
SAM Research Group J.F. Buford

Internet-Draft Avaya Labs Research

Intended status: Informational M. Kolberg, Ed.

Expires: January 29, 2012 University of Stirling

July 28, 2011

Application Layer Multicast Extensions to RELOAD

draft-samrg-sam-baseline-protocol-00

Abstract

We define a RELOAD Usage for Application Layer Multicast as well as

extensions to RELOAD message layer to support ALM. The ALM Usage is

intended to support a variety of ALM control algorithms in an overlay-

independent way. Scribe is defined as an example algorithm.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on January 29, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF

Contributions published or made publicly available before November 10,

2008. The person(s) controlling the copyright in some of this material

may not have granted the IETF Trust the right to allow modifications of

such material outside the IETF Standards Process. Without obtaining an

adequate license from the person(s) controlling the copyright in such

materials, this document may not be modified outside the IETF Standards

Process, and derivative works of it may not be created outside the IETF

Standards Process, except to format it for publication as an RFC or to

translate it into languages other than English.

Table of Contents

1. Introduction

1.1. Requirements Language

2. Definitions

2.1. Overlay Network

2.2. Overlay Multicast

2.3. Peer

3. Assumptions

3.1. Overlay

3.2. Overlay Multicast

3.3. RELOAD

3.4. NAT

3.5. Tree Topology

4. Architecture Extensions to RELOAD

5. RELOAD ALM Usage

6. ALM Tree Control Signaling

7. ALM Messages Added to RELOAD Protocol

7.1. Introduction

7.2. Tree Lifecycle Messages

7.2.1. Create Tree

7.2.2. Join

7.2.3. Join Accept

7.2.4. Join Confirm

7.2.5. Join Decline

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

7.2.6. Leave

7.2.7. Re-Form or Optimize Tree

7.2.8. Heartbeat

8. Scribe Algorithm

8.1. Overview

8.2. Create

8.3. Join

8.4. Leave

8.5. JoinConfirm

8.6. JoinDecline

8.7. Multicast

9. Examples

9.1. Create Tree

9.2. Join Tree

9.3. Leave Tree

9.4. Add Direct Application Edge

9.5. Adjust Tree to Churn

9.6. Push Data

10. Kind Definitions

10.1. ALMTree Kind Definition

11. Configuration File Extensions

12. Change History

13. Open Issues

14. IANA Considerations

15. Security Considerations

16. References

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

16.1. Normative References

16.2. Informative References

Appendix A. Additional Stuff

Authors' Addresses

1. Introduction

The concept of scalable adaptive multicast includes both scaling

properties and adaptability properties. Scalability is intended to

cover:

large group size

large numbers of small groups

rate of group membership change

admission control for QoS

use with network layer QoS mechanisms

varying degrees of reliability

trees connect nodes over global internet

Adaptability includes

use of different control mechanisms for different multicast trees

depending on initial application parameters or application class

changing multicast tree structure depending on changes in

application requirements, network conditions, and membership

Application Layer Multicast (ALM) has been demonstrated to be a viable

multicast technology where native multicast isn't available. Many ALM

designs have been proposed. This ALM Usage focuses on: [I-D.ietf-

p2psip-base] has an application extension mechanism in which a new type

of application defines a Usage. A RELOAD Usage defines a set of data

types and rules for their use. In addition, this document describes

additional message types and a new ALM algorithm plugin architectural

component.

ALM implemented in RELOAD-based overlays

Support for a variety of ALM control algorithms

Providing a basis for defining a separate hybrid-ALM RELOAD Usage

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

RELOAD

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

2. Definitions

We adopt the terminology defined in section 2 of [I-D.ietf-p2psip-

base], specifically the distinction between Node, Peer, and Client.

2.1. Overlay Network

 P P P P P

 ..+....+....+...+.....+...

 . +P

 P+ .

 . +P

 ..+....+....+...+.....+...

 P P P P P

Overlay network - An application layer virtual or logical network in

which end points are addressable and that provides connectivity,

routing, and messaging between end points. Overlay networks are

frequently used as a substrate for deploying new network services, or

for providing a routing topology not available from the underlying

physical network. Many peer-to-peer systems are overlay networks that

run on top of the Internet. In the above figure, "P" indicates overlay

peers, and peers are connected in a logical address space. The links

shown in the figure represent predecessor/successor links. Depending on

the overlay routing model, additional or different links may be

present.

