
Network Working Group Gonzalo Salgueiro
Internet Draft Cisco Systems
Intended status: Standards Track Paul E. Jones
Expires: August 20, 2012 Cisco Systems
 February 20, 2012

Securing HTTP State Management Information
draft-salgueiro-secure-state-management-06.txt

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with
 the provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on August 20, 2012.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document.

Salgueiro, et al. Expires August 20, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Secure State Management February 2012

Abstract

 Virtually every application on the web today that allows a user to
 log in or manipulate information stored on a server maintains some
 form of state management information. Usually, the session context
 is established through the use of a Uniform Resource Locator (URL)
 parameter or a Hypertext Transfer Protocol (HTTP) cookie that
 identifies the session. Without the use of Transport Layer Security
 (TLS), such an information exchange introduces a security risk. For
 a variety of reasons, TLS may not be desired or preferred in all
 situations and, in those cases, users are left vulnerable. This
 memo provides a simple method for enabling secure exchange of state
 management information through HTTP in situations where TLS is not
 employed.

Table of Contents

1. Introduction...2
2. Conventions used in this document..............................4
3. Capability Advertisement.......................................4
4. Security Associations..5

4.1. Establishing a Security Association.......................5
4.2. Establishing a Security Association over HTTPS............6
4.3. Establishing a Security Association using Diffie-Hellman..8

5. Transmitting Information from the User Agent..................10
6. Transmitting Information from the Server......................13
7. Example Usage to Log into a Social Network Service............13
8. Security Considerations.......................................16
9. IANA Considerations...16
10. References...16

10.1. Normative References....................................16
10.2. Informative References..................................17

11. Acknowledgments..17

1. Introduction

 Though we have HTTPS (HTTP over TLS) [2] for securing communication
 between HTTP [3] user agents (i.e., web browsers) and web servers,
 there are many web applications and web sites that rely on insecure
 connections to exchange state management information in the form of
 HTTP URL parameters or cookies [4] that could allow rogue entities
 to gain access to protected resources. Even in environments where
 secure connections are used for initially authenticating users, the
 sessions established and associated with the User Agent often use a
 simple cookie exchange over an insecure connection for subsequent
 information exchanges, thus securing only the user's password, but
 not the session itself. This allows HTTP sessions to be hijacked by

 any entity that can observe the state management information. This

Salgueiro, et al. Expires August 20, 2012 [Page 2]

Internet-Draft Secure State Management February 2012

 memo provides a simple method for enabling secure exchange of state
 management information through HTTP in situations where TLS [5] is
 not employed.

 One could use HTTPS everywhere on the Internet, but there are
 reasons why that is not always desired or preferred:

 1. In practice, the use of HTTPS requires a unique IP address per
 URL (i.e., https://www1.example.com and https://www2.example.com
 would have to have two different IP addresses, even if these are
 on the same physical machines). While Section 3 of RFC 4366 [6]
 does address this concern, widespread adoption is slow and does
 not address the other concerns listed below.

 2. Using HTTPS consumes more processing time and resources, an issue
 that is only compounded when there are several small transactions
 over separate connections.

 3. Using HTTPS on the Internet requires the purchase of digital
 certificates and, depending on one's environment, this can be
 costly. It is understood that private networks can use self-
 signed certificates, but that does not address the more general
 Internet use cases.

 4. Installing and updating digital certificates takes time, thus
 increasing Total Cost of Ownership (TCO).

 5. Expired certificates drive visitors away in fear due to security
 warnings presented by web browsers.

 6. Encrypting the entire session is not needed in many instances,
 especially when communicating with web sites that only exchange
 publicly available information (e.g., bulletin boards and blogs).
 Even though encryption is not critical for some applications,
 most would agree that proper state management is nonetheless
 important.

 7. Encrypting the entire session prevents routers or other devices
 from efficiently compressing otherwise highly compressible plain
 ASCII text over low bit-rate links.

 For one or more of these stated reasons, many web applications
 exchange state management information that should be secured over
 insecure connections. Therefore, application developers need a
 method of providing an acceptable level of security for selected
 state management information that does not require the use of HTTPS.

