of the XMPP server. Instead, if the connecting entity is a user-
oriented client then it MUST either (1) automatically terminate
the connection with a bad certificate error or (2) show the
certificate (including the entire certificate chain) to the user
and give the user the choice of terminating the connecting or
accepting the certificate temporarily (i.e., for this connection
attempt only) or permanently (i.e., for all future connection
attempts) and then continuing with the connection; if a user
permanently accepts a certificate in this way, the client MUST
cache the certificate (or some non-forgeable representation such
as a hash) and in future connection attempts behave as in Sub-
Case #3. (It is the resposibility of the human user to verify the
hash or fingerprint of the certificate with the peer over a
trusted communication layer.) If the connecting entity is an XMPP
server or an automated client, the application SHOULD terminate
the connection (with a bad certificate error) and log the error
to an appropriate audit log; an XMPP server or automated client
MAY provide a configuration setting that disables this check, but
MUST provide a setting that enables the check.

Sub-Case #3: The entity finds no SRVName, dNSName, or XmppAddr that
matches the hostname to which it attempted to connect but a human
user has permanently accepted the certificate during a previous
connection attempt; the entity MUST verify that the cached
certificate was presented and MUST notify the user if the
certificate has changed.

15.2.2.1.2. Case #2 TOC
If the server certificate is certified by a Certificate Authority not

known to the entity, the entity MUST proceed as under Case #1, Sub-Case
#2 or Case #1, Sub-Case #3 as appropriate.

15.2.2.1.3. Case #3 TOC

If the server certificate is self-signed, the entity MUST proceed as
under Case #1, Sub-Case #2 or Case #1, Sub-Case #3 as appropriate.

15.2.2.2. Client-to-Server Streams TOC

When an XMPP server validates a certificate presented by a client,
there are three possible cases, as discussed in the following sections.

15.2.2.2.1. Case #1 T0C

If the client certificate appears to be certified by a chain of
certificates terminating in a trust anchor (as described in Section 6.1
of [X509] (Housley, R., Polk, W., Ford, W., and D. Solo, “Internet X.
509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile,” April 2002.)), the server MUST check the
certificate for any instances of the XmppAddr as described under
Section 15.2.1.3 (ASN.1 Object Identifier). There are three possible
sub-cases:

Sub-Case #1: The server finds one XmppAddr for which the domain
identifier portion of the represented JID matches one of the
configured hostnames of the server itself; the server SHOULD use
this represented JID as the validated identity of the client.

Sub-Case #2: The server finds more than one XmppAddr for which the
domain identifier portion of the represented JID matches one of
the configured hostnames of the server itself; the server SHOULD
use one of these represented JIDs as the validated identity of
the client, choosing among them according to local service
policies or based on the 'to' address of the initial stream
header.

Sub-Case #3: The server finds no XmppAddrs, or finds at least one
XmppAddr but the domain identifier portion of the represented JID
does not match one of the configured hostnames of the server
itself; the server MUST NOT use the represented JID (if any) as
the validated identity of the client but instead MUST either
validate the identity of the client using other means.

T0C

15.2.2.2.2. Case #2

If the client certificate is certified by a Certificate Authority not
known to the server, the server MUST proceed as under Case #1, Sub-Case
#3.

15.2.2.2.3. Case #3 T0C

If the client certificate is self-signed, the server MUST proceed as
under Case #1, Sub-Case #3.

15.2.2.3. Use of Certificates in XMPP Extensions TOC

Certificates MAY be used in extensions to XMPP for the purpose of
application-layer encryption or authentication above the level of XML
streams (e.g., for end-to-end encryption). Such extensions shall define
their own certificate handling rules, which at a minimum SHOULD be
consistent with the rules specified herein but MAY specify additional
rules.

15.3. Client-to-Server Communication TOC

A compliant client implementation MUST support both TLS and SASL for
connections to a server.

The TLS protocol for encrypting XML streams (defined under Section 6
(STARTTLS Negotiation)) provides a reliable mechanism for helping to
ensure the confidentiality and data integrity of data exchanged between
two entities.

The SASL protocol for authenticating XML streams (defined under

Section 7 (SASL Negotiation)) provides a reliable mechanism for
validating that a client connecting to a server is who it claims to be.
Client-to-server communication MUST NOT proceed until the DNS hostname
asserted by the server has been resolved as specified under Section 4
(TCP_Binding). If there is a mismatch between the hostname to which a
client attempted to connect (e.g., "example.net") and the hostname to
which the client actually connects (e.g., '"x1.example.net"), the client
MUST warn a human user about the mismatch and the human user MUST
approve the connection before the client proceeds; however, the client
MAY also allow the user to add the presented hostname to a configured
set of accepted hostnames to expedite future connections.

A client's IP address and method of access MUST NOT be made public by a
server, nor are any connections other than the original server
connection required. This helps to protect the client's server from
direct attack or identification by third parties.

15.4. Server-to-Server Communication TOC

A compliant server implementation MUST support both TLS and SASL for
inter-domain communication.

Because service provisioning is a matter of policy, it is optional for
any given domain to communicate with other domains, and server-to-
server communication can be disabled by the administrator of any given
deployment. If a particular domain enables inter-domain communication,
it SHOULD enable high security.

Administrators might want to require use of SASL for server-to-server
communication to ensure both authentication and confidentiality (e.g.,
on an organization's private network). Compliant implementations SHOULD
support SASL for this purpose.

Server-to-server communication MUST NOT proceed until the DNS hostnames
asserted by both servers have been resolved as specified under

Section 4 (TCP Binding).

15.5. Order of Layers TOC

The order of layers in which protocols MUST be stacked is:

1. TCP
2. TLS
3. SASL
4. XMPP

The rationale for this order is that [TCP] (Postel, J., “Transmission
Control Protocol,” September 1981.) is the base connection layer used

by all of the protocols stacked on top of TCP, [TLS] (Dierks, T. and E.
Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,”
August 2008.) is often provided at the operating system layer, [SASL
(Melnikov, A. and K. Zeilenga, “Simple Authentication and Security
Layer (SASL),” June 2006.) is often provided at the application layer,
and XMPP is the application itself.

15.6. Mandatory-to-Implement Technologies TOC

At a minimum, all implementations MUST support the following
mechanisms:

for confidentiality only: TLS (using the
TLS_RSA_WITH_3DES_EDE_CBC_SHA cipher)

for both confidentiality and authentication: TLS plus the SASL
PLAIN mechanism (See [PLAIN] (Zeilenga, K., “The PLAIN Simple
Authentication and Security Layer (SASL) Mechanism,”
August 2006.)) for password-based authentication and TLS plus the
SASL EXTERNAL mechanism (see Appendix A of [SASL] (Melnikov, A.
and K. Zeilenga, “Simple Authentication and Security Layer
(SASL),” June 2006.)) for non-password-based authentication
(using the TLS_RSA_WITH_3DES_EDE_CBC_SHA cipher supporting peer
certificates)

Naturally, implementations MAY support other ciphers with TLS and MAY
support other SASL mechanisms.

Note: The use of TLS plus SASL PLAIN replaces the SASL DIGEST-MD5
mechanism as XMPP's mandatory-to-implement password-based method for
authentication. For backward-compatibility, implementations are
encouraged to continue supporting the SASL DIGEST-MD5 mechanism as
specified in [DIGEST-MD5] (Leach, P. and C. Newman, “Using Digest
Authentication as a SASL Mechanism,” May 2000.). Refer to [PLAIN
(Zeilenga, K., “The PLAIN Simple Authentication and Security Layer
(SASL) Mechanism,” August 2006.) for important security
considerations related to the SASL PLAIN mechanism.

15.7. SASL Downgrade Attacks TOC

Because the initiating entity chooses an acceptable SASL mechanism from
the list presented by the receiving entity, the initiating entity
depends on the receiving entity's list for authentication. This
dependency introduces the possibility of a downgrade attack if an
attacker can gain control of the channel and therefore present a weak
list of mechanisms. To prevent this attack, the parties SHOULD protect
the channel using TLS before attempting SASL negotiation.

T0C

15.8. Lack of SASL Channel Binding to TLS

The SASL framework itself does not provide a method for binding SASL
authentication to a security layer providing confidentiality and
integrity protection that was negotiated at a lower layer. Such a
binding is known as a "channel binding" (see [CHANNEL] (Williams, N.,
“0On _the Use of Channel Bindings to Secure Channels,” November 2007.)).
Some SASL mechanisms provide channel bindings. However, if a SASL
mechanism does not provide a channel binding, then the mechanism cannot
provide a way to verify that the source and destination end points to
which the lower layer's security is bound are equivalent to the end
points that SASL is authenticating; furthermore, if the end points are
not identical, then the lower layer's security cannot be trusted to
protect data transmitted between the SASL-authenticated entities. In
such a situation, a SASL security layer SHOULD be negotiated that
effectively ignores the presence of the lower-layer security.

15.9. Use of base64 in SASL TOC

Both the client and the server MUST verify any base64 data received
during SASL negotiation (SASL Negotiation). An implementation MUST
reject (not ignore) any characters that are not explicitly allowed by
the base64 alphabet; this helps to guard against creation of a covert
channel that could be used to "leak" information.

An implementation MUST NOT break on invalid input and MUST reject any
sequence of base64 characters containing the pad ('=') character if
that character is included as something other than the last character
of the data (e.g., "=AAA" or "BBBB=CCC"); this helps to guard against
buffer overflow attacks and other attacks on the implementation.

While base 64 encoding visually hides otherwise easily recognized
information (such as passwords), it does not provide any computational
confidentiality.

All uses of base 64 encoding MUST follow the definition in Section 4 of
[BASE64] (Josefsson, S., “The Basel6, Base32, and Base64 Data
Encodings,” October 2006.) and padding bits MUST be set to zero.

15.10. Stringprep Profiles TOC

XMPP makes use of the [NAMEPREP] (Hoffman, P. and M. Blanchet,
“Nameprep: A Stringprep Profile for Internationalized Domain Names
(IDN),” March 2003.) profile of [STRINGPREP] (Hoffman, P. and M.
Blanchet, “Preparation of Internationalized Strings ("stringprep"),”
December 2002.) for processing of domain identifiers; for security
considerations related to Nameprep, refer to the appropriate section of

[NAMEPREP] (Hoffman, P. and M. Blanchet, “Nameprep: A Stringprep
Profile for Internationalized Domain Names (IDN),” March 2003.).