2.2. Overlay Multicast

Overlay Multicast (OM): Hosts participating in a multicast session form

an overlay network and utilize unicast connections among pairs of hosts

for data dissemination. The hosts in overlay multicast exclusively

handle group management, routing, and tree construction, without any

support from Internet routers. This is also commonly known as

Application Layer Multicast (ALM) or End System Multicast (ESM). We

call systems which use proxies connected in an overlay multicast

backbone "proxied overlay multicast" or POM.

2.3. Peer

Peer: an autonomous end system that is connected to the physical

network and participates in and contributes resources to overlay

construction, routing and maintenance. Some peers may also perform

additional roles such as connection relays, super nodes, NAT traversal,

and data storage.

3. Assumptions

3.1. Overlay

Peers connect in a large-scale overlay, which may be used for a variety

of peer-to-peer applications in addition to multicast sessions. Peers

may assume additional roles in the overlay beyond participation in the

overlay and in multicast trees. We assume a single structured overlay

routing algorithm is used. Any of a variety of multi-hop, one-hop, or

variable-hop overlay algorithms could be used.

Castro et al. [CASTRO2003]compared multi-hop overlays and found that

tree-based construction in a single overlay out-performed using

separate overlays for each multicast session. We use a single overlay

rather than separate overlays per multicast sessions.

An overlay multicast algorithm may leverage the overlay's mechanism for

maintaining overlay state in the face of churn. For example, a peer may

store a number of DHT (Distributed Hash Table) entries. When the peer

gracefully leaves the overlay, it transfers those entries to the

nearest peer. When another peer joins which is closer to some of the

entries than the current peer which holds those entries, than those

entries are migrated. Overlay churn affects multicast trees as well;

remedies include automatic migration of the tree state and automatic

re-join operations for dislocated children nodes.

3.2. Overlay Multicast

The overlay supports concurrent multiple multicast trees. The limit on

number of concurrent trees depends on peer and network resources and is

not an intrinsic property of the overlay.

3.3. RELOAD

We use RELOAD [I-D.ietf-p2psip-base] as the distibuted hash table (DHT)

for data storage and overlay by which the peers interconnect and route

messages. RELOAD is a generic P2P overlay, and application support is

defined by profiles called Usages.

3.4. NAT

Some nodes in the overlay may be in a private address space and behind

firewalls. We use the RELOAD mechanisms for NAT traversal. We permit

clients to be leaf nodes in an ALM tree.

3.5. Tree Topology

All tree control messages are routed in the overlay. Two types of data

or media topologies are envisioned: 1) tree edges are paths in the

overlay, 2) tree edges are direct connections between a parent and

child peer in the tree, formed using the RELOAD AppAttach method.

4. Architecture Extensions to RELOAD

There are two changes, shown in the figure below. New ALM messages are

added to RELOAD Message Transport. A plug-in for ALM algorithms handles

the ALM state and control. The ALM Algorithm is under control of the

application via the Group API [I-D.irtf-samrg-common-api].

 +---------+

 |Group API|

 +---------+

 |

 ------------------- Application ------------------------

 +-------+ |

 | ALM | |

 | Usage | |

 +-------+ |

 -------------- Messaging Service Boundary --------------

 |

 +--------+ +-----------+---------+ +---------+

 | Storage|<---> | RELOAD | ALM |<-->| ALM Alg |

 +--------+ | Message | Messages| +---------+

 ^ | Transport | |

 | +-----------+---------+

 v | |

 +-------------+ |

 | Topology | |

 | Plugin | |

 +-------------+ |

 ^ |

 v v

 +-------------------+

 | Forwarding& |

 | Link Management |

 +-------------------+

 ---------- Overlay Link Service Boundary --------------

The ALM components interact with RELOAD as follows:

ALM uses the RELOAD data storage functionality to store a ALMTree

instance when a new ALM tree is created in the overlay, and to

retrieve ALMTree instance(s) for existing ALM trees.

ALM applications and management tools may use the RELOAD data

storage functionality to store diagnostic information about the

operation of tree, including average number of tree, delay from

source to leaf nodes, bandwidth use, lost packet rate. In

addition, diagnostic information may include statistics specific

to the tree root, or to any node in the tree.