 In our previous draft, we proposed the use of "Secure Cookies".
 This was met with mixed reactions. Some supported the idea of

https://datatracker.ietf.org/doc/html/rfc4366#section-3

Salgueiro, et al. Expires August 20, 2012 [Page 3]

Internet-Draft Secure State Management February 2012

 introducing a cookie that could be secured, but some rightfully
 argued that cookies themselves could be encrypted at the server and
 so there was no need to secure the cookie. Rather, we need to focus
 only on securing the session. Our previous draft still enabled a
 Man-In-The-Middle attack when using HTTP, even when security
 credentials were exchanged over a secure connection.

 In this draft, we allow the client and server to establish one or
 more security associations over HTTP or, preferably, HTTPS. For the
 purpose of this memo, a security association is defined by use of a
 specific Message Authentication Code (MAC) function along with a
 shared secret.

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [1].

3. Capability Advertisement

 In every request from the user agent to the server, the user agent
 MUST advertise its support for the Secure State Management
 procedures defined in this document. This is necessary in order to
 establish the initial security association, but is also necessary in
 order to force a client to re-establish a security association that
 is no longer valid or no longer recognized by the server.

 The capability advertisement comes in the form of a header that
 enumerates the Message Authentication Code (MAC) functions supported
 by the user agent. The syntax of the new header, like other headers
 introduced in this memo, follows the syntax of other headers in HTTP
 and is:

 SSM-Functions = "SSM-Functions" ":" MAC-Function
 *["," *SP MAC-Function]

 MAC-Function = "hmac-md5" | "hmac-sha-1" | "hmac-sha-256" |
 "hmac-sha-512" | 1*token

 Note that the comparison of MAC functions names MUST be case
 insensitive. In this document, the MAC functions all utilize the
 HMAC [11] specification, though clients and servers MAY support
 other MAC functions.

 Clients MAY support any number of MAC functions, but MUST support
 either HMAC with MD5 [10] ("hmac-md5") or HMAC with SHA-1 [9]
 ("hmac-sha-1"). Servers MUST support both hmac-md5 and hmac-sha-1
 and SHOULD support a wide variety of popular MAC functions.

https://datatracker.ietf.org/doc/html/rfc2119

Salgueiro, et al. Expires August 20, 2012 [Page 4]

Internet-Draft Secure State Management February 2012

 Using the above syntax, the following is an example header
 transmitted by a user agent:

 SSM-Functions: hmac-md5, hmac-sha-1

 Note that the server always selects the MAC function to employ from
 among those offered by the client.

4. Security Associations

 In order to provide a means of exchanging information securely in a
 session, the client and server must establish one or more security
 association(s). The association defines the MAC function and shared
 secret to be used when transmitting information between the client
 and server.

 The security association is assigned a handle by the server and is
 used in subsequent requests from the client. The format of that
 association handle is discussed in Sections 5 and 6.

 In order to allow for multiple concurrent requests, a client MAY
 establish multiple security associations with the server. For
 example, each tab on a web browser MAY establish its own
 client/server security association. Additionally, a client assigns
 a session handle for each concurrent session that exists within the
 scope of the security association. A client MUST NOT issue
 concurrent requests that utilize the same security association
 handle and session handle, as the server will not be able to
 differentiate between legitimate requests and requests that are, in
 fact, replay attacks. A client MAY issue concurrent requests that
 utilize the same security association handle and different session
 handles.

 Once an association has been established, it MAY be used
 subsequently over either HTTP or HTTPS when the client issues
 requests to the server.

4.1. Establishing a Security Association

 To issue a request that allows for the possibility of establishing a
 new security association, the user agent sends a message to the
 server with a SSM-Functions header, such as the following:

 GET / HTTP/1.1
 SSM-Functions: hmac-md5, hmac-sha-1

 In the following two sections, we discuss how a security association
 is established using HTTPS or HTTP (with Diffie-Hellman).

Salgueiro, et al. Expires August 20, 2012 [Page 5]

Internet-Draft Secure State Management February 2012

4.2. Establishing a Security Association over HTTPS

 The server SHOULD use HTTPS as the means of establishing the
 security association. By using HTTPS, the encryption key is
 transmitted as plaintext over the encrypted HTTPS connection from
 the server to the client.

 Once the security association is created via HTTPS, the client may
 be directed to use HTTP for subsequent requests. SSM-Parameters
 header may then be used to transmit requests over HTTP and be
 assured that the important parts of the request or response will not
 be manipulated.

