
Internet Engineering Task Force N. Sakimura, Ed.

Internet-Draft Nomura Research Institute

Intended status: Standards Track J. Bradley

Expires: April 29, 2012 independent

October 27, 2011

Request by JSON ver.1.0 for OAuth 2.0

draft-sakimura-oauth-requrl-01

Abstract

The authorization request in OAuth 2.0 utilizes query parameter

serizalization. This specification defines the authorization request

using JWT serialization. The request is sent thorugh 'request'

parameter or by reference through 'request_uri' that points to the JWT.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on April 29, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Requirements Language

*

*

2. Terminology

3. Authorization Request Object

4. Authorization Request

5. Authorization Server Response

6. IANA Considerations

7. Security Considerations

8. Acknowledgements

9. References

9.1. Normative References

9.2. Informative References

Authors' Addresses

1. Introduction

The parameters 'request' and 'request_url' are introduced as additional

authorization request parameters for the OAuth 2.0 [oauth2] flows. The

'request' parameter is a JSON Web Token (JWT) [JWT] whose body holds

the JSON encoded OAuth 2.0 authorization request parameters. The [JWT]

can be passed to the authorization endpoint by reference, in which case

the parameter 'request_uri' is used instead of the 'request'.

Using [JWT] as the request encoding instead of query parameters has

several advantages:

The request may be signed so that integrity check may be

implemented. If a suitable algorithm is used for the signing,

then non-repudiation property may be obtained in addition.

The request may be encrypted so that end-to-end confidentiality

may be obtained even if in the case TLS connection is

terminated at a gateway or similar device.

There are a few cases that request by reference is useful such as:

When it is detected that the User Agent dose't suport long URLs

- It is entirely possible that some extensions may extend the

URL. For example, the client might want to send a public key

with the request.

Static signature: The client may make a signed request file and

put it on the client. This can just be done by a client utility

*

*

*

*

*

*

*

*

*

*

*

1.

2.

1.

2.

request object

request_uri

Request File

or other process, so that the private key does not have to

reside on the client, simplifying programming.

When the server wants the requests to be cacheable - The

request_uri can include a sha256 hash of the file, as defined

in FIPS180-2 [FIPS180-2], the server knows if the file has

changed without fetching it, so it does not have to re-fetch a

same file, which is a win as well.

When the client wants to simplify the implementation without

compromising the security. If the request parameters go through

the Browser, they may be tampered in the browser even if TLS

was used. This implies we need to have signature on the request

as well. However, if HTTPS request_url was used, it is not

going to be tampered, thus we now do not have to sign the

request. This simplifies the implementation.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

2. Terminology

Following parameter is defined as a request and response parameter.

A [JWT] that holds OAuth 2.0 authorization requests as

JSON object in its body. It MAY include all the potential variables

including extension and non-oauth variables. Request object can

optionally be digitally signed or signed and encrypted. To sign,

[JWS] is used. To encrypt, [JWT] is used.

The absolute URL from which the request object is

obtained.

This is a physical or logical file that the 'request_url'

points to.

3. Authorization Request Object

The authorization request object is are included as the top level

members of JSON [RFC4627]. It MAY include any other parameters as well.

The parameters are serialized into a JSON structure by adding each

parameter at the highest structure level. Parameter names and string

values are included as JSON strings. Numerical values are included as

JSON numbers.

The Authorization Request object is used to provide authorization

request parameters. It MUST contain all REQUIRED OAuth 2.0

authorization request parameters and MAY contain optional and extension

3.

4.

parameters. It is a JSON Web Token (JWT) [JWT] that has the JSON object

that holds the OAuth 2.0 authorization request parameters. The

parameters are included as the top level members of JSON [RFC4627].

Parameter names and string values are included as JSON strings.

Numerical values are included as JSON numbers. It MAY include any

extension parameters. This JSON [RFC4627] constitues the body of the

[JWT].

The [JWT] MAY be signed or unsigned. When it is unsigned, it will be

indicated by the [JWT] "signed":"none" convention in the [JWT] header.

If signed, the authorization request object SHOULD contain the standard

[JWT] "iss" and "aud" claims.

Following is the example of the JSON which consitutes the body of the

[JWT].