In addition, XMPP defines two profiles of [STRINGPREP] (Hoffman, P. and
M. Blanchet, “Preparation of Internationalized Strings ("stringprep"),”
December 2002.): Nodeprep (Nodeprep) for node identifiers and
Resourceprep (Resourceprep) for resource identifiers.

The Unicode and ISO/IEC 10646 repertoires have many characters that
look similar. In many cases, users of security protocols might perform
visual matching, such as when comparing the names of trusted third
parties. Because it is impossible to map similar-looking characters
without a great deal of context (such as knowing the fonts used),
stringprep does nothing to map similar-looking characters together, nor
to prohibit some characters because they look like others.

A node identifier can be employed as one part of an entity's address in
XMPP. One common usage is as the username of an instant messaging user;
another is as the name of a multi-user conference room; and many other
kinds of entities could use node identifiers as part of their
addresses. The security of such services could be compromised based on
different interpretations of the internationalized node identifier; for
example, a user entering a single internationalized node identifier
could access another user's account information, or a user could gain
access to a hidden or otherwise restricted chat room or service.

A resource identifier can be employed as one part of an entity's
address in XMPP. One common usage is as the name for an instant
messaging user's connected resource; another is as the nickname of a
user in a multi-user conference room; and many other kinds of entities
could use resource identifiers as part of their addresses. The security
of such services could be compromised based on different
interpretations of the internationalized resource identifier; for
example, a user could attempt to initiate multiple connections with the
same name, or a user could send a message to someone other than the
intended recipient in a multi-user conference room.

15.11. Address Spoofing TOC

As discussed in [XEP-0165] (Saint-Andre, P., “Best Practices to Prevent
JID Mimicking,” July 2007.), there are two forms of address spoofing:
forging and mimicking.

15.11.1. Address Forging TOC

In the context of XMPP technologies, address forging occurs when an
entity is able to generate an XML stanza whose 'from' address does not
correspond to the account credentials with which the entity

authenticated onto the network (or an authorization identity provided
during SASL negotiation (SASL Negotiation)). For example, address
forging occurs if an entity that authenticated as
"juliet@im.example.com" is able to send XML stanzas from
"nurse@im.example.com" or "romeo@example.net".

Address forging is difficult in XMPP systems, given the requirement for
sending servers to stamp 'from' addresses and for receiving servers to
verify sending domains via server-to-server authentication. However,
address forging is not impossible, since a rogue server could forge
JIDs at the sending domain by ignoring the stamping requirement. A
rogue server could even forge JIDs at other domains by means of a DNS
poisoning attack if [DNSSEC] (Arends, R., Austein, R., lLarson, M.,
Massey, D., and S. Rose, “DNS Security Introduction and Requirements,”
March 2005.) is not used. This specification does not define methods
for discovering or counteracting such rogue servers.

15.11.2. Address Mimicking TOC

Address mimicking occus when an entity provides legitimate
authentication credentials for and sends XML stanzas from an account
whose JID appears to a human user to be the same as another JID. For
example, in some XMPP clients the address "paypal@example.org" (spelled
with the number one as the final character of the node identifier)
might appear to be the same as "paypal@example.org (spelled with the
lower-case version of the letter "L"), especially on casual visual
inspection; this phenomenon is sometimes called "typejacking". A more
sophisticated example of address mimicking might involve the use of
characters from outside the US-ASCII range, such as the Cherokee
characters U+13DA U+13A2 U+13B5 U+13AC U+13A2 U+13AC U+13D2 instead of
the US-ASCII characters "STPETER".

In some examples of address mimicking, it is unlikely that the average
user could tell the difference between the real JID and the fake JID.
(Naturally, there is no way to distinguish with full certainty which is
the fake JID and which is the real JID; in some communication contexts,
the JID with Cherokee characters might be the real JID and the JID with
US-ASCII characters might thus appear to be the fake JID.) Because JIDs
can contain almost any Unicode character, it can be relatively easy to
mimic some JIDs in XMPP systems. The possibility of address mimicking
introduces security vulnerabilities of the kind that have also plagued
the World wWide Web, specifically the phenomenon known as phishing.
Mimicked addresses that involve characters from only one character set
or from the character set typically employed by a particular user are
not easy to combat (e.g., the simple typejacking attack previously
described, which relies on a surface similarity between the characters
"1" and "1" in some presentations). However, mimicked addresses that
involve characters from more than one character set, or from a

character set not typically employed by a particular user, can be
mitigated somewhat through intelligent presentation. In particular,
every human user of an XMPP technology presumably has a preferred
language (or, in some cases, a small set of preferred languages), which
an XMPP application SHOULD gather either explicitly from the user or
implicitly via the operating system of the user's device. Furthermore,
every language has a range (or a small set of ranges) of characters
normally used to represent that language in textual form. Therefore, an
XMPP application SHOULD warn the user when presenting a JID that uses
characters outside the normal range of the user's preferred
language(s). This recommendation is not intended to discourage
communication across language communities; instead, it recognizes the
existence of such language communities and encourages due caution when
presenting unfamiliar character sets to human users.

For more detailed recommendations regarding prevention of address
mimicking in XMPP systems, refer to [XEP-0165] (Saint-Andre, P., “Best
Practices to Prevent JID Mimicking,” July 2007.).

15.12. Firewalls TOC

Communication using XMPP normally occurs over TCP connections on port
5222 (client-to-server) or port 5269 (server-to-server), as registered
with the IANA (see Section 16 (IANA Considerations)). Use of these
well-known ports allows administrators to easily enable or disable XMPP
activity through existing and commonly-deployed firewalls.

15.13. Denial of Service TOC

[DOS] (Handley, M., Rescorla, E., and IAB, “Internet Denial-of-Service
Considerations,” December 2006.) defines denial of service as follows:

A Denial-of-Service (DoS) attack is an attack in which one or
more machines target a victim and attempt to prevent the victim
from doing useful work. The victim can be a network server,
client or router, a network link or an entire network, an
individual Internet user or a company doing business using the
Internet, an Internet Service Provider (ISP), country, or any
combination of or variant on these.

[XEP-0205] (Saint-Andre, P., “Best Practices to Discourage Denial of
Service Attacks,” July 2007.) provides a detailed discussion of
potential denial of service attacks against XMPP systems and best
practices for preventing such attacks. The recommendations include:

. A server implementation SHOULD enable a server administrator to
limit the number of TCP connections that it will accept from a
given IP address at any one time. If an entity attempts to
connect but the maximum number of TCP connections has been
reached, the receiving server MUST NOT allow the new connection
to proceed.

. A server implementation SHOULD enable a server administrator to
limit the number of TCP connection attempts that it will accept
from a given IP address in a given time period. (While it is
possible to limit the number of connections at the TCP layer
rather than at the XMPP application layer, this is not
advisable because limits at the TCP layer might result in an
inability to access non-XMPP services.) If an entity attempts
to connect but the maximum number of connections has been
reached, the receiving server MUST NOT allow the new connection
to proceed.

. A server MUST NOT process XML stanzas from clients that have

not yet provided appropriate authentication credentials and
MUST NOT process XML stanzas from peer servers whose identity
it has not either authenticated via SASL or weakly verified via
server dialback (see [XEP-0220] (Saint-Andre, P. and J. Miller,
“Server Dialback,” October 2008.)).

. A server implementation SHOULD enable a server administrator to
limit the number of connected resources it will allow an
account to bind at any one time. If a client attempts to bind a
resource but it has already reached the configured number of
allowable resources, the receiving server MUST return a
<resource-constraint/> stanza error.

A server implementation SHOULD enable a server administrator to
limit the size of stanzas it will accept from a connected
client or peer server. If a connected resource or peer server
sends a stanza that violates the upper limit, the receiving
server SHOULD NOT process the stanza and instead SHOULD return
a <not-allowed/> stanza error. Alternatively (e.g., if the
sender has sent an egregiously large stanza), the server MAY
instead return a <policy-violation/> stream error.

A server implementation SHOULD enable a server administrator to
limit the number of XML stanzas that a connected client is
allowed to send to distinct recipients within a given time
period. If a connected client sends too many stanzas to
distinct recipients in a given time period, the receiving
server SHOULD NOT process the stanza and instead SHOULD return
an <unexpected-request/> stanza error.

7. A server implementation SHOULD enable a server administrator to
limit the amount of bandwidth it will allow a connected client
or peer server to use in a given time period.

8. A server implementation MAY enable a server administrator to
limit the types of stanzas (based on the extended content
"payload") that it will allow a connected resource or peer
server send over an active connection. Such limits and
restrictions are a matter of deployment policy.

9. A server implementation MAY refuse to route or deliver any
stanza that it considers to be abusive, with or without
returning an error to the sender.

For more detailed recommendations regarding denial of service attacks
in XMPP systems, refer to [XEP-0205] (Saint-Andre, P., “Best Practices
to Discourage Denial of Service Attacks,” July 2007.).

15.14. Presence Leaks TOC

One of the core aspects of XMPP is presence: information about the
network availability of an XMPP entity (i.e., whether the entity is
currently online or offline). A PRESENCE LEAK occurs when an entity's
network availability is inadvertently and involuntarily revealed to a
second entity that is not authorized to know the first entity's network
availability.

Although presence is discussed more fully in [rfc3921bis] (Saint-Andre,
P., “Extensible Messaging and Presence Protocol (XMPP): Instant
Messaging and Presence,” March 2009.), it is important to note that an
XMPP server MUST NOT leak presence. In particular at the core XMPP
level, real-time addressing and network availability is associated with
a specific connected resource; therefore, any disclosure of a connected
resource's full JID comprises a presence leak. To help prevent such a
presence leak, a server MUST NOT return different stanza errors if a
potential attacker sends XML stanzas to the entity's bare JID
(<node@domain>) or full JID (<node@domain/resource>).

15.15. Directory Harvesting TOC

To help prevent directory harvesting attacks, a server MUST NOT return
different stanza errors if a potential attacker sends XML stanzas to an
existing entity or a nonexistent entity.

16. IANA Considerations TOC

The following sections update the registrations provided in [RFC3920
(Saint-Andre, P., Ed., “Extensible Messaging and Presence Protocol
(XMPP): Core,” October 2004.).

16.1. XML Namespace Name for TLS Data TOC

A URN sub-namespace for STARTTLS negotiation data in the Extensible
Messaging and Presence Protocol (XMPP) is defined as follows. (This
namespace name adheres to the format defined in [XML-REG] (Mealling,
M., “The TETF XML Registry,” January 2004.).)