5. RELOAD ALM Usage

Applications of RELOAD are restricted in the data types that be can

stored in the DHT. The profile of accepted data types for an

application is referred to as a Usage. RELOAD is designed so that new

applications can easily define new Usages. New RELOAD Usages are needed

for multicast applications since the data types in base RELOAD and

existing usages are not sufficient.

We define an ALM Usage in RELOAD. This ALM Usage is sufficient for

applications which require ALM functionality in the overlay. The figure

below shows the internal structure of the ALM Usage. This contains the

Group API ([I-D.irtf-samrg-common-api]) an ALM algorithm plugin (e.g.

Scribe) and the ALM messages which are then sent out to the RELOAD

network.

A RELOAD Usage is required [I-D.ietf-p2psip-base] to define the

following:

Register Kind-Id points

Define data structures for each kind

Defines access control rules for each kind

Defines the Resource Name used to hash to the Resource ID where

the kind is stored

Addresses restoration of values after recovery from a network

partition

Defines the types of connections that can be initiated using

AppConnect

A ALM GroupID is a RELOAD Node-ID. The owner of a ALM group creates a

RELOAD Node-ID as specified in [I-D.ietf-p2psip-base]. This means that

a GroupID is used as a RELOAD Destination for overlay routing purposes.

*

*

*

*

*

*

*

*

6. ALM Tree Control Signaling

Peers use the overlay to support ALM operations such as:

Create tree

Join

Leave

Re-Form or optimize tree

There are a variety of algorithms for peers to form multicast trees in

the overlay. We permit multiple such algorithms to be supported in the

overlay, since different algorithms may be more suitable for certain

application requirements, and since we wish to support experimentation.

Therefore, overlay messaging corresponding to the set of overlay

multicast operations must carry algorithm identification information.

For example, for small groups, the join point might be directly

assigned by the rendezvous point, while for large trees the join

request might be propagated down the tree with candidate parents

forwarding their position directly to the new node.

Here is a simplistic algorithm for forming a multicast tree in the

overlay. Its main advantage is use of the overlay routing mechanism for

routing both control and data messages. The group creator doesn't have

to be the root of the tree or even in the tree. It doesn't consider per

node load, admission control, or alternative paths.

groupID = create(); // allocate a unique groupId

 // the root is the nearest

 // peer in the overlay

 // out of band advertisement or

 // distribution of groupID,

 // perhaps by publishing in DHT

// out of band discovery of groupID, perhaps by lookup in DHT

joinTree(groupID); // sends "join groupID" message

As stated earlier, multiple algorithms will co-exist in the overlay.

Peer which initiates multicast group:

Any joining peer:

The overlay routes the join request using the overlay routing

mechanism toward the peer with the nearest id to the groupID.

*

*

*

*

1.

2.

This peer is the root. Peers on the path to the root join the

tree as forwarding points.

Leave Tree:

leaveTree(groupID) // removes this node from the tree

Propagates a leave message to each child node and to the parent

node. If the parent node is a forwarding node and this is its

last child, then it propagates a leave message to its parent. A

child node receiving a leave message from a parent sends a join

message to the groupID.

Message forwarding:

multicastMsg(groupID, msg);

For the message forwarding there are two approaches:

SSM tree: The creator of the tree is the source. It sends

data messages to the tree root which are forwarded down the

tree.

ASM tree: A node sending a data message sends the message to

its parent and its children. Each node receiving a data

message from one edge forwards it to remaining tree edges it

is connected to.

7. ALM Messages Added to RELOAD Protocol

7.1. Introduction

In this document we define messages for overlay multicast tree

creation, using an existing proposal (RELOAD) in the P2P-SIP WG [I-

D.ietf-p2psip-base] for a universal structured peer-to-peer overlay

protocol. RELOAD provides the mechanism to support a number of overlay

topologies. Hence the overlay multicast framework [I-D.irtf-sam-hybrid-

overlay-framework] (hereafter SAM framework) can be used with P2P-SIP,

and that the SAM framework is overlay agnostic.

As discussed in the SAM requirements draft, there are a variety of ALM

tree formation and tree maintenance algorithms. The intent of this

specification is to be algorithm agnostic, similar to how RELOAD is

overlay algorithm agnostic. We assume that all control messages are

propagated using overlay routed messages.