 When using HTTPS and establishing a new security association, the
 server MUST reply to requests that contain the SSM-Functions header
 and that do not demonstrate having a valid security association with
 a 401 Unauthorized as shown below:

 HTTP/1.1 401 Unauthorized
 WWW-Authenticate: SSM assoc=12345, func=hmac-sha-1, secret=yyyy

 In the above, there are several parameters that are introduced that
 need discussion. They are:

 assoc

 This is an association handle assigned by the web server.
 This handle is comprised of ASCII characters constrained to
 upper or lowercase letters and digits (ALPHA and/or DIGIT as
 defined in 2.2 of [3]). The length of this handle MUST NOT
 exceed 64 octets.

 func

 This is the MAC function selected by the server. The server
 MUST specify exactly one MAC function.

 secret

 This parameter contains the Base64-encoded shared secret in
 network byte order that will be used when computing the MAC
 transmitted from or to the server. The number of octets that
 comprise the secret MUST be equal to or greater than the
 number of octets produced by the MAC function or, if
 applicable, the underlying hash function, whichever is
 greater. However, the number of octets that comprise the
 secret should not be more than two times the number of octets
 produced by the selected function. (For example, HMAC-SHA-1
 produces a 20-octet MAC. Therefore, the shared secret should

Salgueiro, et al. Expires August 20, 2012 [Page 6]

Internet-Draft Secure State Management February 2012

 be between 20 and 40 octets, inclusive.) Note that the secret
 must be Base64-decoded prior to consumption by the MAC
 function.

 The reason for replying with a 401 rather than returning a 200
 response to the request along with a security key is that the client
 may wish to transmit state management information, but does not have
 a valid security association that it can utilize. The 401 response
 allows the server to reject the request and establish a security
 association that may then be used subsequently in requests from the
 client.

 Once the client has received this information, it MAY re-issue the
 request as in the following example:

 GET / HTTP/1.1
 SSM-Functions: hmac-md5, hmac-sha-1
 SSM-Parameters: assoc=12345; session=1; nonce=1;
 components=Request-Line;
 mac=2aae6c35c94fcfb415dbe95f408b9ce91ee846ed

 As shown in this example, the User Agent continues to advertise the
 supported MAC functions. This is necessary in case the association
 expires between requests, prompting the server to return a 401
 Unauthorized to facilitate the establishment of a new association.
 Note that the length of time that a server wishes to allow an
 association to remain valid is outside the scope of this memo.

 In cases where the client and server are communicating using HTTP
 and the server wishes to force the client to switch transports to
 HTTPS to transmit a shared secret, the server rejects the HTTP
 request as shown below:

 HTTP/1.1 401 Unauthorized
 WWW-Authenticate: SSM transport=https, port=443

 In the above, there is a single case-insensitive parameter called
 "transport" and an optional "port" parameter that defaults to port
 443. The only value presently defined for transport is "https".
 When the client receives this response, it re-issues the request
 using HTTPS. This will result in a subsequent 401 similar to the
 first example in this section wherein the server provides the shared
 secret to the client. Once the client has the shared secret in hand,
 it then re-issues the request using HTTP (not HTTPS).

Salgueiro, et al. Expires August 20, 2012 [Page 7]

Internet-Draft Secure State Management February 2012

4.3. Establishing a Security Association using Diffie-Hellman

 HTTP servers MAY use a Diffie-Hellman (DH) key exchange [7] to
 establish a security association that will be used to encrypt
 sensitive state management information.

 It is a well-known fact that use of Diffie-Hellman is subject to a
 Man-in-the-Middle attack. While this security vulnerability exists,
 it is nonetheless better than the situation we have today where
 anyone can easily grab state management information and hijack a
 session. Further, a Man-in-the-Middle attack requires an active
 attacker, whereas session stealing is a much easier passive attack.

 In situations where transmitted information is sensitive or the risk
 of a Man-in-the-Middle attack is significant, HTTPS SHOULD be used
 to establish security associations.