URI: wurn:ietf:params:xml:ns:xmpp-tls

Specification: XXXX

Description: This is the XML namespace name for STARTTLS
negotiation data in the Extensible Messaging and Presence

Protocol (XMPP) as defined by XXXX.

Registrant Contact: IETF, XMPP Working Group, <xmppwg@xmpp.org>

16.2. XML Namespace Name for SASL Data TOC

A URN sub-namespace for SASL negotiation data in the Extensible
Messaging and Presence Protocol (XMPP) is defined as follows. (This
namespace name adheres to the format defined in [XML-REG] (Mealling,
M., “The TETF XML Registry,” January 2004.).)

URI: wurn:ietf:params:xml:ns:xmpp-sasl

Specification: XXXX

Description: This is the XML namespace name for SASL negotiation
data in the Extensible Messaging and Presence Protocol (XMPP) as

defined by XXXX.

Registrant Contact: IETF, XMPP Working Group, <xmppwg@xmpp.org>

16.3. XML Namespace Name for Stream Errors TOC

A URN sub-namespace for stream error data in the Extensible Messaging
and Presence Protocol (XMPP) is defined as follows. (This namespace
name adheres to the format defined in [XML-REG] (Mealling, M., “The
IETF XML Registry,” January 2004.).)

URI: wurn:ietf:params:xml:ns:xmpp-streams

Specification: XXXX

Description: This is the XML namespace name for stream error data
in the Extensible Messaging and Presence Protocol (XMPP) as

defined by XXXX.

Registrant Contact: IETF, XMPP Working Group, <xmppwg@xmpp.org>

16.4. XML Namespace Name for Resource Binding TOC

A URN sub-namespace for resource binding in the Extensible Messaging
and Presence Protocol (XMPP) is defined as follows. (This namespace
name adheres to the format defined in [XML-REG] (Mealling, M., “The
IETF XML Registry,” January 2004.).)

URI: wurn:ietf:params:xml:ns:xmpp-bind

Specification: XXXX

Description: This is the XML namespace name for resource binding in
the Extensible Messaging and Presence Protocol (XMPP) as defined

by XXXX.

Registrant Contact: IETF, XMPP Working Group, <xmppwg@xmpp.org>

16.5. XML Namespace Name for Stanza Errors TOC

A URN sub-namespace for stanza error data in the Extensible Messaging
and Presence Protocol (XMPP) is defined as follows. (This namespace
name adheres to the format defined in [XML-REG] (Mealling, M., “The
IETF XML Registry,” January 2004.).)

URI: urn:ietf:params:xml:ns:xmpp-stanzas

Specification:
XXXX

Description: This is the XML namespace name for stanza error data
in the Extensible Messaging and Presence Protocol (XMPP) as

defined by XXXX.

Registrant Contact: IETF, XMPP Working Group, <xmppwg@xmpp.org>

16.6. Nodeprep Profile of Stringprep TOC
The Nodeprep profile of stringprep is defined under Nodeprep
(Nodeprep). The IANA has registered Nodeprep in the stringprep profile
registry.
Name of this profile:

Nodeprep
RFC in which the profile is defined:

XXXX

Indicator whether or not this is the newest version of the profile:

This is the first version of Nodeprep

16.7. Resourceprep Profile of Stringprep TOC

The Resourceprep profile of stringprep is defined under Resourceprep
(Resourceprep). The IANA has registered Resourceprep in the stringprep
profile registry.

Name of this profile:

Resourceprep
RFC in which the profile is defined:
XXXX
Indicator whether or not this is the newest version of the profile:

This is the first version of Resourceprep

16.8. GSSAPI Service Name TOC

The IANA has registered "xmpp" as a GSSAPI (Linn, J., “Generic Security
Service Application Program Interface Version 2, Update 1,”

January 2000.) [GSS-API] service name, as defined under Section 7.5
(SASL Definition).

16.9. Port Numbers TOC

The IANA has registered "xmpp-client" and "xmpp-server" as keywords for
[TCP] (Postel, J., “Transmission Control Protocol,” September 1981.)
ports 5222 and 5269 respectively.

These ports SHOULD be used for client-to-server and server-to-server
communications respectively, but other ports MAY be used.

17. References TOC

17.1. Normative References

TOC

[ABNF] Crocker, D. and P. Overell, “Augmented BNF for Syntax
Specifications: ABNF,” STD 68, RFC 5234, January 2008
(TXT).

[BASE64] Josefsson, S., “The Basel6, Base32, and Base64 Data
Encodings,” RFC 4648, October 2006 (TXT).

[CHARSET] Alvestrand, H., “IETF Policy on Character Sets and
Languages,” BCP 18, RFC 2277, January 1998 (TXT, HTML,
XML) .

[DNS] Mockapetris, P., “Domain names - implementation and
specification,” STD 13, RFC 1035, November 1987 (TXT).

[DNS-SRV] Gulbrandsen, A., Vixie, P., and L. Esibov, “A DNS RR

for specifying the location of services (DNS SRV),”
RFC 2782, February 2000 (TXT).

[IDNA] Faltstrom, P., Hoffman, P., and A. Costello,
“Internationalizing Domain Names in Applications
(IDNA),” RFC 3490, March 2003 (TXT).

[LANGTAGS] Phillips, A. and M. Davis, “Tags for Identifying
Languages,” BCP 47, RFC 4646, September 2006 (TXT).

http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc5234
ftp://ftp.isi.edu/in-notes/rfc5234.txt
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc4648
ftp://ftp.isi.edu/in-notes/rfc4648.txt
mailto:Harald.T.Alvestrand@uninett.no
http://tools.ietf.org/html/rfc2277
http://tools.ietf.org/html/rfc2277
ftp://ftp.isi.edu/in-notes/rfc2277.txt
http://xml.resource.org/public/rfc/html/rfc2277.html
http://xml.resource.org/public/rfc/xml/rfc2277.xml
http://tools.ietf.org/html/rfc1035
http://tools.ietf.org/html/rfc1035
ftp://ftp.isi.edu/in-notes/rfc1035.txt
mailto:arnt@troll.no
mailto:levone@microsoft.com
http://tools.ietf.org/html/rfc2782
http://tools.ietf.org/html/rfc2782
ftp://ftp.isi.edu/in-notes/rfc2782.txt
http://tools.ietf.org/html/rfc3490
http://tools.ietf.org/html/rfc3490
ftp://ftp.isi.edu/in-notes/rfc3490.txt
http://tools.ietf.org/html/rfc4646
http://tools.ietf.org/html/rfc4646
ftp://ftp.isi.edu/in-notes/rfc4646.txt

[NAMEPREP]

[PLAIN]

[RANDOM]

[SASL]

[STRINGPREP]

[TCP]

[TERMS]

[TLS]

[UCS2]

[UNICODE]

[UTF-8]

[UUID]

[URI]

[X509]

Hoffman, P. and M. Blanchet, “Nameprep: A Stringprep
Profile for Internationalized Domain Names (IDN),”
RFC 3491, March 2003 (TXT).

Zeilenga, K., “The PLAIN Simple Authentication and
Security Layer (SASL) Mechanism,” RFC 4616,

August 2006 (TXT).

Eastlake, D., Schiller, J., and S. Crocker,
“Randomness Reguirements for Security,” BCP 106,

RFC 4086, June 2005 (TXT).

Melnikov, A. and K. Zeilenga, “Simple Authentication
and Security Layer (SASL),” RFC 4422, June 2006 (TXT).
Hoffman, P. and M. Blanchet, “Preparation of
Internationalized Strings ("stringprep"),” RFC 3454,
December 2002 (TXT).

Postel, J., “Transmission Control Protocol,” STD 7,
RFC 793, September 1981 (TXT).

Bradner, S., “Key words for use in RFCs to Indicate
Requirement Levels,” BCP 14, RFC 2119, March 1997
(TXT, HTML, XML).

Dierks, T. and E. Rescorla, “The Transport Layer
Security (TLS) Protocol Version 1.2,” RFC 5246,
August 2008 (TXT).

International Organization for Standardization,
“Information Technology - Universal Multiple-octet
coded Character Set (UCS) - Amendment 2: UCS
Transformation Format 8 (UTF-8),” ISO Standard 10646-1
Addendum 2, October 1996.

The Unicode Consortium, “The Unicode Standard, Version
3.2.0,"” 2000.

The Unicode Standard, Version 3.2.0 is defined by The
Unicode Standard, Version 3.0 (Reading, MA, Addison-
Wesley, 2000. ISBN 0-201-61633-5), as amended by the
Unicode Standard Annex #27: Unicode 3.1 (http://
www.unicode.org/reports/tr27/) and by the Unicode
Standard Annex #28: Unicode 3.2 (http://
www.unicode.org/reports/tr28/).

Yergeau, F., “UTF-8, a transformation format of ISO
10646,” STD 63, RFC 3629, November 2003 (TXT).

Leach, P., Mealling, M., and R. Salz, “A Universally
Unique IDentifier (UUID) URN Namespace,” RFC 4122,
July 2005 (TXT, HTML, XML).

Berners-lLee, T., Fielding, R., and L. Masinter,
“Uniform Resource Identifier (URI): Generic Syntax,”
STD 66, RFC 3986, January 2005 (TXT, HTML, XML).
Housley, R., Polk, W., Ford, W., and D. Solo,
“Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile,”

RFC 3280, April 2002 (TXT).

http://tools.ietf.org/html/rfc3491
http://tools.ietf.org/html/rfc3491
ftp://ftp.isi.edu/in-notes/rfc3491.txt
http://tools.ietf.org/html/rfc4616
http://tools.ietf.org/html/rfc4616
ftp://ftp.isi.edu/in-notes/rfc4616.txt
http://tools.ietf.org/html/rfc4086
ftp://ftp.isi.edu/in-notes/rfc4086.txt
http://tools.ietf.org/html/rfc4422
http://tools.ietf.org/html/rfc4422
ftp://ftp.isi.edu/in-notes/rfc4422.txt
http://tools.ietf.org/html/rfc3454
http://tools.ietf.org/html/rfc3454
ftp://ftp.isi.edu/in-notes/rfc3454.txt
http://tools.ietf.org/html/rfc793
ftp://ftp.isi.edu/in-notes/rfc793.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
ftp://ftp.isi.edu/in-notes/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
ftp://ftp.isi.edu/in-notes/rfc5246.txt
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc3629
ftp://ftp.isi.edu/in-notes/rfc3629.txt
mailto:paulle@microsoft.com
mailto:michael@refactored-networks.com
mailto:rsalz@datapower.com
http://tools.ietf.org/html/rfc4122
http://tools.ietf.org/html/rfc4122
ftp://ftp.isi.edu/in-notes/rfc4122.txt
http://xml.resource.org/public/rfc/html/rfc4122.html
http://xml.resource.org/public/rfc/xml/rfc4122.xml
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
ftp://ftp.isi.edu/in-notes/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml
http://tools.ietf.org/html/rfc3280
http://tools.ietf.org/html/rfc3280
ftp://ftp.isi.edu/in-notes/rfc3280.txt

[X509-SRV]

[XML]

[XML -NAMES]

Santesson, S., “Internet X.509 Public Key
Infrastructure Subject Alternative Name for Expression
of Service Name,” RFC 4985, August 2007 (TXT).