7.2. Tree Lifecycle Messages

Peers use the overlay to transmit ALM (application layer multicast)

operations defined in this section.

3.

4.

5.

*

*

7.2.1. Create Tree

A new ALM tree is created in the overlay with the identity specified by

GroupId. The usual interpretation of GroupId is that the peer with peer

id closest to and less than the GroupId is the root of the tree. The

tree has no children at the time it is created.

The GroupId is generated from a well-known session key to be used by

other Peers to address the multicast tree in the overlay. The

generation of the GroupId from the SessionKey MUST be done using the

overlay's id generation mechanism.

A successful Create Tree causes an ALMTree structure to be stored in

the overlay at the node responsible for NodeID equal to the GroupId.

 struct {

 NodeID PeerId;

 opaque SessionKey<0..2^32-1>;

 NodeID GroupId;

 Dictionary Options;

 } ALMTree;

PeerId: the overlay address of the peer that creates the multicast

tree.

SessionKey: a well-known string when hashed using the overlay's id

generation algorithm produces the GroupId.

GroupId: the overlay address of the root of the tree

Options: name-value list of properties to be associated with the tree,

such as the maximum size of the tree, restrictions on peers joining the

tree, latency constraints, preference for distributed or centralized

tree formation and maintenance, heartbeat interval.

Tree creation is subject to access control since it involves an Store

operation. Before the Store of an ALMTree structure is permitted, the

storing peer MUST check that:

The certificate contains a SessionKey

The certificate contains a Node-ID that is the same as GroupID

that it is being stored at Node-ID (this is the NODE-MATCH access

policy)

7.2.2. Join

Causes the distributed algorithm for peer join of a specific ALM group

to be invoked. If successful, the PeerId is notified of one or more

candidate parent peers in one or more JoinAccept messages. The

particular ALM join algorithm is not specified in this protocol.

*

*

 struct {

 NodeID PeerId;

 NodeID GroupId;

 Dictionary Options;

 } Join;

PeerId: overlay address of joining/leaving peer

GroupId: the overlay address of the root of the tree

Options: name-value list of options proposed by joining peer

7.2.3. Join Accept

Tells the requesting joining peer that the indicated peer is available

to act as its parent in the ALM tree specified by GroupId, with the

corresponding Options specified. A peer MAY receive more than one

JoinAccept from diffent candidate parent peers in the GroupId tree. The

peer accepts a peer as parent using a JoinConfirm message. A JoinAccept

which receives neither a JoinConfirm or JoinDecline response MUST

expire.

 struct {

 NodeID ParentPeerId;

 NodeID ChildPeerId;

 NodeID GroupId;

 Dictionary Options;

 } JoinAccept;

ParentPeerId: overlay address of a peer which accepts the joining peer

ChildPeerId: overlay address of joining peer

GroupId: the overlay address of the root of the tree

Options: name-value list of options accepted by parent peer

7.2.4. Join Confirm

A peer receiving a JoinAccept message which it wishes to accept MUST

explicitly accept it before the expiration of the JoinAccept using a

JoinConfirm message. The joining peer MUST include only those options

from the JoinAccept which it also accepts, completing the negotiation

of options between the two peers.

 struct {

 NodeID ChildPeerId;

 NodeID ParentPeerId;

 NodeID GroupId;

 Dictionary Options;

 } JoinConfirm;

ChildPeerId: overlay address of joining peer which is a child of the

parent peer

ParentPeerId: overlay address of the peer which is the parent of the

joining peer

GroupId: the overlay address of the root of the tree

Options: name-value list of options accepted by both peers

7.2.5. Join Decline

A peer receiving a JoinAccept message which does not wish to accept it

MAY explicitly decline it using a JoinDecline message.

 struct {

 NodeID PeerId;

 NodeID ParentPeerId;

 NodeID GroupId;

 } JoinDecline;

PeerId: overlay address of joining peer which declines the JoinAccept

ParentPeerId: overlay address of the peer which issued a JoinAccept to

this peer

GroupId: the overlay address of the root of the tree

7.2.6. Leave

A peer which is part of an ALM tree idenfied by GroupId which intends

to detach from either a child or parent peer SHOULD send a Leave

message to the peer it wishes to detach from. A peer receiving a Leave

message from a peer which is neither in its parent or child lists

SHOULD ignore the message.

