Network Working Group N. Sakimura _T0C

Nomura Research

Internet-Draft .
Institute

Intended status:

June 17, 2010
Standards Track !

Expires: December 19,
2010

Request by Reference ver.1.0 for OAuth 2.0
draft-sakimura-oauth-requrl-00

Abstract

This document defines a simple mechanism of making request by reference
in OAuth 2.0. The reference is given as URL and request parameters are
defined as JSON object which is pointed by the URL.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.) [RFC2119].

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF). Note that other groups may also distribute working
documents as Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

This Internet-Draft will expire on December 19, 2010.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-
info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted
from this document must include Simplified BSD License text as
described in Section 4.e of the Trust Legal Provisions and are provided
without warranty as described in the Simplified BSD License.

Table of Contents

Introduction

Terminology

Formats

3.1. JSON OAuth Request

3.2. Signed JSON OAuth Request
3.3. Encrypted Format

Obtaining End-User Authorization
4.1. Authorization Server Response
IANA Considerations

Security Considerations
Acknowledgements

References

8.1. Normative References

8.2. Informative References

8 Author's Address

[

>

R

1. Introduction TOC

An additional parameter 'request_url' is introduced as one of the
request parameter of the flows of OAuth 2.0 (Hammer-Lahav, E., “The
OAuth 2.0 Protocol,” June 2010.) [oauth2].

There are a few cases that this is useful such as:

1. When the User Agent looks like it would not like long URLs - It
is entirely possible that some extension makes a long URL. For
example, the client might want to send a public key with the
request.

2. When the server wants the request non-repudiation - The server
might want the request to be non-repudiable. It is possible to
sign the request dynamically, but a simpler way of doing it is
to make a signed request file and put it on the client. It can
just be done by a client utility or something, so that the
private key does not even have to reside on the server nor the
client needs to program anything.

3. When the server wants the requests to be cacheable - If the
request_url comes with sha256 hash as defined in FIPS180-2
(U.S. Department of Commerce and National Institute of
Standards and Technology, “Secure Hash Signature Standard,” .)
[FIPS180-2]of the file, the server knows if the file has
changed without fetching it, so it does not have to re-fetch a
same file, which is a win as well.

4. When the client wants to simplify the implementation without
compromising the security If the request parameters go through
the Browser, it may be tampered at the browser even if TLS was
used. This implies we need to have signature on the request as
well. However, if HTTPS request_url was used, it is not going
to be tampered, thus we now do not have to sign the request.
This simplifies the implementation.

2. Terminology TOC
Following parameter is defined as a request and response parameter.

request_url The absolute URL from which request parameters are
obtained.

Request File This is a physical or logical file that the
'request_url' points to. It is in JSON format. It MAY include all
the potential variables including extension and non-oauth
variables. Request File can optionally be digitally signed. To
sign the request file, magic signatures (Panzer, J. and B.
Laurie, “Magic Signatures,” February 2010.) [magic_signatures] is
used.

3. Formats TOC

There are several format that this document defines.

3.1. JSON OAuth Request T0C

The OAuth authorization request parameters are included in the entity
body of the HTTP response using the "application/json" media type as
defined by JSON (Crockford, D., “The application/json Media Type for

JavaScript Object Notation (JSON),” July 2006.) [RFC4627]. It MAY
include any other parameters as well. The parameters are serialized
into a JSON structure by adding each parameter at the highest structure
level. Parameter names and string values are included as JSON strings.
Numerical values are included as JSON numbers.

For example:

HTTP/1.1 200 OK
Content-Type: application/json

{
"redirect_url":"https://example.com/rp/endpoint_url",
"cliend_id":"http://example.com/rp/",
"state":"ab890f0d"
}
3.2. Signed JSON OAuth Request TOC

To achieve non-repudiation and ascertained provenance of the JSON OAuth
Request when it was obtained through unprotected channel, one MAY use
asymmetric signature as in [magic signatures] (Panzer, J. and B.
Laurie, “Magic Signatures,” February 2010.) where parameters are as
follows.