Paoli, J., Maler, E., Sperberg-McQueen, C., Yergeau,
F., and T. Bray, “Extensible Markup Language (XML) 1.0
(Fourth Edition),” World wWide Web Consortium
Recommendation REC-xml-20060816, August 2006 (HTML).
Layman, A., Hollander, D., Tobin, R., and T. Bray,
“Namespaces in XML 1.1 (Second Edition),” World Wwide
Web Consortium Recommendation REC-xml-
names11-20060816, August 2006 (HTML).

17.2. Informative References

[ACAP]

[ANONYMOUS]

[ASN.1]

[CHANNEL]

[DIGEST-MD5]

[DNSSEC]

[DNS-TXT]

[DOS]

[GSS-API]

[HTTP]

[IMAP]

[IMP-REQS]

TOC
Newman, C. and J. Myers, “ACAP -- Application
Configuration Access Protocol,” RFC 2244,
November 1997 (TXT).
Zeilenga, K., “Anonymous Simple Authentication and
Security Layer (SASL) Mechanism,” RFC 4505, June 2006
(TXT).
CCITT, “Recommendation X.208: Specification of
Abstract Syntax Notation One (ASN.1),” 1988.
wWilliams, N., “On the Use of Channel Bindings to
Secure Channels,” RFC 5056, November 2007 (TXT).
Leach, P. and C. Newman, “Using Digest Authentication
as a SASL Mechanism,” RFC 2831, May 2000 (TXT).
Arends, R., Austein, R., Larson, M., Massey, D., and
S. Rose, “DNS Security Introduction and Requirements,”
RFC 4033, March 2005 (TXT).
Rosenbaum, R., “Using the Domain Name System To Store
Arbitrary String Attributes,” RFC 1464, May 1993
(TXT).
Handley, M., Rescorla, E., and IAB, “Internet Denial-
of-Service Considerations,” RFC 4732, December 2006
(TXT).
Linn, J., “Generic Security Service Application
Program Interface Version 2, Update 1,” RFC 2743,
January 2000 (TXT).
Fielding, R., Gettys, J., Moqul, J., Frystyk, H.,
Masinter, L., Leach, P., and T. Berners-Lee,
“Hypertext Transfer Protocol -- HTTP/1.1,” RFC 2616,
June 1999 (TXT, PS, PDF, HTML, XML).
Crispin, M., “INTERNET MESSAGE ACCESS PROTOCOL -
VERSION 4revl,” RFC 3501, March 2003 (TXT).

http://tools.ietf.org/html/rfc4985
http://tools.ietf.org/html/rfc4985
http://tools.ietf.org/html/rfc4985
ftp://ftp.isi.edu/in-notes/rfc4985.txt
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/2006/REC-xml-names11-20060816
mailto:chris.newman@innosoft.com
mailto:jgmyers@netscape.com
http://tools.ietf.org/html/rfc2244
http://tools.ietf.org/html/rfc2244
ftp://ftp.isi.edu/in-notes/rfc2244.txt
http://tools.ietf.org/html/rfc4505
http://tools.ietf.org/html/rfc4505
ftp://ftp.isi.edu/in-notes/rfc4505.txt
http://tools.ietf.org/html/rfc5056
http://tools.ietf.org/html/rfc5056
ftp://ftp.isi.edu/in-notes/rfc5056.txt
http://tools.ietf.org/html/rfc2831
http://tools.ietf.org/html/rfc2831
ftp://ftp.isi.edu/in-notes/rfc2831.txt
http://tools.ietf.org/html/rfc4033
ftp://ftp.isi.edu/in-notes/rfc4033.txt
mailto:rosenbaum@lkg.dec.com
http://tools.ietf.org/html/rfc1464
http://tools.ietf.org/html/rfc1464
ftp://ftp.isi.edu/in-notes/rfc1464.txt
http://tools.ietf.org/html/rfc4732
http://tools.ietf.org/html/rfc4732
ftp://ftp.isi.edu/in-notes/rfc4732.txt
mailto:jlinn@rsasecurity.com
http://tools.ietf.org/html/rfc2743
http://tools.ietf.org/html/rfc2743
ftp://ftp.isi.edu/in-notes/rfc2743.txt
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
ftp://ftp.isi.edu/in-notes/rfc2616.txt
ftp://ftp.isi.edu/in-notes/rfc2616.ps
ftp://ftp.isi.edu/in-notes/rfc2616.pdf
http://xml.resource.org/public/rfc/html/rfc2616.html
http://xml.resource.org/public/rfc/xml/rfc2616.xml
http://tools.ietf.org/html/rfc3501
http://tools.ietf.org/html/rfc3501
ftp://ftp.isi.edu/in-notes/rfc3501.txt

[IRI]

[LINKLOCAL]

[MAILBOXES]

[POP3]

[PUNYCODE]

[RFC3920]

[RFC3921]

[rfc3921bis]

[SMTP]

[URN-0ID]

[USINGTLS]

[XEP-0001]

[XEP-0045]

[XEP-0060]

[XEP-0071]

[XEP-0077]

[XEP-0124]

[XEP-0156]

Day, M., Aggarwal, S., and J. Vincent, “Instant
Messaging / Presence Protocol Requirements,” RFC 2779,
February 2000 (TXT).

Duerst, M. and M. Suignard, “Internationalized
Resource Identifiers (IRIs),” RFC 3987, January 2005
(TXT).

Cheshire, S., Aboba, B., and E. Guttman, “Dynamic
Configuration of IPv4 Link-Local Addresses,” RFC 3927,
May 2005 (TXT).

Crocker, D., “MAILBOX NAMES FOR COMMON SERVICES, ROLES
AND FUNCTIONS,” RFC 2142, May 1997 (TXT, HTML, XML).
Myers, J. and M. Rose, “Post Office Protocol - Version
3,” STD 53, RFC 1939, May 1996 (TXT).

Costello, A., “Punycode: A Bootstring encoding of
Unicode for Internationalized Domain Names in
Applications (IDNA),” RFC 3492, March 2003 (TXT).
Saint-Andre, P., Ed., “Extensible Messaging and
Presence Protocol (XMPP): Core,” RFC 3920,

October 2004 (TXT, HTML, XML).

Saint-Andre, P., Ed., “Extensible Messaging and
Presence Protocol (XMPP): Instant Messaging and
Presence,” RFC 3921, October 2004 (TXT, HTML, XML).
Saint-Andre, P., “Extensible Messaging and Presence
Protocol (XMPP): Instant Messaging and Presence,”
draft-saintandre-rfc3921bis-08 (work in progress),
March 2009 (TXT).

Klensin, J., “Simple Mail Transfer Protocol,”

RFC 2821, April 2001 (TXT).

Mealling, M., “A URN Namespace of Object Identifiers,”
RFC 3061, February 2001 (TXT).

Newman, C., “Using TLS with IMAP, POP3 and ACAP,”

RFC 2595, June 1999 (TXT).

Saint-Andre, P., “XMPP Extension Protocols,” XSF

XEP 0001, January 2008.

Saint-Andre, P., “Multi-User Chat,” XSF XEP 0045,

July 2007.

Millard, P., Saint-Andre, P., and R. Meijer, “Publish-
Subscribe,” XSF XEP 0060, September 2007.

Saint-Andre, P., “XHTML-IM,” XSF XEP 0071,

September 2007.

Saint-Andre, P., “In-Band Registration,” XSF XEP 0077,
January 2006.

Paterson, I., Smith, D., and P. Saint-Andre,
“Bidirectional-streams Over Synchronous HTTP (BOSH),”
XSF XEP 0124, February 2007.

Hildebrand, J. and P. Saint-Andre, “Discovering
Alternative XMPP Connection Methods,” XSF XEP 0156,
June 2007.