 When using HTTP to establish a new security association, the server
 MUST reply to requests that do not contain a security association
 with a 401 Unauthorized as shown below:

 HTTP/1.1 401 Unauthorized
 WWW-Authenticate: SSM assoc=12345, g=2, p=yyyy, A=xxxx,
 func=hmac-sha-1

 In the above, there are several parameters that facilitate the DH
 key exchange and establishment of an association. They are:

 assoc

 This is an association handle assigned by the web server.
 This handle is comprised of ASCII characters constrained to
 upper or lowercase letters and digits (ALPHA and/or DIGIT as
 defined in 2.2 of [3]). The length of this handle MUST NOT
 exceed 64 octets.

 g

 The value "g" is a primitive root mod "p" as defined by the DH
 key exchange algorithm. This parameter is OPTIONAL and, when
 absent, the value 0x02 MUST be assumed.

 p

 This is a large prime number that MUST be used by the client
 and server as a part of the DH key exchange algorithm. This
 parameters is OPTIONAL and, if absent, the value used MUST be
 0xDCF93A0B883972EC0E19989AC5A2CE310E1D37717E8D9571BB7623731866
 E61EF75A2E27898B057F9891C2E27A639C3F29B60814581CD3B2CA3986D268

Salgueiro, et al. Expires August 20, 2012 [Page 8]

Internet-Draft Secure State Management February 2012

 3705577D45C2E7E52DC81C7A171876E5CEA74B1448BFDFAF18828EFD2519F1
 4E45E3826634AF1949E5B535CC829A483B8A76223E5D490A257F05BDFF16F2
 FB22C583AB.

 A

 This is the result computed by the server A=g^a mod p, where
 "a" is a secret large integer not transmitted over the
 network.

 func

 This is the MAC function selected by the server. The server
 MUST specify exactly one MAC function.

 Once the client has received this information, it MUST complete the
 DH key exchange and association establishment by re-issuing the
 request as in the following example:

 GET / HTTP/1.1
 SSM-Functions: hmac-md5, hmac-sha-1
 SSM-Parameters: assoc=12345; nonce=1; components=Request-Line;
 B=zzzz; mac=2aae6c35c94fcfb415dbe95f408b9ce91ee846ed

 As shown in this example, the User Agent continues to advertise the
 supported MAC functions. This is necessary in case the association
 expires or otherwise becomes invalid between requests, prompting the
 server to return a 401 Unauthorized to facilitate the establishment
 of a new association. Note that the length of time that a server
 wishes to allow an association to remain valid is outside the scope
 of this memo.

 Included in the above request is the header SSM-Parameters, which
 completes the association. It includes several parameters that are
 included in all requests from the client when exchanging secure
 state management information. We will cover the majority of the
 parameters in Section 5, but we will discuss the B parameter here
 since it applies only when initially establishing a security
 association using Diffie-Hellman:

 B

 This is the result computed by the client B=g^b mod p, where
 "b" is a secret large integer not transmitted over the
 network.

 Subsequent requests from the client to the server need not include
 the "B" parameter as a part of the SSM-Parameters header, since the

Salgueiro, et al. Expires August 20, 2012 [Page 9]

Internet-Draft Secure State Management February 2012

 association would have been fully formed and SHOULD be ignore by the
 server when received.

 Per the Diffie-Hellman algorithm, a shared secret is derived from
 the values created locally and received over the network from the
 peer. The shared secret, K, is an integer that MUST be consumed by
 both the client and server in the same way. Therefore, the value K
 MUST be converted into a string of octets in network byte order.
 The shared secret is the n least significant bits, where n is the
 number of bits equal to two times the number of bits generated by
 the selected MAC function or, if applicable, the underlying hash
 function, whichever is greater. If the integer is too small to
 yield enough bits, then the most significant bits of the shared
 secret MUST be zero-filled until the length is n bits long.

 Integers defined in this section that are transmitted in messages
 (i.e., A, B, g, and p) MUST be represented in network byte order,
 zero-filling the most significant bits in order to fit the integer
 into an integral number of octets, then Base64-encoded.

 Note that all integers are positive numbers and care should be taken
 to ensure that the most significant bit is not misinterpreted to be
 a sign bit.

