
OAuth Working Group N. Sakimura, Ed.
Internet-Draft Nomura Research Institute
Intended status: Standards Track J. Bradley
Expires: October 23, 2014 Ping Identity
 N. Agarwal
 Google
 April 21, 2014

OAuth Symmetric Proof of Posession for Code Extension
draft-sakimura-oauth-tcse-03

Abstract

 The OAuth 2.0 public client utilizing authorization code grant is
 susceptible to the code interception attack. This specification
 describe a mechanism that acts as a control against this threat.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 23, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Sakimura, et al. Expires October 23, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft oauth_spop April 2014

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 3
2.1. code verifier . 3
2.2. code challenge . 3

3. Protocol . 3
3.1. Client checks the server support 3

 3.2. (optional) Client registers its desired code challenge
 algorithm . 4

3.3. Client creates a code verifier 4
 3.4. Client sends the code challenge with the authorization
 request . 4

3.5. Server returns the code 4
 3.6. Client sends the code and the secret to the token
 endpoint . 5
 3.7. Server verifies code_verifier before returning the tokens 5

4. IANA Considerations . 5
4.1. OAuth Parameters Registry 5

5. Security Considerations 6
6. Acknowledgements . 6
7. Revision History . 7
8. References . 7
8.1. Normative References 7
8.2. Informative References 8

 Authors' Addresses . 8

1. Introduction

 Public clients in OAuth 2.0 [RFC6749] is suseptible to the "code"
 interception attack. The "code" interception attack is an attack
 that a malicious client intercepts the "code" returned from the
 authorization endpoint and uses it to obtain the access token. This
 is possible on a public client as there is no client secret
 associated for it to be sent to the token endpoint. This is
 especially true on some smartphone platform in which the "code" is
 returned to a redirect URI with a custom scheme as there can be
 multiple apps that can register the same scheme.Under this scenario,
 the mitigation strategy stated in section 4.4.1 of [RFC6819] does not

http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6819#section-4.4.1

Sakimura, et al. Expires October 23, 2014 [Page 2]

Internet-Draft oauth_spop April 2014

 work as they rely on per-client instance secret or per client
 instance redirect uri.

 To mitigate this attack, this extension utilizes dynamically created
 cryptographically random key called 'code verifier'. The code
 verifier is created for every authorization request and its
 transformed value called code challenge is sent to the authorization
 server to obtain the authorization code. The "code" obtained is then
 sent to the token endpoint with the code verifier and the server
 compairs it with the previously received reqeust code so that it can
 perfom the proof of posession of the code verifier by the client.
 This works as the mitigation since the attacker would not know the
 one-time key.

2. Terminology

 In addition to the terms defined in OAuth 2.0 [RFC6749], this
 specification defines the following terms.

2.1. code verifier

 a cryptographically random string with big enough entropy that is
 used to correlate the authorization request to the token request

2.2. code challenge

 either the code verifier itself or some transformation of it that is
 sent from the client to the server in the authorization request

 NOTE 1: The client and the server MAY use mutually agreed pre-
 negotiated algorithm such as base64url encoding of the left most
 128bit of SHA256 hash.

 NOTE 2: If no algorithm has been negotiated, it is treated as the
 code verifier itself.

3. Protocol

3.1. Client checks the server support

 Before starting the authorization process, the client MUST make sure
 that the server supports this specification. It may be obtained out-
 of-band or through some other mechanisms such as the discovery
 document in OpenID Connect Discovery [OpenID.Discovery]. The exact
 mechanism on how the client obtains this information is out of scope
 of this specification.

https://datatracker.ietf.org/doc/html/rfc6749

Sakimura, et al. Expires October 23, 2014 [Page 3]

Internet-Draft oauth_spop April 2014

 The client that wishes to use this specification MUST stop proceeding
 if the server does not support this extension.

3.2. (optional) Client registers its desired code challenge algorithm

 In this specification, the client sends the transformation of the
 code verifier to the authorization server in the front channel. The
 default transformation is not doing transformation at all. If the
 the server supports, the client MAY register its desired
 transformation algorithm to the server. If the algorithm is
 registered, the server MUST reject any request that does not conform
 to the algorithm.

 How does this client registers the algorithm is out of scope for this
 specification.

 Also, this specification does not define any transformation other
 than the default transformation.

3.3. Client creates a code verifier

 The client then creates a code verifier, "code_verifier", in the
 following manner.

 code_verifier = high entropy cryptographic random string of length
 less than 128 bytes

 NOTE: code verifier MUST have high enough entropy to make it
 inpractical to guess the value.

3.4. Client sends the code challenge with the authorization request

 Then, the client creates a code challenge, "code_challenge", by
 applying the pre-negotiated algorithm between the client and the
 server. The default behavior is no transofrmation, i.e.,
 "code_challenge" == "code_verifier". The authorization server MUST
 support this 'no transformation' algorithm.

 The client sends the code challenge with the following parameter with
 the OAuth 2.0 [RFC6749] Authorization Request:

 code_challenge REQUIRED. code challenge.