 struct {

 NodeID PeerId;

 NodeID GroupId;

 Dictionary Options;

 } Leave;

PeerId: overlay address of leaving peer

GroupId: the overlay address of the root of the tree

Options: name-value list of options

7.2.7. Re-Form or Optimize Tree

This triggers a reorganization of either the entire tree or only a sub-

tree. It MAY include hints to specific peers of recommended parent or

child peers to reconnect to. A peer receiving this message MAY ignore

it, MAY propagate it to other peers in its subtree, and MAY invoke

local algorithms for selecting preferred parent and/or child peers.

 struct {

 NodeID GroupId;

 NodeID PeerId;

 Dictionary Options;

 } Reform;

GroupId: the overlay address of the root of the tree

PeerId: if omitted, then the tree is reorganized starting from the

root, otherwise it is reorganized only at the sub-tree identified by

PeerId.

Options: name-value list of options

7.2.8. Heartbeat

A node signals to its adjacent nodes in the tree that it is alive. If a

peer does not receive a Heartbeat message within N heartbeat time

intervals, it MUST treat this as an explicit Leave message from the

unresponsive peer. N is configurable.

 struct {

 NodeID PeerId1;

 NodeID PeerId2;

 NodeID GroupId;

 } Heartbeat;

PeerId1: source of heartbeat

PeerId2: destination of heartbeat

GroupId: overlay address of the root of the tree

8. Scribe Algorithm

8.1. Overview

The following table shows a mapping between RELOAD ALM messages (as

defined in Section 5 of this draft) and Scribe messages as defined in

[CASTRO2002].

 +------------------+-------------------+-----------------+

 | Section in Draft |RELOAD ALM Message | Scribe Message |

 +------------------+-------------------+-----------------+

 | 5.2.1 | CreateALMTree | Create |

 +------------------+-------------------+-----------------+

 | 5.2.2 | Join | Join |

 +------------------+-------------------+-----------------+

 | 5.2.3 | JoinAccept | |

 +------------------+-------------------+-----------------+

 | 5.2.4 | JoinConfirm | |

 +------------------+-------------------+-----------------+

 | 5.2.5 | JoinDecline | |

 +------------------+-------------------+-----------------+

 | 5.2.8 | Leave | Leave |

 +------------------+-------------------+-----------------+

 | 5.2.10 | Reform | |

 +------------------+-------------------+-----------------+

 | 5.2.11 | Heartbeat | |

 +------------------+-------------------+-----------------+

 | new | Push/Deliver/Send | Multicast |

 +------------------+-------------------+-----------------+

 | | Note 1 | deliver |

 +------------------+-------------------+-----------------+

 | | Note 1 | forward |

 +------------------+-------------------+-----------------+

 | | Note 1 | route |

 +------------------+-------------------+-----------------+

 | | Note 1 | send |

 +------------------+-------------------+-----------------+

Note 1: These Scribe messages are handled by RELOAD messages.

The following sections describe the Scribe algorithm in more detail.

8.2. Create

This message will create a group with GroupId. This message will be

delivered to the node whose NodeId is closest to the GroupId. This node

becomes the rendevous point and root for the new multicast tree. Groups

may have multiple sources of multicast messages.

CREATE : groups.add(msg.GroupId)

GroupId: the overlay address of the root of the tree

8.3. Join

To join a multicast tree a node sends a JOIN request with the GroupId

as the key. This message gets routed by the overlay to the rendevous

point of the tree. If an intermediate node is already a forwarder for

this tree, it will add the joining node as a child. Otherwise the node

will create a child table for the group and adds the joining node. It

will then send the JOIN request towards the rendevous point terminating

the JOIN message from the child.

To adapt the Scribe algorithm into the ALM Usage proposed here, after a

JOIN request is accepted, a JOINAccept message is returned to the

joining node.

JOIN : if(checkAccept(msg)) {

 recvJoins.add(msg.source, msgGroupId)

 SEND(JOINAccept(nodeID, msg.source, msg.GroupId))

}

8.4. Leave

When leaving a multicast group a node will change its local state to

indicate that it left the group. If the node has no children in its

table it will send a LEAVE request to its parent, which will travel up

the multicast tree and will stop at a node which has still children

remaining after removing the leaving node.