mailto:mday@alum.mit.edu
mailto:sonuag@microsoft.com
mailto:jesse@intonet.com
http://tools.ietf.org/html/rfc2779
http://tools.ietf.org/html/rfc2779
ftp://ftp.isi.edu/in-notes/rfc2779.txt
http://tools.ietf.org/html/rfc3987
http://tools.ietf.org/html/rfc3987
ftp://ftp.isi.edu/in-notes/rfc3987.txt
http://tools.ietf.org/html/rfc3927
http://tools.ietf.org/html/rfc3927
ftp://ftp.isi.edu/in-notes/rfc3927.txt
mailto:dcrocker@imc.org
http://tools.ietf.org/html/rfc2142
http://tools.ietf.org/html/rfc2142
ftp://ftp.isi.edu/in-notes/rfc2142.txt
http://xml.resource.org/public/rfc/html/rfc2142.html
http://xml.resource.org/public/rfc/xml/rfc2142.xml
mailto:jgm+@cmu.edu
mailto:mrose@dbc.mtview.ca.us
http://tools.ietf.org/html/rfc1939
http://tools.ietf.org/html/rfc1939
ftp://ftp.isi.edu/in-notes/rfc1939.txt
http://tools.ietf.org/html/rfc3492
http://tools.ietf.org/html/rfc3492
http://tools.ietf.org/html/rfc3492
ftp://ftp.isi.edu/in-notes/rfc3492.txt
mailto:stpeter@jabber.org
http://tools.ietf.org/html/rfc3920
http://tools.ietf.org/html/rfc3920
ftp://ftp.isi.edu/in-notes/rfc3920.txt
http://xml.resource.org/public/rfc/html/rfc3920.html
http://xml.resource.org/public/rfc/xml/rfc3920.xml
mailto:stpeter@jabber.org
http://tools.ietf.org/html/rfc3921
http://tools.ietf.org/html/rfc3921
http://tools.ietf.org/html/rfc3921
ftp://ftp.isi.edu/in-notes/rfc3921.txt
http://xml.resource.org/public/rfc/html/rfc3921.html
http://xml.resource.org/public/rfc/xml/rfc3921.xml
http://www.ietf.org/internet-drafts/draft-saintandre-rfc3921bis-08.txt
http://www.ietf.org/internet-drafts/draft-saintandre-rfc3921bis-08.txt
http://www.ietf.org/internet-drafts/draft-saintandre-rfc3921bis-08.txt
http://tools.ietf.org/html/rfc2821
ftp://ftp.isi.edu/in-notes/rfc2821.txt
http://tools.ietf.org/html/rfc3061
ftp://ftp.isi.edu/in-notes/rfc3061.txt
mailto:chris.newman@innosoft.com
http://tools.ietf.org/html/rfc2595
ftp://ftp.isi.edu/in-notes/rfc2595.txt
mailto:stpeter@jabber.org
http://www.xmpp.org/extensions/xep-0001.html
mailto:stpeter@jabber.org
http://www.xmpp.org/extensions/xep-0045.html
mailto:
mailto:stpeter@jabber.org
mailto:ralphm@ik.nu
http://www.xmpp.org/extensions/xep-0060.html
http://www.xmpp.org/extensions/xep-0060.html
mailto:stpeter@jabber.org
http://www.xmpp.org/extensions/xep-0071.html
mailto:stpeter@jabber.org
http://www.xmpp.org/extensions/xep-0077.html
mailto:ian.paterson@clientside.co.uk
mailto:dizzyd@jabber.org
mailto:stpeter@jabber.org
http://www.xmpp.org/extensions/xep-0124.html
mailto:jhildebrand@jabber.com
mailto:stpeter@jabber.org
http://www.xmpp.org/extensions/xep-0156.html
http://www.xmpp.org/extensions/xep-0156.html

[XEP-0165]

[XEP-0174]

[XEP-0175]

[XEP-0178]

[XEP-0205]

[XEP-0206]

[XEP-0220]

[XEP-0246]

[XML - FRAG]

[XML-REG]

[XML-SCHEMA]

Saint-Andre, P., “Best Practices to Prevent JID
Mimicking,” XSF XEP 0165, July 2007.

Saint-Andre, P., “Link-Local Messaging,” XSF XEP 0174,
September 2007.

Saint-Andre, P., “Best Practices for Use of SASL
ANONYMOUS,” XSF XEP 0175, September 2006.

Saint-Andre, P. and P. Millard, “Best Practices for
Use of SASL EXTERNAL with Certificates,” XSF XEP 0178,
February 2007.

Saint-Andre, P., “Best Practices to Discourage Denial
of Service Attacks,” XSF XEP 0205, July 2007.
Paterson, I., “XMPP Over BOSH,” XSF XEP 0206,

June 2007.

Saint-Andre, P. and J. Miller, *“Server Dialback,” XSF
XEP 0220, October 2008.

Saint-Andre, P., “End-to-End XML Streams,” XSF

XEP 0246, June 2008.

Grosso, P. and D. Veillard, “XML Fragment
Interchange,” World Wide Web Consortium CR CR-xml-
fragment-20010212, February 2001 (HTML).

Mealling, M., “The IETF XML Registry,” BCP 81,

RFC 3688, January 2004 (TXT).

Thompson, H., Maloney, M., Mendelsohn, N., and D.
Beech, “XML Schema Part 1: Structures Second Edition,”
wWorld Wide Web Consortium Recommendation REC-
xmlschema-1-20041028, October 2004 (HTML).

[XMPP-URI] Saint-Andre, P., “Internationalized Resource
Identifiers (IRIs) and Uniform Resource Identifiers
(URIs) for the Extensible Messaging and Presence
Protocol (XMPP),” RFC 5122, February 2008 (TXT).
Appendix A. Nodeprep TOC

A.1. Introduction

T0C

This appendix defines the "Nodeprep" profile of stringprep. As such, it
specifies processing rules that will enable users to enter
internationalized node identifiers in the Extensible Messaging and
Presence Protocol (XMPP) and have the highest chance of getting the
content of the strings correct. (An XMPP node identifier is the
optional portion of an XMPP address that precedes an XMPP domain
identifier and the '@' separator; it is often but not exclusively

mailto:stpeter@jabber.org
http://www.xmpp.org/extensions/xep-0165.html
http://www.xmpp.org/extensions/xep-0165.html
mailto:stpeter@jabber.org
http://www.xmpp.org/extensions/xep-0174.html
mailto:stpeter@jabber.org
http://www.xmpp.org/extensions/xep-0175.html
http://www.xmpp.org/extensions/xep-0175.html
mailto:stpeter@jabber.org
mailto:
http://www.xmpp.org/extensions/xep-0178.html
http://www.xmpp.org/extensions/xep-0178.html
mailto:stpeter@jabber.org
http://www.xmpp.org/extensions/xep-0205.html
http://www.xmpp.org/extensions/xep-0205.html
mailto:ian.paterson@clientside.co.uk
http://www.xmpp.org/extensions/xep-0206.html
mailto:stpeter@jabber.org
mailto:jeremie@jabber.org
http://www.xmpp.org/extensions/xep-0220.html
mailto:stpeter@jabber.org
http://www.xmpp.org/extensions/xep-0246.html
http://www.w3.org/TR/2001/CR-xml-fragment-20010212
http://www.w3.org/TR/2001/CR-xml-fragment-20010212
http://www.w3.org/TR/2001/CR-xml-fragment-20010212
http://tools.ietf.org/html/rfc3688
ftp://ftp.isi.edu/in-notes/rfc3688.txt
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028
http://tools.ietf.org/html/rfc5122
http://tools.ietf.org/html/rfc5122
http://tools.ietf.org/html/rfc5122
http://tools.ietf.org/html/rfc5122
ftp://ftp.isi.edu/in-notes/rfc5122.txt

associated with an instant messaging username.) These processing rules
are intended only for XMPP node identifiers and are not intended for
arbitrary text or any other aspect of an XMPP address.

This profile defines the following, as required by [STRINGPREP]
(Hoffman, P. and M. Blanchet, “Preparation of Internationalized Strings
("stringprep"),” December 2002.):

*The intended applicability of the profile: internationalized node
identifiers within XMPP

*The character repertoire that is the input and output to
stringprep: Unicode 3.2, specified in Section 2 of this Appendix

*The mappings used: specified in Section 3
*The Unicode normalization used: specified in Section 4

*The characters that are prohibited as output: specified in
Section 5

*Bidirectional character handling: specified in Section 6

A.2. Character Repertoire TOC

This profile uses Unicode 3.2 with the list of unassigned code points
being Table A.1, both defined in Appendix A of [STRINGPREP] (Hoffman,
P. and M. Blanchet, “Preparation of Internationalized Strings
("stringprep"),” December 2002.).

A.3. Mapping TOC

This profile specifies mapping using the following tables from
[STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of
Internationalized Strings ("stringprep"),” December 2002.):

Table B.1

Table B.2

TOC

A.4. Normalization

This profile specifies the use of Unicode normalization form KC, as
described in [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of
Internationalized Strings ("stringprep"),” December 2002.).

A.5. Prohibited Output TOC

This profile specifies the prohibition of using the following tables
from [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of
Internationalized Strings ("stringprep"),” December 2002.).

Table C.1.1
Table C.1.2
Table C.2.1
Table C.2.2
Table C.3
Table C.4
Table C.5
Table C.6
Table C.7
Table C.8
Table C.9

In addition, the following additional Unicode characters are also
prohibited:

U+0022 (QUOTATION MARK), i.e., "
U+0026 (AMPERSAND), i.e., &

U+0027 (APOSTROPHE), i.e., '

U+002F (SOLIDUS), i.e., /

U+003A (COLON), i.e.,

U+003C (LESS-THAN SIGN), i.e., <
U+0O3E (GREATER-THAN SIGN), i.e., >

U+0040 (COMMERCIAL AT), i.e., @

A.6. Bidirectional Characters TOC

This profile specifies checking bidirectional strings, as described in
Section 6 of [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of
Internationalized Strings ("stringprep"),” December 2002.).

A.7. Notes T0C

Because the additional characters prohibited by Nodeprep are prohibited
after normalization, an implementation MUST NOT enable a human user to
input any Unicode code point whose decomposition includes those
characters; such code points include but are not necessarily limited to
the following (refer to [UNICODE] (The Unicode Consortium, “The Unicode
Standard, Version 3.2.0,"” 2000.) for complete information).

*U+2100 (ACCOUNT OF)

*UJ+2101 (ADDRESSED TO THE SUBJECT)
*J+2105 (CARE OF)

*U+2106 (CADA UNA)

*U+226E (NOT LESS-THAN)

*U+226F (NOT GREATER-THAN)

*U+2A74 (DOUBLE COLON EQUAL)
*U+FE13 (SMALL COLON)

*U+FE60 (SMALL AMPERSAND)

*U+FE64 (SMALL LESS-THAN SIGN)
*U+FE65 (SMALL GREATER-THAN SIGN)
*U+FE6B (SMALL COMMERCIAL AT)
*U+FF02 (FULLWIDTH QUOTATION MARK)
*U+FFO6 (FULLWIDTH AMPERSAND)
*U+FFO7 (FULLWIDTH APOSTROPHE)
*U+FFOF (FULLWIDTH SOLIDUS)
*U+FF1A (FULLWIDTH COLON)

*U+FF1C (FULLWIDTH LESS-THAN SIGN)
*U+FF1E (FULLWIDTH GREATER-THAN SIGN)

*U+FF20 (FULLWIDTH COMMERCIAL AT)

Appendix B. Resourceprep TOC

B.1. Introduction TOC

This appendix defines the "Resourceprep" profile of stringprep. As
such, it specifies processing rules that will enable users to enter
internationalized resource identifiers in the Extensible Messaging and
Presence Protocol (XMPP) and have the highest chance of getting the
content of the strings correct. (An XMPP resource identifier is the
optional portion of an XMPP address that follows an XMPP domain
identifier and the '/' separator.) These processing rules are intended
only for XMPP resource identifiers and are not intended for arbitrary
text or any other aspect of an XMPP address.