5. Transmitting Information from the User Agent

 When issuing requests to the server and having what it believes to
 be a valid association handle, the user agent MUST include the SSM-
 Functions and SSM-Parameters headers in the request. The following
 example shows such a request:

 GET / HTTP/1.1
 SSM-Functions: hmac-md5, hmac-sha-1
 SSM-Parameters: assoc=12345; session=1; nonce=1;
 components=Request-Line;
 mac=2aae6c35c94fcfb415dbe95f408b9ce91ee846ed

 There are several parameters included in the SSM-Parameters header
 as described below:

 assoc

 This is an association handle assigned by the web server and
 MUST be provided exactly as it was received. The client MUST
 NOT assume this handle is encoded in any particular way.

 session

Salgueiro, et al. Expires August 20, 2012 [Page 10]

Internet-Draft Secure State Management February 2012

 This is an optional session handle created by the user agent
 to enable it to issue concurrent requests using the same
 security association. This handle is comprised of ASCII
 characters constrained to upper or lowercase letters and
 digits (ALPHA and/or DIGIT as defined in 2.2 of [3]). The
 length of this handle MUST NOT exceed 64 octets. If this
 handle is absent, the server MUST assume the session handle
 has the value NULL (i.e., zero-length string). Note that,
 while a client can generate any number of session handles, the
 web server is not required to track more than 128 handles per
 security association. {Editor's note: in order to allow
 browser windows and JavaScript code to issue requests using
 the same security association, perhaps a JavaScript function
 should be provided by the browser to assign a unique session
 identifier?}

 nonce

 The nonce is a monotonically increasing integer in the range
 from 0 to 2^64 - 1. To enable concurrent requests, each
 session identified by the session parameter has its own nonce
 space. It is presented and consumed by the MAC function in
 ASCII text form. Once this integer reaches 2^64, a new
 association MUST be created. The user agent selects the
 initial value for the nonce, which is RECOMMENDED to be a
 random value in the range of 0 to 2^32 -1.

 components

 This optional parameter contains a comma-separated list of
 message components that are included in the message over which
 a MAC is computed. Those components MAY be any one of these
 components defined in [3]:

 Request-Line
 Status-Line
 message-header
 message-body

 If used, the message-body MUST be consumed by the MAC function
 without modification. All other components MUST be consumed
 by the MAC function as-is (including all whitespace and the
 colon that separates the header from its value), except that
 any CR or LF characters MUST NOT be consumed. Each of the
 components is consumed by the MAC function in the order in
 which they are presented in the components parameter.

 Headers used to generate the MAC MAY appear more than once in

 the message. In such a case, all headers with the same name

Salgueiro, et al. Expires August 20, 2012 [Page 11]

Internet-Draft Secure State Management February 2012

 must be consumed in the order transmitted on the wire. It is
 ill-advised to include headers that are intended to be
 modified my intermediaries, such as the Via header, as doing
 so will likely result in errors computing the MAC.

 mac

 The mac parameter is a case-insensitive hex representation of
 the Message Authentication Code generated by the MAC function
 in use with this security association, presented in network
 byte order. The mac is computed as follows:

 mac = message_authentication_function(secret,message);

 where

 message = (Request-Line ||
 Status-Line ||
 message-header ||
 message-body ||
 assoc ||
 session ||
 nonce);

 The value of secret is the octets obtained from decoding the
 Base64-encoded secret parameter in the WWW-Authenticate header
 (when using HTTPS) or the n least significant bits of K when
 using Diffie-Hellman as explained in Section 4.3.

 It is permissible to indicate in the components that a non-
 existent header or a zero-length message body is used as a
 part of the "message". In that case, there is nothing to
 concatenate and there is no impact on the "message" over which
 the MAC is generated, but does add to the integrity of the
 request or response. For example, indicating that the
 message-body is a part of the "message" when a message-body
 does not exist prevents an intermediary from altering or
 fabricating the message-body.

 The server is able to associate the client using the association
 handle. It is able to validate the request by computing the MAC
 following the same recipe and comparing the computed MAC value with
 that received from the client.

 If the server is unable to verify the MAC, the server MUST return a
 401 prompting the client to attempt to create a new association.
 However, the server MUST NOT invalidate the association handle,
 since the reason the MAC may have failed to compare properly is

Salgueiro, et al. Expires August 20, 2012 [Page 12]

Internet-Draft Secure State Management February 2012

 because a rogue user agent is attempting to use a handle not
 assigned to it.

 If the server receives a request from a client using a nonce value
 that is less than a nonce value already presented by a trusted user
 agent, then the server MUST return a 401 error. The server MUST NOT
 invalidate the association, since a rogue user agent may attempt to
 re-use a previously used nonce value.