3.5. Server returns the code

 When the server issues a "code", it MUST associate the
 "code_challenge" value with the "code" so that it can be used later.

https://datatracker.ietf.org/doc/html/rfc6749

Sakimura, et al. Expires October 23, 2014 [Page 4]

Internet-Draft oauth_spop April 2014

 Typically, the "code_challenge" value is stored in encrypted form in
 the "code", but it could as well be just stored in the server in
 association with the code. The server MUST NOT include the
 "code_challenge" value in the form that any entity but itself can
 extract it.

3.6. Client sends the code and the secret to the token endpoint

 Upon receipt of the "code", the client sends the request to the token
 endpoint. In addition to the parameters defined in OAuth 2.0
 [RFC6749], it sends the following parameter:

 code_verifier REQUIRED. code verifier

3.7. Server verifies code_verifier before returning the tokens

 Upon receipt of the request at the token endpoint, the server
 verifies it by calculating the code challenge from "code_verifier"
 value and comparing it with the previously associated
 "code_challenge". If they are equal, then the successful response
 SHOULD be returned. If the values are not equal, an error response
 indicating "invalid_grant" as described in section 5.2 of OAuth 2.0
 [RFC6749] SHOULD be returned.

4. IANA Considerations

 This specification makes a registration request as follows:

4.1. OAuth Parameters Registry

 This specification registers the following parameters in the IANA
 OAuth Parameters registry defined in OAuth 2.0 [RFC6749].

 o Parameter name: code_verifier

 o Parameter usage location: Access Token Request

 o Change controller: OpenID Foundation Artifact Binding Working
 Group - openid-specs-ab@lists.openid.net

 o Specification document(s): this document

 o Related information: None

 o Parameter name: code_challenge

 o Parameter usage location: Authorization Request

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Sakimura, et al. Expires October 23, 2014 [Page 5]

Internet-Draft oauth_spop April 2014

 o Change controller: OpenID Foundation Artifact Binding Working
 Group - openid-specs-ab@lists.openid.net

 o Specification document(s): this document

 o Related information: None

5. Security Considerations

 The security model relies on the fact that the code verifier is not
 learned or guessed by the attacker. It is vitally important to
 adhear to this principle. As such, the code verifier has to be
 created in such a manner that it is cryptographically random and has
 high entropy that it is not practical for the attacker to guess, and
 if it is to be returned inside "code", it has to be encrypted in such
 a manner that only the server can decrypt and extract it.

 If the no transformation algorithm, which is the default algorithm,
 is used, the client MUST make sure that the request channel is
 adequately protected. On a platform that it is not possible, the
 client and the server SHOULD utilize a transformation algorithm that
 makes it reasonably hard to recalculate the code verifier from the
 code challenge.

 All the OAuth security analysis presented in [RFC6819] applies so
 readers SHOULD carefully follow it.

6. Acknowledgements

 The initial draft of this specification was created by the OpenID AB/
 Connect Working Group of the OpenID Foundation, by most notably of
 the following people:

 o Naveen Agarwal, Google

 o Dirk Belfanz, Google

 o Sergey Beryozkin

 o John Bradley, Ping Identity

 o Brian Campbell, Ping Identity

 o Phill Hunt, Oracle

 o Ryo Ito, mixi

 o Michael B. Jones, Microsoft

https://datatracker.ietf.org/doc/html/rfc6819

Sakimura, et al. Expires October 23, 2014 [Page 6]

Internet-Draft oauth_spop April 2014

 o Torsten Lodderstadt, Deutsche Telekom

 o Breno de Madeiros, Google

 o Prateek Mishra, Oracle

 o Anthony Nadalin, Microsoft

 o Axel Nenker, Deutsche Telekom

 o Nat Sakimura, Nomura Research Institute

7. Revision History

 -02

 o Changed title.

 o Changed parameter names.

 o Changed the default transformation algorithm and added crypto
 agility.

 o More text in the security consideration.

 o Now references RFC 6819.

 o Recorded more contributors.

 -01

 o Minor editorial changes.

 -00

 o Initial version.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
6749, October 2012.

https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Sakimura, et al. Expires October 23, 2014 [Page 7]

Internet-Draft oauth_spop April 2014

 [RFC6819] Lodderstedt, T., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 January 2013.

8.2. Informative References

 [OpenID.Discovery]
 Sakimura, N., Bradley, J., Jones, M., and E. Jay, "OpenID
 Connect Discovery 1.0", May 2013.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2", RFC
4949, August 2007.

Authors' Addresses

 Nat Sakimura (editor)
 Nomura Research Institute

 Email: sakimura@gmail.com
 URI: http://nat.sakimura.org/

 John Bradley
 Ping Identity

 Email: jbradley@pingidentity.com

 Naveen Agarwal
 Google

 Email: naa@google.com

https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc4949
http://nat.sakimura.org/

Sakimura, et al. Expires October 23, 2014 [Page 8]