"data_type":"application/json"
"encoding":"base64url"
"alg":"RSA-SHA256"
"data":base64url encoded JSON representation of the assertion.
This specification defines an additional parameter.
*certs_url

Value: A URL from which one can retrieve PEM format X.509
certificate. It is used as the replacement of "keyhash". Only
either of the keyhash or certs_url MAY be used. When certs_url
was used, the processor MUST obtain the certificate from this
URL and use public key contained in it to verify the
signature. In addition, the processor MUST verify the domain
of the "request_url" against the CN of the certificate.

Any other variables can be included in any level of the JSON structure.
The processor MUST ignore the parameter that it does not understand.

Following is the non-normative illustration of a signed response.
(Note: Line wraps in the values are only for the display purpose. New
lines MUST be escaped in JSON values.)

{
"data_type":"application/json",
"encoding":"base64url",
"alg":"RSA-SHA256",
"data":"base64url encoded data without padding",
"sigs": [
{
"value": "EvGSD2vi8qYcveHnb-rrlok@7qnCXjn8YSeCDDX1bhILSabgvNsPpbe76
up8w63i2fWHvVLKJIzeGLKfyHg8ZomQ",
"certs_url": "https://rp.example.com/certs.pem"
}
]
}
3.3. Encrypted Format TOC

The HTTP response may be encrypted by the receiving party's public key
for audience restriction and confidentiality. If it is encrypted, the
data is formatted as JSON Encryption Envelope (Bradeley, J. and N.
Sakimura, “JSON Encryption Envelope,” February 2010.) [json_enc]. The
following parameter MUST be set as follows:

*data_type - "http://openid.net/specs/ab/1.0#openid2json-enc"

Following is a non-normative example of encrypted payload.

{
"class_id":"http://jsonenc.info/json-encryption/1.0/",
"data_type":"http://openid.net/specs/ab/1.0#openid2json-enc",
"enc_data":"b5guwzFgvrIUd7XcXIObAFrg-....069VKhY",
"enc_type_asy":"http://www.w3.0rg/2001/04/xmlenc#rsa-oaep-mgfip",
"enc_type":"http://www.w3.0rg/2001/04/xmlenc#aes256-chc",
"enc_key":"mHM2ongmZ1lPVexe....21sBNdw",
"enc_iv":"_b4INfYIRwLPZdxB2L7wJg",
"enc_ref":"https://rp.example.com/rpf_ax.json",
"enc_thumbprint":"511e7a9cfebedal6fa70f553c2dfa3c473e06423"

}

T0C

4. Obtaining End-User Authorization

When the client is obtaining End-User Authorization as in Section 3 of
OAuth 2.0 (Hammer-Lahav, E., “The OAuth 2.0 Protocol,” June 2010.)
[oauth2] , the client MAY use request_url instead of any but 'state'
parameter. The corresponding Request File MUST have all the necessary
parameters which was to be queried in this request. When sending the
request_url, the client MAY provide the sha256 hash as defined in
FIPS180-2 (U.S. Department of Commerce and National Institute of
Standards and Technology, “Secure Hash Signature Standard,” .)
[FIPS180-2]of the Request File as a fragment to it to assist the cache
utilization decision of the Authorization Server.

For example, the client directs the end-user's user-agent to make the
following HTTPS request (line breaks are for display purposes only):

GET /authorize?request_url=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1
Host: server.example.com

The Request File MAY be signed AND/OR encrypted.

Upon receipt of 'requst_url' in the request, the authorization server
MUST send a GET request to the 'request_url' to retrieve the content of
the Request File unless it is already cached at the Authorization
Server.

If the response was signed AND/OR encrypted, it has to be decoded
accordingly before being processed.

Then, the Authorization Server MUST reconstruct the complete client
request from the original HTTP request and the content of the Request
File. Then, the process continues as described in Section 3 of OAuth
2.0 (Hammer-Lahav, E., “The OAuth 2.0 Protocol,” June 2010.) [oauth2]

4.1. Authorization Server Response TOC

Authorization Server Response is created and sent to the client as in
Section 3.1 of OAuth 2.0 (Hammer-Lahav, E., “The OAuth 2.0 Protocol,”
June 2010.) [oauth2]

In addition, this document defines additional 'error' values as
follows:

*"invalid_request_url" - The provided request_url was not
available.