This profile defines the following, as required by [STRINGPREP]
(Hoffman, P. and M. Blanchet, “Preparation of Internationalized Strings
("stringprep"),” December 2002.):

*The intended applicability of the profile: internationalized
resource identifiers within XMPP

*The character repertoire that is the input and output to
stringprep: Unicode 3.2, specified in Section 2 of this Appendix

*The mappings used: specified in Section 3
*The Unicode normalization used: specified in Section 4

*The characters that are prohibited as output: specified in
Section 5

*Bidirectional character handling: specified in Section 6

B.2. Character Repertoire TOC

This profile uses Unicode 3.2 with the list of unassigned code points
being Table A.1, both defined in Appendix A of [STRINGPREP] (Hoffman,
P. and M. Blanchet, “Preparation of Internationalized Strings
("stringprep"),” December 2002.).

B.3. Mapping TOC

This profile specifies mapping using the following tables from
[STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of
Internationalized Strings ("stringprep"),” December 2002.):

Table B.1

B.4. Normalization TOC

This profile specifies the use of Unicode normalization form KC, as
described in [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of
Internationalized Strings ("stringprep"),” December 2002.).

B.5. Prohibited Output TOC

This profile specifies the prohibition of using the following tables
from [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of
Internationalized Strings ("stringprep"),” December 2002.).

Table C.1.2
Table C.2.1
Table C.2.2
Table C.3
Table C.4
Table C.5
Table C.6
Table C.7
Table C.8

Table C.9

B.6. Bidirectional Characters TOC

This profile specifies checking bidirectional strings, as described in
Section 6 of [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of
Internationalized Strings ("stringprep"),” December 2002.).

Appendix C. XML Schemas TOC

Because validation of XML streams and stanzas is optional, the
following XML schemas are provided for descriptive purposes only. These
schemas are not normative.

The following schemas formally define various XML namespaces used in
the core XMPP protocols, in conformance with [XML-SCHEMA] (Thompson,
H., Maloney, M., Mendelsohn, N., and D. Beech, “XML Schema Part 1:
Structures Second Edition,” October 2004.). For schemas defining the
'jabber:client' and 'jabber:server' namespaces, refer to [rfc3921bis

(Saint-Andre, P., “Extensible Messaging and Presence Protocol (XMPP):
Instant Messaging and Presence,” March 2009.).

C.1. Streams Namespace

<?xml version='1.0' encoding='UTF-8'?>

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema’
targetNamespace="'http://etherx.jabber.org/streams'
xmlns='http://etherx.jabber.org/streams’'
elementFormDefault="unqualified'>

<XS:
<XS:
<XS:
:import
<XS:

<XSs

<XS

import
import
import

import

namespace="'jabber:client'/>
namespace="'jabber:server'/>
namespace='urn:ietf:params:xml:ns:xmpp-sasl'/>
namespace='urn:ietf:params:xml:ns:xmpp-streams'/>
namespace="urn:ietf:params:xml:ns:xmpp-tls'/>

:element name='stream'>

<xs:complexType>
<xs:sequence xmlns:client='jabber:client'

xmlns:server="'jabber:server'>

<xs:element ref='features' minOccurs='0' maxOccurs='1"'/>
<xs:any namespace='urn:ietf:params:xml:ns:xmpp-tls'

<XS:

any

minOccurs='0Q"

maxOccurs="unbounded' />
namespace='urn:ietf:params:xml:ns:xmpp-sasl'
minOccurs='0Q"

maxOccurs="unbounded' />

<xs:choice minOccurs='0' maxOccurs='1"'>
<xs:choice minOccurs='0"' maxOccurs='unbounded'>

<XS:
<XS:
<XS:

element ref='client:message'/>
element ref='client:presence'/>
element ref='client:iq'/>

</xs:choice>
<xs:choice minOccurs='0"' maxOccurs='unbounded'>

<Xs:
<Xs:
:element ref='server:iq'/>

<XS

<XS:
<XS:

element ref='server:message'/>
element ref='server:presence'/>

element ref='db:result'/>
element ref='db:verify'/>

</xs:choice>

</xs:choice>

<xs:element ref='error' minOccurs='0' maxOccurs='1"'/>
</Xs:sequence>
<xs:attribute name='from' type='xs:string' use='optional'/>
<xs:attribute name='id' type='xs:string' use='optional'/>
<xs:attribute name='to' type='xs:string' use='optional'/>
<xs:attribute name='version' type='xs:decimal' use='optional'/>
<xs:attribute ref='xml:lang' use='optional'/>

</xs:complexType>
</xs:element>

<xs:element name='features'>
<xs:complexType>
<xXs:any namespace='##other'/>
</xs:complexType>
</xs:element>

<xs:element name='error'>
<xs:complexType>
<xs:sequence xmlns:err='urn:ietf:params:xml:ns:xmpp-streams'>
<xs:group ref="err:streamérrorGroup'/>
<xs:element ref='err:text'
minOccurs='0Q"
max0ccurs='1"'/>
<xs:any namespace="'##other'
minOccurs='0"
max0ccurs="'1"'/>
</Xs:sequence>
</xs:complexType>
</xs:element>

</xs:schema>

T0C

C.2. Stream Error Namespace

<?xml version='1.0' encoding='UTF-8'?>

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema’
targetNamespace="'urn:ietf:params:xml:ns:xmpp-streams'
xmlns='urn:ietf:params:xml:ns:xmpp-streams'
elementFormDefault="qualified'>

<xs:element name='bad-format' type='empty'/>
<xs:element name='bad-namespace-prefix' type='empty'/>
<xs:element name='conflict' type='empty'/>

<xs:element name='connection-timeout' type='empty'/>
<xs:element name='host-gone' type='empty'/>

<xs:element name='host-unknown' type='empty'/>
<xs:element name='improper-addressing' type='empty'/>
<xs:element name='internal-server-error' type='empty'/>
<xs:element name='invalid-from' type='empty'/>
<xs:element name='invalid-id' type='empty'/>
<xs:element name='invalid-namespace' type='empty'/>
<xs:element name='invalid-xml' type='empty'/>
<xs:element name='not-authorized' type='empty'/>
<xs:element name='policy-violation' type='empty'/>
<xs:element name='remote-connection-failed' type='empty'/>
<xs:element name='resource-constraint' type='empty'/>
<xs:element name='restricted-xml' type='empty'/>
<xs:element name='see-other-host' type='xs:string'/>
<xs:element name='system-shutdown' type='empty'/>
<xs:element name='undefined-condition' type='empty'/>
<xs:element name='unsupported-encoding' type='empty'/>
<xs:element name='unsupported-stanza-type' type='empty'/>
<xs:element name='unsupported-version' type='empty'/>
<xs:element name='xml-not-well-formed' type='empty'/>

<xXs:group name='streamErrorGroup'>
<xs:choice>

<xs:element ref='bad-format'/>
<xs:element ref='bad-namespace-prefix'/>
<xs:element ref='conflict'/>
<xs:element ref='connection-timeout'/>
<xs:element ref='host-gone'/>
<xs:element ref="host-unknown'/>
<xs:element ref="improper-addressing'/>
<xs:element ref='internal-server-error'/>
<xs:element ref='invalid-from'/>
<xs:element ref='invalid-id'/>
<xs:element ref='invalid-namespace'/>
<xs:element ref='invalid-xml'/>
<xs:element ref='not-authorized'/>

<XS

<Xs

<XS:
<XS:
:element

<Xs

:element
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
:element

element
element
element
element
element
element

element
element

</xs:choice>
</Xs:group>

ref="policy-violation'/>
ref='remote-connection-failed'/>
ref='resource-constraint'/>
ref="'restricted-xml'/>
ref="'see-other-host'/>
ref="'system-shutdown'/>
ref="'undefined-condition'/>
ref="unsupported-encoding'/>
ref="'unsupported-stanza-type'/>
ref="'unsupported-version'/>
ref="xml-not-well-formed'/>

<xs:element name='text'>
<xs:complexType>
<xs:simpleContent>
<xs:extension base='xs:string'>
<xs:attribute ref='xml:lang' use='optional'/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>

<xs:simpleType name='empty'>
<xs:restriction base='xs:string'>
<xs:enumeration value='"'/>
</Xs:restriction>

</Xxs:simpleType>

</xs:schema>

TOC

C.3. STARTTLS Namespace

<?xml version='1.0' encoding='UTF-8'?>

<xs:schema
xmlns:xs='http://www.w3.0rg/2001/XMLSchema’
targetNamespace='urn:ietf:params:xml:ns:xmpp-tls'
xmlns='urn:ietf:params:xml:ns:xmpp-tls'
elementFormDefault="qualified'>

<xs:element name='starttls'>
<xs:complexType>
<xs:choice minOccurs='0' maxOccurs='1"'>
<xs:element name='optional' type='empty'/>
<xs:element name='required' type='empty'/>
</xs:choice>
</xs:complexType>
</xs:element>

<xs:element name='proceed' type='empty'/>
<xs:element name='failure' type='empty'/>
<xs:simpleType name='empty'>
<xs:restriction base='xs:string'>
<xs:enumeration value=''/>
</Xxs:restriction>

</Xxs:simpleType>

</Xs:schema>

T0C

C.4. SASL Namespace

<?xml version='1.0' encoding='UTF-8'?>

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema’
targetNamespace="'urn:ietf:params:xml:ns:xmpp-sasl’
xmlns='urn:ietf:params:xml:ns:xmpp-sasl'
elementFormDefault="qualified'>

<xs:element name='mechanisms'>
<xs:complexType>
<XS:sequence>
<xs:element name='mechanism'
minOccurs="'1"
max0ccurs="'unbounded'
type="'xs:NMTOKEN'/>
<xs:choice minOccurs='0' maxOccurs='1"'>
<xs:element name='optional' type='empty'/>
<xs:element name='required' type='empty'/>
</xs:choice>
<xs:any namespace='##other'
minOccurs='0Q"
minOccurs="unbounded'/>
</Xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name='abort' type='empty'/>

<xs:element name='auth'>
<xs:complexType>
<xs:simpleContent>
<xs:extension base='xs:string'>
<xs:attribute name='mechanism'
type="'xs:NMTOKEN'
use='required'/>
</xs:extension>
</Xs:simpleContent>
</xs:complexType>
</xs:element>

<xs:element name='challenge' type='xs:string'/>
<xs:element name='response' type='xs:string'/>
<xs:element name='success' type='xs:string'/>
<xs:element name='failure'>