LEAVE : groups[msg.GroupId].children.remove(msg.source)

 if (groups[msg.group].children = 0)

 SEND(msg,groups[msg.GroupId].parent)

8.5. JoinConfirm

This message is not part of the Scribe protocol, but required by the

basic protocol proposed in this draft. Thus the usage will send this

message to conirm a joining node accepting its parent node.

JOINConfirm: if(recvJoins.contains(msg.source,msg.GroupId)){

 if !(groups.contains(msg.GroupId)) {

 groups.add(msg.GroupId)

 SEND(msg,msg.GroupId)

 }

 groups[msg.GroupId].children.add(msg.source)

 recvJoins.del(msg.source, msgGroupId)

 }

8.6. JoinDecline

JOINDecline: if(recvJoins.contains(msg.source,msg.GroupId))

 recvJoins.del(msg.source, msgGroupId)

8.7. Multicast

A message to be multicast to a group is sent to the rendevous node from

where it is forwarded down the tree. If a node is a member of the tree

rather than just a forwarder it will pass the multicast data up to the

application.

MULTICAST : foreach(groups[msg.GroupId].children as NodeId)

 SEND(msg,NodeId)

 if memberOf(msg.GroupId)

 invokeMessageHandler(msg.GroupId, msg)

9. Examples

All peers in the examples are assumed to have completed bootstrapping.

"Pn" refers to peer N. "GroupID" refers to a peer responsible for

storing the ALMTree instance with GroupID.

9.1. Create Tree

 P1 P2 P3 P4 GroupID

 | | | | |

 | | | | |

 | | | | |

 | CreateTree | | |

 |------------------------------->|

 | | | | |

 | | | | |

 | | CreateTreeResponse |

 |<-------------------------------|

 | | | | |

 | | | | |

 | | | | |

 | | | | |

 | | | | |

 | | | | |

 | | | | |

9.2. Join Tree

 P1 P2 P3 P4 GroupID

 | | | | |

 | | | | |

 | Join |

 |------------------------------->|

 | | | | |

 | JoinAccept |

 |<-------------------------------|

 | | | | |

 | | | | |

 | |Join |

 | |----------------------->|

 | | | | |

 | Join|

 |<-------------------------------|

 | | | | |

 |JoinAccept | | |

 |------>| | | |

 | | | | |

 |JoinConfirm | | |

 |<------| | | |

 | | | | |

 | | | |Join |

 | | | |------>|

 | | | | Join |

 |<-------------------------------|

 | | | | |

 | Join | | | |

 |------>| | | |

 | | | | |

 | JoinAccept | | |

 |----------------------->| |

 | | | | |

 | | JoinAccept | |

 | |--------------->| |

 | | | | |

 | | | | |

 | | Join Confirm | |

 |<-----------------------| |

 | | | | |

 | | Join Decline | |

 | |<---------------| |

 | | | | |

 | | | | |

9.3. Leave Tree

 P1 P2 P3 P4 GroupID

 | | | | |

 | | | | |

 | | | Leave | |

 |<-----------------------| |

 | | | | |

 | | | | |

 | | | | |

 | | | | |

 | | | | |

 | | | | |

 | | | | |

 | | | | |

 | | | | |

 | | | | |

9.4. Add Direct Application Edge

9.5. Adjust Tree to Churn

9.6. Push Data

10. Kind Definitions

10.1. ALMTree Kind Definition

This section defines the ALMTree kind.

Kind IDs The Resource Name for the ALMTree Kind-ID is the SessionKey

used to identify the ALM tree

Data Model The data model is the ALMTree structure.

Access Control NODE-MATCH

11. Configuration File Extensions

In RELOAD, peers receive a configuration document at bootstrap time.

ALM parameter definitions for the configuration file will be defined in

a later version.

12. Change History

Version 02: Remove Hybrid ALM material. Define ALMTree kind.

Define new RELOAD messages. Define RELOAD architecture

extensions. Add Scribe as base algorithm for ALM usage. Define

code points. Define preliminary ALM-specific security issues.

*

13. Open Issues

The specific capabilities of clients in terms of tree creation

and being parents of other nodes will be described in subsequent

versions.

ALM parameter definitions for the RELOAD configuration file will

be defined in a later version.

Should any other ALM algorithms be mapped

14. IANA Considerations

This memo includes no request to IANA.