*"invalid_request_file_format" - The Request File format was
invalid.

*"invalid_request_params" - The parameter set provided in the
Request File was invalid.

5. IANA Considerations TOC

This document makes no request of IANA.

6. Security Considerations TOC

When obtaining the Request FIle, the Authorization Server SHOULD use
either HTTP over TLS 1.2 as defined in RFC5246 (Dierks, T. and E.
Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,"”
August 2008.) [RFC5246] AND/OR Signed JSON Request.

If the Request File contains personally identifiable or sensitive
information, the "request_url" MUST be of one-time use and MUST have
large enough entropy deemed necessary with applicable security policy.
For higher security requirement, using Encryption described in
(Encrypted Format) is strongly recommended.

[[ToDo]]

7. Acknowledgements TOC

Following people contributed to creating this document through the
OpenID Artifact Binding 1.0 (openid-specs-ab@openid.net, “OpenID
Artifact Binding 1.0,” June 2010.) [openid_ab]

Breno de Medeiros (Google), Hideki Nara (TACT), John Bradley (Wingaa)
<author>, Nat Sakimura (NRI) <author/editor>, Ryo Itou (Yahoo! Japan)
Many people joined the discussion of the above at IIW and other
occasions including Allen Tom (Yahoo!), George Fletcher (AOL), Dick
Hardt (Independent) [[ToDo]]

In addition following people contributed to this and previous versions
through The OAuth Working Group.

David Recordon (Facebook), Luke Shepard (Facebook), James H. Manger
(Telstra), Marius Scurtescu (Google), John Panzer (Google), Dirk
Balfanz (Google).

8. References TOC

8.1. Normative References TOC

[FIPS180-2]

[RFC2119]

[RFC4627]

[RFC5246]

[json_enc]

[magic_signatures]

[oauth2]

U.S. Department of Commerce and National
Institute of Standards and Technology, “Secure
Hash Signature Standard,” FIPS 180-2.

Defines Secure Hash Algorithm 256 (SHA256)
Bradner, S., “Key words for use in RFCs to
Indicate Requirement Levels,” BCP 14, RFC 2119,
March 1997 (TXT, HTML, XML).

Crockford, D., “The application/json Media Type
for JavaScript Object Notation (JSON),”

RFC 4627, July 2006 (TXT).

Dierks, T. and E. Rescorla, “The Transport Layer

Security (TLS) Protocol Version 1.2,” RFC 5246,
August 2008 (TXT).

Bradeley, J. and N. Sakimura, “JSON Encryption
Envelope,” February 2010.

Panzer, J. and B. Laurie, “Magic Signatures,”
February 2010.

Hammer-Lahav, E., “The OAuth 2.0 Protocol,”
June 2010.

8.2. Informative References

T0C

[openid_ab] openid-specs-ab@openid.net, “OpenID Artifact Binding
1.0,” June 2010.

Author's Address

T0C

Nat Sakimura
Nomura Research Institute
1-6-5 Marunouchi, Marunouchi Kitaguchi Bldg.
Chiyoda-ku, Tokyo 100-0005
Japan
Phone: +81-3-5533-2111
Email: n-sakimura@nri.co.jp

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627
http://www.rfc-editor.org/rfc/rfc4627.txt
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://www.rfc-editor.org/rfc/rfc5246.txt
http://jsonenc.info/1.0/
http://jsonenc.info/1.0/
http://salmon-protocol.googlecode.com/svn/trunk/draft-panzer-magicsig-00.html
http://tools.ietf.org/html/draft-ietf-oauth-v2-08
mailto:n-sakimura@nri.co.jp

	Request by Reference ver.1.0 for OAuth 2.0draft-sakimura-oauth-requrl-00
	Abstract
	Requirements Language
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Formats
	3.1. JSON OAuth Request
	3.2. Signed JSON OAuth Request
	3.3. Encrypted Format
	4. Obtaining End-User Authorization
	4.1. Authorization Server Response
	5. IANA Considerations
	6. Security Considerations
	7. Acknowledgements
	8. References
	8.1. Normative References
	8.2. Informative References
	Author's Address