<xs:complexType>
<Xs:sequence>

<xs:choice minOccurs='0"'>
<xs:element name='aborted' type='empty'/>
<xs:element name='account-disabled' type='empty'/>
<xs:element name='credentials-expired' type='empty'/>
<xs:element name='encryption-required' type='empty'/>
<xs:element name='incorrect-encoding' type='empty'/>
<xs:element name='invalid-authzid' type='empty'/>
<xs:element name='invalid-mechanism' type='empty'/>
<xs:element name='malformed-request' type='empty'/>
<xs:element name='mechanism-too-weak' type='empty'/>
<xs:element name='not-authorized' type='empty'/>
<xs:element name='temporary-auth-failure' type='empty'/>
<xs:element name='transition-needed' type='empty'/>

</xs:choice>

<xs:element ref="text' minOccurs='0' maxOccurs='1"'/>

</Xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name='text'>
<xs:complexType>
<xs:simpleContent>
<xs:extension base='xs:string'>
<xs:attribute ref='xml:lang' use='optional'/>
</Xxs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>

<xs:simpleType name='empty'>
<xs:restriction base='xs:string'>
<xs:enumeration value=''/>
</Xs:restriction>
</xs:simpleType>

</xs:schema>

TOC

C.5. Resource Binding Namespace

<?xml version='1.0' encoding='UTF-8'?>

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema’
targetNamespace="'urn:ietf:params:xml:ns:xmpp-bind'
xmlns='urn:ietf:params:xml:ns:xmpp-bind'
elementFormDefault="qualified'>

<xs:element name='bind'>
<xs:complexType>
<xs:choice>
<xs:choice>
<xs:element name='resource' type='resourceType'/>
<xs:element name='jid' type='fullJIDType'/>
</xs:choice>
<xs:choice>
<xs:element name='optional' type='empty'/>
<xs:element name='required' type='empty'/>
</xs:choice>
</xs:choice>
</xs:complexType>
</xs:element>

<xs:element name='unbind'>
<xs:complexType>
<xs:choice>
<xs:choice>
<xs:element name='resource' type='resourceType'/>
</xs:choice>
<xs:choice>
<xs:element name='optional' type='empty'/>
<xs:element name='required' type='empty'/>
</xs:choice>
</xs:choice>
</xs:complexType>
</xs:element>

<xs:simpleType name='fullJIDType'>
<xs:restriction base='xs:string'>
<xs:minLength value='8'/>
<xs:maxLength value='3071'/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name='resourceType'>
<xs:restriction base='xs:string'>
<xs:minLength value='1'/>
<xs:maxLength value='1023'/>

</Xxs:restriction>
</Xs:simpleType>

</Xs:schema>

T0C

C.6. Stanza Error Namespace

<?xml version='1.0' encoding='UTF-8'?>

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema’
targetNamespace="'urn:ietf:params:xml:ns:xmpp-stanzas'
xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'
elementFormDefault="qualified'>

<xs:element name='bad-request' type='empty'/>
<xs:element name='conflict' type='empty'/>

<xs:element name='feature-not-implemented' type='empty'/>
<xs:element name='forbidden' type='empty'/>

<xs:element name='gone' type='xs:string'/>

<xs:element name='internal-server-error' type='empty'/>
<xs:element name='item-not-found' type='empty'/>
<xs:element name='jid-malformed' type='empty'/>
<xs:element name='not-acceptable' type='empty'/>
<xs:element name='not-allowed' type='empty'/>
<xs:element name='not-authorized' type='empty'/>
<xs:element name='not-modified' type='empty'/>
<xs:element name='payment-required' type='empty'/>
<xs:element name='recipient-unavailable' type='empty'/>
<xs:element name='redirect' type='xs:string'/>
<xs:element name='registration-required' type='empty'/>
<xs:element name='remote-server-not-found' type='empty'/>
<xs:element name='remote-server-timeout' type='empty'/>
<xs:element name='resource-constraint' type='empty'/>
<xs:element name='service-unavailable' type='empty'/>
<xs:element name='subscription-required' type='empty'/>
<xs:element name='undefined-condition' type='empty'/>
<xs:element name='unexpected-request' type='empty'/>
<xs:element name='unknown-sender' type='empty'/>

<xXs:group name='stanzaErrorGroup'>
<xs:choice>

<xs:element ref='bad-request'/>
<xs:element ref='conflict'/>
<xs:element ref='feature-not-implemented'/>
<xs:element ref='forbidden'/>
<xs:element ref='gone'/>
<xs:element ref='internal-server-error'/>
<xs:element ref='item-not-found'/>
<xs:element ref='jid-malformed'/>
<xs:element ref='not-acceptable'/>
<xs:element ref='not-authorized'/>
<xs:element ref='not-allowed'/>
<xs:element ref='not-modified'/>
<xs:element ref='payment-required'/>

<xs:element ref='recipient-unavailable'/>
<xs:element ref='redirect'/>
<xs:element ref='registration-required'/>
<xs:element ref='remote-server-not-found'/>
<xs:element ref='remote-server-timeout'/>
<xs:element ref='resource-constraint'/>
<xs:element ref='service-unavailable'/>
<xs:element ref='subscription-required'/>
<xs:element ref='undefined-condition'/>
<xs:element ref='unexpected-request'/>
<xs:element ref='unknown-sender'/>
</xs:choice>
</Xs:group>

<xs:element name='text'>
<xs:complexType>
<xs:simpleContent>
<xs:extension base='xs:string'>
<xs:attribute ref='xml:lang' use='optional'/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>

<xs:simpleType name='empty'>
<xs:restriction base='xs:string'>
<xs:enumeration value='"'/>
</Xs:restriction>
</Xxs:simpleType>

</xs:schema>

Appendix D. Contact Addresses TOC

Consistent with [MAILBOXES] (Crocker, D., “MAILBOX NAMES FOR COMMON
SERVICES, ROLES AND FUNCTIONS,” May 1997.), an organization that offers
an XMPP service SHOULD provide an Internet mailbox of "XMPP" for
inquiries related to that service, where the host portion of the
resulting mailto URI MUST be the organization's domain, not the domain
of the XMPP service itself (e.g., the XMPP service might be offered at
im.example.com but the Internet mailbox would be <xmpp@example.com>).

T0C

Appendix E. Account Provisioning

Account provisioning is out of scope for this specification. Possible
methods for account provisioning include account creation by a server
administrator and in-band account registration using the
'jabber:iqg:register' namespace as documented in [XEP-0077] (Saint-
Andre, P., “In-Band Registration,” January 2006.).

Appendix F. Differences From RFC 3920 TOC

Based on consensus derived from implementation and deployment
experience as well as formal interoperability testing, the following
substantive modifications were made from RFC 3920.

*Corrected the ABNF syntax for JIDs to prevent zero-length node
identifiers, domain identifiers, and resource identifiers.

*Corrected the nameprep processing rules to require use of the
UseSTD3ASCIIRules flag.

*Recommended or mandated use of the 'from' and 'to' attributes on
stream headers.

*More fully specified stream closing handshake.
*Specified recommended stream reconnection algorithm.

*Specified return of <restricted-xml/> stream error in response to
receipt of prohibited XML features.

*Specified that TLS plus SASL PLAIN is a mandatory-to-implement
technology for client-to-server connections, since implementation
of SASL EXTERNAL is uncommon in XMPP clients, in part because
underlying security features such as end-user X.509 certificates
are not yet widely deployed.

*Added the <account-disabled/>, <credentials-expired/>,
<encryption-required/>, <malformed-request/>, and <transition-
needed/> SASL error conditions to handle error flows mistakenly
left out of RFC 3920 or discussed in RFC 4422 but not in RFC
2222.

*More fully specified binding of multiple resources to the same
stream.

*Added the <unknown-sender/> stanza error condition to provide
appropriate handling of stanzas when multiple resources are bound
to the same stream.

*Added the <not-modified/> stanza error condition to enable
potential ETags usage.

*Removed unnecessary requirement for escaping of characters that
map to certain predefined entities, which do not need to be
escaped in XML.

*Clarified process of DNS SRV lookups and fallbacks.
*Clarified handling of SASL security layers.

*Clarified handling of stream features, regularized use of the
<required/> child element, and defined use of the <optional/>
child element.

*Clarified handling of data that violates the well-formedness
definitions for XML 1.0 and XML namespaces.

*Specified security considerations in more detail, especially with
regard to presence leaks and denial of service attacks.

*Moved historical documentation of the server dialback protocol
from this specification to a separate specification maintained by
the XMPP Standards Foundation.

In addition, numerous changes of an editorial nature were made in order
to more fully specify and clearly explain XMPP.

Appendix G. Copying Conditions TOC

Regarding this entire document or any portion of it, the author makes
no guarantees and is not responsible for any damage resulting from its
use. The author grants irrevocable permission to anyone to use, modify,
and distribute it in any way that does not diminish the rights of
anyone else to use, modify, and distribute it, provided that
redistributed derivative works do not contain misleading author or
version information. Derivative works need not be licensed under
similar terms.