{

 "redirect_url":"https://example.com/rp/endpoint_url",

 "cliend_id":"http://example.com/rp/"

}

The following is a non-normative example of a [JWT] encoded

authorization request object. It includes extension variables such as

"nonce", "userinfo", and "id_token". Note that the line wraps within

the values are for display purpose only:

JWT algorithm = HS256

HMAC HASH Key = 'aaa'

JSON Encoded Header = "{"alg":"HS256","typ":"JWT"}"

JSON Encoded Payload = "{"response_type":"code id_token",

 "client_id":"s6BhdRkqt3",

 "redirect_uri":"https://client.example.com/cb",

 "scope":"openid profile",

 "state":"af0ifjsldkj",

 "nonce":"n-0S6_WzA2Mj",

 "userinfo":{"claims":{"name":null,"nickname":{"optional":true},

 "email":null,"verified":null,

 "picture":{"optional":true}},"format":"signed"},

 "id_token":{"max_age":86400,"iso29115":"2"}}"

JWT = eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJyZXNwb25zZV90eXBlIjoiY29kZ

 SBpZF90b2tlbiIsImNsaWVudF9pZCI6InM2QmhkUmtxdDMiLCJyZWRpcmVjdF91cmkiO

 iJodHRwczpcL1wvY2xpZW50LmV4YW1wbGUuY29tXC9jYiIsInNjb3BlIjoib3BlbmlkI

 HByb2ZpbGUiLCJzdGF0ZSI6ImFmMGlmanNsZGtqIiwidXNlcmluZm8iOnsiY2xhaW1zI

 jp7Im5hbWUiOm51bGwsIm5pY2tuYW1lIjp7Im9wdGlvbmFsIjp0cnVlfSwiZW1haWwiO

 m51bGwsInZlcmlmaWVkIjpudWxsLCJwaWN0dXJlIjp7Im9wdGlvbmFsIjp0cnVlfX0sI

 mZvcm1hdCI6InNpZ25lZCJ9LCJpZF90b2tlbiI6eyJtYXhfYWdlIjo4NjQwMCwiaXNvM

 jkxMTUiOiIyIn19.2OiqRgrbrHkA1FZ5p_7bc_RSdTbH-wo_Agk-ZRpD3wY

request

request_uri

state

4. Authorization Request

The client constructs the request URI by adding the following

parameters to the query component of the authorization endpoint URI

using the "application/x-www-form-urlencoded" format:

REQUIRED unless request_uri is specified. The authorization

request object [aro] that holds authorization request parameters

stated in the section 4 of OAuth 2.0 [oauth2].

REQUIRED unless request is specified. The absolute URL

that points to the authorization request object [aro] that holds

authorization request parameters stated in the section 4 of OAuth

2.0 [oauth2]. When sending the request by request_uri, the client

MAY provide the sha256 hash as defined in FIPS180-2 [FIPS180-2]of

the Request File as the fragment to it to assist the cache

utilization decision of the Authorization Server.

RECOMMENDED. An opaque value used by the client to maintain

state between the request and callback. The authorization server

includes this value when redirecting the user-agent back to the

client. The parameter SHOULD be used for preventing cross-site

request forgery as described in Section 10.12. of OAuth 2.0 [oauth2]

The client directs the resource owner to the constructed URI using an

HTTP redirection response, or by other means available to it via the

user-agent.

For example, the client directs the end-user's user-agent to make the

following HTTPS request (line breaks are for display purposes only):

GET /authorize?request_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1

Host: server.example.com

The autorization request object MAY be signed AND/OR encrypted.

Upon receipt of request_uri in the request, the authorization server

MUST send a GET request to the request_uri to retrieve the

authorization request object unless it is already cached at the

Authorization Server.

If the response was signed AND/OR encrypted, it has to be decoded

accordingly before being processed.

Then, the Authorization Server MUST reconstruct the complete client

request from the original HTTP request and the content of the request

object. Then, the process continues as described in Section 3 of OAuth

2.0 [oauth2] .

5. Authorization Server Response

Authorization Server Response is created and sent to the client as in

Section 4 of OAuth 2.0 [oauth2] .

In addition, this document defines additional 'error' values as

follows:

"invalid_request_uri" - The provided request_uri was not

available.

"invalid_request_format" - The Request Object format was invalid.

"invalid_request_params" - The parameter set provided in the

Request Object was invalid.

6. IANA Considerations

This document registers following error strings to the OAuth Error

Registry.