6. Transmitting Information from the Server

 When a client send a request message to the server as described in
Section 5, the server MUST include in the response an SSM-Parameters

 header as shown in this example:

 HTTP/1.1 200 OK
 SSM-Parameters: assoc=12345; session=1; nonce=1;
 components=Status-Line,Set-Cookie,message-body;
 mac=3931ff3e9a70d77c6b677b95d9ab7c6aed80d610

 The parameters are identical to those defined in Section 5. One
 important point to note is that the nonce value in the response MUST
 match the nonce value used in the request.

 If the client receives a response from the server containing a MAC
 that it cannot validate, then it must treat the response as invalid.
 There are only three possible reasons why the MAC does not validate,
 which include a software logic error, modification of the message as
 it passed through the network, or data corruption (either on the
 wire or at the remote server). Assuming the latter, the client MAY
 re-issue the request, but repeated failure to validate the MAC would
 suggest messages are being altered.

7. Example Usage to Log into a Social Network Service

 In this section, we will discuss a typical exchange where a user
 visits a social network service and logs in.

 The initial request from the client is a typical request to get the
 main page of the site. At the outset, there are no security
 associations nor a need for one. A user agent might transmit the
 following request:

 GET / HTTP/1.1
 Host: social.example.com
 SSM-Functions: hmac-md5, hmac-sha-1

 In response, the server will return a web page that introduces the
 social site:

Salgueiro, et al. Expires August 20, 2012 [Page 13]

Internet-Draft Secure State Management February 2012

 HTTP/1.1 200 OK
 Content-Type: text/html; charset=UTF-8

 Included in the response would be the message body containing HTML
 with various link, including a link to a "login" page. Note that,
 up to this point, no security association has been established with
 the server.

 The user then clicks on the button to log into the service. This
 link directs the user agent to a login page served over an HTTPS
 connection. The initial user agent request might look like this:

 GET /login/ HTTP/1.1
 Host: social.example.com
 SSM-Functions: hmac-md5, hmac-sha-1

 At this point, the server returns a response to form the security
 association:

 HTTP/1.1 401 Unauthorized
 WWW-Authenticate: SSM assoc=12345, func=hmac-sha-1,
 secret=Y3VwaWQ=

 The user agent then re-issues the request to the server, but this
 time including the information to demonstrate that the security
 association has been formed:

 GET /login/ HTTP/1.1
 Host: social.example.com
 SSM-Functions: hmac-md5, hmac-sha-1
 SSM-Parameters: assoc=12345; nonce=1; components=Request-Line;
 mac=f1784693e4bdefa9b5a1a0348fdc0791c307ed9a

 Note that since a "session" parameter was not provided, the server
 assumes the value of "session" is NULL.

 The server can then validate the MAC to ensure that the client has
 formed the association. The server will then respond to the request
 with a new HTML page that prompts the user for a login and password,
 like this:

 HTTP/1.1 200 OK
 SSM-Parameters: assoc=12345; nonce=1; components=Status-Line;
 mac=2b5cb730dac7e93e3c991918c503c8e87bd7cc82
 Content-Type: text/html; charset=UTF-8

 The user enters his username and password and click a button on the
 browser that results in a POST to the web server, like this:

Salgueiro, et al. Expires August 20, 2012 [Page 14]

Internet-Draft Secure State Management February 2012

 POST /login/process/ HTTP/1.1
 Host: social.example.com
 SSM-Functions: hmac-md5, hmac-sha-1
 SSM-Parameters: assoc=12345; nonce=2;
 components=Request-Line,message-body;
 mac=d632e1b7bc895fc2ce7752bade188b85f5d1c93a
 Content-Type: application/x-www-form-urlencoded
 Content-Length: 32

 user=someuserid+password=abcd123

 Upon receiving this request and successfully validating the MAC and
 authenticating the user, the web server might then redirect the user
 agent to an HTTP-accessible page (versus HTTPS) where the user can
 then interact with the social network service. This redirection
 might look like this:

 HTTP/1.1 302 Found
 Location: http://social.example.com/home/
 SSM-Parameters: assoc=12345; nonce=2; components=Status-Line;
 mac=27283a874b10b9d86b50d3fa7426dd275afaeb02
 Content-Length: 0

 Note that the 302, while not a final response to the original HTTP
 request, is considered as such for the purposes of this memo. The
 next request to the same host, security association, and session
 MUST use a different nonce in order to avoid a replay attack.