Index

B

Bare JID
c

Connected Resource
D

Domain Identifier
E

Entity

Error Stanza

Extended Content
F

Full JID
I

Initial Stream

IQ Stanza
J

Jabber Identifier
M

Message Stanza
N

Node Identifier
P

Presence Stanza
R

Resource Identifier

Response Stream
S

Stream ID
W

Whitespace Ping
X

XML Stanza

XML Stream

Author's Address

Email:

Peter Saint-Andre
Cisco
psaintan@cisco.com

T0C

mailto:psaintan@cisco.com

	Extensible Messaging and Presence Protocol (XMPP): Coredraft-saintandre-rfc3920bis-09
	Status of this Memo
	Copyright Notice
	Abstract
	Table of Contents
	1. Introduction
	1.1. Overview
	1.2. Functional Summary
	1.3. Conventions
	1.4. Acknowledgements
	1.5. Discussion Venue
	2. Architecture
	2.1. Overview
	2.2. Server
	2.3. Client
	2.4. Network
	3. Addresses
	3.1. Overview
	3.2. Domain Identifier
	3.3. Node Identifier
	3.4. Resource Identifier
	3.5. Determination of Addresses
	4. TCP Binding
	4.1. Scope
	4.2. Hostname Resolution
	4.3. Client-to-Server Communication
	4.4. Server-to-Server Communication
	4.5. Reconnection
	4.6. Other Bindings
	5. XML Streams
	5.1. Overview
	5.2. Stream Security
	5.3. Stream Attributes
	5.3.1. from
	5.3.2. to
	5.3.3. id
	5.3.4. xml:lang
	5.3.5. version
	5.3.6. Summary of Stream Attributes
	5.4. Namespace Declarations
	5.5. Stream Features
	5.6. Restarts During Stream Negotiation
	5.7. Closing a Stream
	5.7.1. With Stream Error
	5.7.2. Without Stream Error
	5.7.3. Handling of Idle Streams
	5.8. Stream Errors
	5.8.1. Rules
	5.8.1.1. Stream Errors Are Unrecoverable
	5.8.1.2. Stream Errors Can Occur During Setup
	5.8.1.3. Stream Errors When the Host is Unspecified or Unknown
	5.8.2. Syntax
	5.8.3. Defined Stream Error Conditions
	5.8.3.1. bad-format
	5.8.3.2. bad-namespace-prefix
	5.8.3.3. conflict
	5.8.3.4. connection-timeout
	5.8.3.5. host-gone
	5.8.3.6. host-unknown
	5.8.3.7. improper-addressing
	5.8.3.8. internal-server-error
	5.8.3.9. invalid-from
	5.8.3.10. invalid-id
	5.8.3.11. invalid-namespace
	5.8.3.12. invalid-xml
	5.8.3.13. not-authorized
	5.8.3.14. policy-violation
	5.8.3.15. remote-connection-failed
	5.8.3.16. resource-constraint
	5.8.3.17. restricted-xml
	5.8.3.18. see-other-host
	5.8.3.19. system-shutdown
	5.8.3.20. undefined-condition
	5.8.3.21. unsupported-encoding
	5.8.3.22. unsupported-stanza-type
	5.8.3.23. unsupported-version
	5.8.3.24. xml-not-well-formed
	5.8.4. Application-Specific Conditions
	5.9. Simplified Stream Examples
	6. STARTTLS Negotiation
	6.1. Overview
	6.2. Rules
	6.2.1. Data Formatting
	6.2.2. Order of Negotiation
	6.3. Process
	6.3.1. Exchange of Stream Headers and Stream Features
	6.3.2. Initiation of STARTTLS Negotiation
	6.3.2.1. STARTTLS Command
	6.3.2.2. Failure Case
	6.3.2.3. Proceed Case
	6.3.3. TLS Negotiation
	6.3.3.1. Rules
	6.3.3.2. TLS Failure
	6.3.3.3. TLS Success
	7. SASL Negotiation
	7.1. Overview
	7.2. Rules
	7.2.1. Mechanism Preferences
	7.2.2. Mechanism Offers
	7.2.3. Data Formatting
	7.2.4. Security Layers
	7.2.5. Simple Usernames
	7.2.6. Authorization Identities
	7.2.7. Realms
	7.2.8. Round Trips
	7.3. Process
	7.3.1. Exchange of Stream Headers and Stream Features
	7.3.2. Initiation
	7.3.3. Challenge-Response Sequence
	7.3.4. Abort
	7.3.5. Failure
	7.3.6. Success
	7.4. SASL Errors
	7.4.1. aborted
	7.4.2. account-disabled
	7.4.3. credentials-expired
	7.4.4. encryption-required
	7.4.5. incorrect-encoding
	7.4.6. invalid-authzid
	7.4.7. invalid-mechanism
	7.4.8. malformed-request
	7.4.9. mechanism-too-weak
	7.4.10. not-authorized
	7.4.11. temporary-auth-failure
	7.4.12. transition-needed
	7.5. SASL Definition
	8. Resource Binding
	8.1. Overview
	8.2. Advertising Support
	8.3. Generation of Resource Identifiers
	8.4. Server-Generated Resource Identifier
	8.4.1. Success Case
	8.4.2. Error Cases
	8.4.2.1. Resource Constraint
	8.4.2.2. Not Allowed
	8.5. Client-Submitted Resource Identifier
	8.5.1. Success Case
	8.5.2. Error Cases
	8.5.2.1. Bad Request
	8.5.2.2. Conflict
	8.5.3. Retries
	8.6. Binding Multiple Resources
	8.6.1. Support
	8.6.2. Binding an Additional Resource
	8.6.3. Unbinding a Resource
	8.6.3.1. Success Case
	8.6.3.2. Error Cases
	8.6.3.2.1. Unbind Not Supported
	8.6.3.2.2. No Such Resource
	8.6.4. From Addresses
	9. XML Stanzas
	9.1. Common Attributes
	9.1.1. to
	9.1.1.1. Client-to-Server Streams
	9.1.1.2. Server-to-Server Streams
	9.1.2. from
	9.1.2.1. Client-to-Server Streams
	9.1.2.2. Server-to-Server Streams
	9.1.3. id
	9.1.4. type
	9.1.5. xml:lang
	9.2. Basic Semantics
	9.2.1. Message Semantics
	9.2.2. Presence Semantics
	9.2.3. IQ Semantics
	9.3. Stanza Errors
	9.3.1. Rules
	9.3.2. Syntax
	9.3.3. Defined Conditions
	9.3.3.1. bad-request
	9.3.3.2. conflict
	9.3.3.3. feature-not-implemented
	9.3.3.4. forbidden
	9.3.3.5. gone
	9.3.3.6. internal-server-error
	9.3.3.7. item-not-found
	9.3.3.8. jid-malformed
	9.3.3.9. not-acceptable
	9.3.3.10. not-allowed
	9.3.3.11. not-authorized
	9.3.3.12. not-modified
	9.3.3.13. payment-required
	9.3.3.14. recipient-unavailable
	9.3.3.15. redirect
	9.3.3.16. registration-required
	9.3.3.17. remote-server-not-found
	9.3.3.18. remote-server-timeout
	9.3.3.19. resource-constraint
	9.3.3.20. service-unavailable
	9.3.3.21. subscription-required
	9.3.3.22. undefined-condition
	9.3.3.23. unexpected-request
	9.3.3.24. unknown-sender
	9.3.4. Application-Specific Conditions
	9.4. Extended Content
	9.5. Stanza Size
	10. Examples
	10.1. Client-to-Server
	10.1.1. TLS
	10.1.2. SASL
	10.1.3. Resource Binding
	10.1.4. Stanza Exchange
	10.1.5. Close
	10.2. Server-to-Server Examples
	10.2.1. TLS
	10.2.2. SASL
	10.2.3. Stanza Exchange
	10.2.4. Close
	11. Server Rules for Processing XML Stanzas
	11.1. No 'to' Address
	11.1.1. Overview
	11.1.2. Message
	11.1.3. Presence
	11.1.4. IQ
	11.2. Local Domain
	11.2.1. Mere Domain
	11.2.2. Domain with Resource
	11.2.3. Node at Domain
	11.2.3.1. No Such User
	11.2.3.2. Bare JID
	11.2.3.3. Full JID
	11.3. Foreign Domain
	11.3.1. Existing Stream
	11.3.2. No Existing Stream
	11.3.3. Error Handling
	12. XML Usage
	12.1. Restrictions
	12.2. XML Namespace Names and Prefixes
	12.2.1. Streams Namespace
	12.2.2. Default Namespace
	12.2.3. Extended Namespaces
	12.3. Well-Formedness
	12.4. Validation
	12.5. Inclusion of Text Declaration
	12.6. Character Encoding
	12.7. Whitespace
	12.8. XML Versions
	13. Compliance Requirements
	13.1. Servers
	13.2. Clients
	14. Internationalization Considerations
	15. Security Considerations
	15.1. High Security
	15.2. Certificates
	15.2.1. Certificate Generation
	15.2.1.1. Server Certificates
	15.2.1.1.1. SRVName
	15.2.1.1.2. dNSName
	15.2.1.1.3. XmppAddr
	15.2.1.1.4. Common Name
	15.2.1.1.5. Examples
	15.2.1.2. Client Certificates
	15.2.1.3. ASN.1 Object Identifier
	15.2.2. Certificate Validation
	15.2.2.1. Server-to-Server Streams
	15.2.2.1.1. Case #1
	15.2.2.1.2. Case #2
	15.2.2.1.3. Case #3
	15.2.2.2. Client-to-Server Streams
	15.2.2.2.1. Case #1
	15.2.2.2.2. Case #2
	15.2.2.2.3. Case #3
	15.2.2.3. Use of Certificates in XMPP Extensions
	15.3. Client-to-Server Communication
	15.4. Server-to-Server Communication
	15.5. Order of Layers
	15.6. Mandatory-to-Implement Technologies
	15.7. SASL Downgrade Attacks
	15.8. Lack of SASL Channel Binding to TLS
	15.9. Use of base64 in SASL
	15.10. Stringprep Profiles
	15.11. Address Spoofing
	15.11.1. Address Forging
	15.11.2. Address Mimicking
	15.12. Firewalls
	15.13. Denial of Service
	15.14. Presence Leaks
	15.15. Directory Harvesting
	16. IANA Considerations
	16.1. XML Namespace Name for TLS Data
	16.2. XML Namespace Name for SASL Data
	16.3. XML Namespace Name for Stream Errors
	16.4. XML Namespace Name for Resource Binding
	16.5. XML Namespace Name for Stanza Errors
	16.6. Nodeprep Profile of Stringprep
	16.7. Resourceprep Profile of Stringprep
	16.8. GSSAPI Service Name
	16.9. Port Numbers
	17. References
	17.1. Normative References
	17.2. Informative References
	Appendix A. Nodeprep
	A.1. Introduction
	A.2. Character Repertoire
	A.3. Mapping
	A.4. Normalization
	A.5. Prohibited Output
	A.6. Bidirectional Characters
	A.7. Notes
	Appendix B. Resourceprep
	B.1. Introduction
	B.2. Character Repertoire
	B.3. Mapping
	B.4. Normalization
	B.5. Prohibited Output
	B.6. Bidirectional Characters
	Appendix C. XML Schemas
	C.1. Streams Namespace
	C.2. Stream Error Namespace
	C.3. STARTTLS Namespace
	C.4. SASL Namespace
	C.5. Resource Binding Namespace
	C.6. Stanza Error Namespace
	Appendix D. Contact Addresses
	Appendix E. Account Provisioning
	Appendix F. Differences From RFC 3920
	Appendix G. Copying Conditions
	Index
	Author's Address