"invalid_request_uri" - The provided request_uri was not

available.

"invalid_request_format" - The Request Object format was invalid.

"invalid_request_params" - The parameter set provided in the

Request Object was invalid.

7. Security Considerations

In addition to the all the security considerations discussed in OAuth

2.0 [oauth2], the following security considerations SHOULD be taken

into account.

When sending the authorization request object through request

parameter, it SHOULD be signed with [JWS].

When obtaining the Request FIle, the Authorization Server SHOULD use

either HTTP over TLS 1.2 as defined in RFC5246 [RFC5246] AND/OR [JWS].

If the request object contains personally identifiable or sensitive

information, the "request_uri" MUST be of one-time use and MUST have

large enough entropy deemed necessary with applicable security policy.

For higher security requirement, using [JWE] is strongly recommended.

[[ToDo]]

8. Acknowledgements

Following people contributed to creating this document through the

OpenID Connect 1.0 [openid_ab] .

Breno de Medeiros (Google), Hideki Nara (TACT), John Bradley

(Independent) <author>, Nat Sakimura (NRI) <author/editor>, Ryo Itou

(Yahoo! Japan), George Fletcher (AOL), Justin Richer (Mitre), Edmund

Jay (MGI1), (add yourself).

In addition following people contributed to this and previous versions

through The OAuth Working Group.

*

*

*

*

*

*

David Recordon (Facebook), Luke Shepard (Facebook), James H. Manger

(Telstra), Marius Scurtescu (Google), John Panzer (Google), Dirk

Balfanz (Google), (add yourself).

9. References

9.1. Normative References

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC4627]

Crockford, D., "The application/json Media Type for

JavaScript Object Notation (JSON)", RFC 4627, July

2006.

[RFC5246]

Dierks, T. and E. Rescorla, "The Transport Layer

Security (TLS) Protocol Version 1.2", RFC 5246,

August 2008.

[FIPS180-2]

U.S. Department of CommerceNational Institute of

Standards and Technology, "Secure Hash Signature

Standard", FIPS 180-2, August 2002.

Defines Secure Hash Algorithm 256 (SHA256)

[oauth2]
Hammer-Lahav, E., "The OAuth 2.0 Protocol", June

2010.

[JWT]

Jones, M.B., Balfanz, D., Bradley, J., Goland, Y.Y.,

Panzer, J., Sakimura, N. and P. Tarjan, "JSON Web

Token", July 2011.

[JWS]

Jones, M.B., Balfanz, D., Bradley, J., Goland, Y.Y.,

Panzer, J., Sakimura, N. and P. Tarjan, "JSON Web

Signature (JWS)", April 2011.

[JWE]
Jones, M.B., Bradley, J. and N. Sakimura, "JSON Web

Encryption (JWE)", March 2011.

9.2. Informative References

[openid_ab]
openid-specs-ab@openid.net, , "OpenID Connect 1.0",

October 2011.

Authors' Addresses

Nat Sakimura editor Sakimura Nomura Research Institute 1-6-5

Marunouchi, Marunouchi Kitaguchi Bldg. Chiyoda-ku, Tokyo 100-0005

Japan Phone: +81-3-5533-2111 EMail: n-sakimura@nri.co.jp

John Bradley Bradley independent EMail: ve7jtb@ve7jtb.com

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
mailto:mbj@microsoft.com
mailto:balfanz@google.com
mailto:ve7jtb@ve7jtb.com
mailto:yarong@microsoft.com
mailto:jpanzer@google.com
mailto:n-sakimura@nri.co.jp
mailto:pt@fb.com
mailto:mbj@microsoft.com
mailto:balfanz@google.com
mailto:ve7jtb@ve7jtb.com
mailto:yarong@microsoft.com
mailto:jpanzer@google.com
mailto:n-sakimura@nri.co.jp
mailto:pt@fb.com
mailto:mbj@microsoft.com
mailto:ve7jtb@ve7jtb.com
mailto:n-sakimura@nri.co.jp
mailto:n-sakimura@nri.co.jp
mailto:ve7jtb@ve7jtb.com

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language
	2. Terminology
	3. Authorization Request Object
	4. Authorization Request
	5. Authorization Server Response
	6. IANA Considerations
	7. Security Considerations
	8. Acknowledgements
	9. References
	9.1. Normative References
	9.2. Informative References
	Authors' Addresses