 Since the host did not change, the user agent may assume that the
 security association is still valid. It then issues the following
 request:

 GET /home/ HTTP/1.1
 Host: social.example.com
 SSM-Functions: hmac-md5, hmac-sha-1
 SSM-Parameters: assoc=12345; nonce=3; components=Request-Line;
 mac=4e51022cb7c25cc1706056d85f34a095e4a6e4e5

 Knowing that user "someuserid" logged in and was associated on the
 server with the association handle "12345" and validating the MAC,
 the server may then serve the content that it should provide to that
 user. It does so with a normal 200 response that includes the HTML
 or other content.

 While the user is interacting with the server, additional tabs or
 background threads may be launched that perform parallel requests to
 the server. Each of these separate windows or threads must use a
 different and unique "session" attribute. The following request,

Salgueiro, et al. Expires August 20, 2012 [Page 15]

Internet-Draft Secure State Management February 2012

 for example, might be issued by a background thread that polls a
 user's message inbox:

 GET /inbox/ HTTP/1.1
 Host: social.example.com
 SSM-Functions: hmac-md5, hmac-sha-1
 SSM-Parameters: assoc=12345; session=ajax-thread-6; nonce=346353;
 components=Request-Line;
 mac=fbeb80b87dd8f03c418d44e4129006dca6a42dd7

8. Security Considerations

 Some procedures defined in this memo rely on the Diffie-Hellman key
 exchange algorithm, which are subject to a Man-in-the-Middle attack.
 Users should be aware of this fact and utilize HTTPS to establish a
 security association as per Section 4.2 whenever one needs to guard
 against such attacks.

 Note that traditionally, HTTP cookies are used to associate a user
 with a user agent. The procedures defined in this memo allow the
 server to identify the user via an association handle. If HTTP
 cookies are used in conjunction with the Secure State Management
 procedure defined herein, then the server should verify that the
 cookie(s) used to identify a user map to the same user identified by
 the association handle.

 The procedures defined in this memo are not a replacement for HTTPS
 and merely serve to strengthen the use of HTTP over insecure
 connections that wish to provide for exchange of secure state
 management information.

9. IANA Considerations

 TBD.

10. References

10.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [2] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [3] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter,
 L., Leach, P. and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc2616

Salgueiro, et al. Expires August 20, 2012 [Page 16]

Internet-Draft Secure State Management February 2012

 [4] Barth, A., "HTTP State Management Mechanism", draft-ietf-
httpstate-cookie-22, February 2011.

 [5] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [6] Eastlake, D., "Transport Layer Security (TLS) Extensions:
 Extension Definitions", RFC 6066, January 2011.

 [7] Rescorla, E., "Diffie-Hellman Key Agreement Method", RFC
2631, June 1999.

 [8] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [9] Eastlake, D., Jones, P., "US Secure Hash Algorithm 1 (SHA1)",
RFC 3174, September 2001.

 [10] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [11] Krawczyk, H., Bellare, M., Canetti, R., "HMAC: Keyed-Hashing
 for Message Authentication", RFC 2104, February 1997.

10.2. Informative References

 None.

11. Acknowledgments

 This document was prepared using 2-Word-v2.0.template.dot.

Authors' Addresses

 Gonzalo Salgueiro
 Cisco Systems, Inc.
 7025 Kit Creek Rd.
 Research Triangle Park, NC 27709
 USA

 Phone: +1 919 392 3266
 Email: gsalguei@cisco.com

https://datatracker.ietf.org/doc/html/draft-ietf-httpstate-cookie-22
https://datatracker.ietf.org/doc/html/draft-ietf-httpstate-cookie-22
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc2631
https://datatracker.ietf.org/doc/html/rfc2631
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc3174
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2104

Salgueiro, et al. Expires August 20, 2012 [Page 17]

Internet-Draft Secure State Management February 2012

 Paul E. Jones
 Cisco Systems, Inc.
 7025 Kit Creek Rd.
 Research Triangle Park, NC 27709

 Phone: +1 919 476 2048
 Email: paulej@packetizer.com

Salgueiro, et al. Expires August 20, 2012 [Page 18]