Code points for the kinds defined in this document MUST not conflict

with any defined code points for RELOAD. For Data Kind-IDs, the RELOAD

specification states: "Code points in the range 0xf0000001 to

0xfffffffe are reserved for private use". ALM Usage Kind-IDs will be

defined in the private use range.

Code points for new message types defined in this document must not

conflict with any defined code points for RELOAD. Unlike Data Kind-IDs

which permit private code points, RELOAD does not define private or

experimental code points for Message Codes. For experimental purposes

we recommend using message code points in the range 0x7000 to 0x70FF

for the new message types defined in this specification:

All ALM Usage messages support the RELOAD Message Extension mechanism.

Message Code Point

CreateALMTree 0x7000

CreateALMTreeResponse 0x7001

Join 0x7002

JoinAccept 0x7003

JoinConfirm 0x7004

JoinDecline 0x7005

Leave 0x7006

LeaveResponse 0x7007

Reform 0x7008

ReformResponse 0x7009

Heartbeat 0x700A

Push 0x700B

PushResponse 0x700C

Message Code Points

No new Error Codes are defined.

*

*

*

*

Application-ID: The ALM Usage Application-IDs must not conflict with

other applications of reload. Additionally if AppAttach is used, the

port number must be selected to avoid conflicts.

Access Control Policies: No new policies.

ALM Algorithm Types: There is currently one type: SCRIBE-RELOAD.

15. Security Considerations

Overlays are vulnerable to DOS and collusion attacks. We are not

solving overlay security issues. We assume the node authentication

model as defined in [I-D.ietf-p2psip-base].

ALM Usage specific security issues:

Right to create GroupID at some NodeId

Right to store Tree info at some Location in the DHT

Limit on # messages / sec and bandwidth use

Right to join an ALM tree

16. References

16.1. Normative References

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC0792]
Postel, J., "Internet Control Message Protocol", STD 5,

RFC 792, September 1981.

[RFC3376]

Cain, B., Deering, S., Kouvelas, I., Fenner, B. and A.

Thyagarajan, "Internet Group Management Protocol,

Version 3", RFC 3376, October 2002.

[RFC3810]
Vida, R. and L. Costa, "Multicast Listener Discovery

Version 2 (MLDv2) for IPv6", RFC 3810, June 2004.

[RFC4605]

Fenner, B., He, H., Haberman, B. and H. Sandick,

"Internet Group Management Protocol (IGMP) / Multicast

Listener Discovery (MLD)-Based Multicast Forwarding

("IGMP/MLD Proxying")", RFC 4605, August 2006.

[RFC4607]
Holbrook, H. and B. Cain, "Source-Specific Multicast

for IP", RFC 4607, August 2006.

[RFC5058]

Boivie, R., Feldman, N., Imai, Y., Livens, W. and D.

Ooms, "Explicit Multicast (Xcast) Concepts and

Options", RFC 5058, November 2007.

16.2. Informative References

[RFC1930]

Hawkinson, J. and T. Bates, "Guidelines for

creation, selection, and registration of an

*

*

*

*

*

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc792
http://tools.ietf.org/html/rfc3376
http://tools.ietf.org/html/rfc3376
http://tools.ietf.org/html/rfc3810
http://tools.ietf.org/html/rfc3810
http://tools.ietf.org/html/rfc4605
http://tools.ietf.org/html/rfc4605
http://tools.ietf.org/html/rfc4605
http://tools.ietf.org/html/rfc4607
http://tools.ietf.org/html/rfc4607
http://tools.ietf.org/html/rfc5058
http://tools.ietf.org/html/rfc5058
mailto:jhawk@bbnplanet.com
mailto:Tony.Bates@mci.net
http://tools.ietf.org/html/rfc1930
http://tools.ietf.org/html/rfc1930

Autonomous System (AS)", BCP 6, RFC 1930,

March 1996.

[RFC3552]

Rescorla, E. and B. Korver, "Guidelines for

Writing RFC Text on Security Considerations",

BCP 72, RFC 3552, July 2003.

[RFC4286]
Haberman, B. and J. Martin, "Multicast Router

Discovery", RFC 4286, December 2005.

[RFC1112]
Deering, S., "Host extensions for IP

multicasting", STD 5, RFC 1112, August 1989.

[I-D.ietf-mboned-

auto-multicast]

Thaler, D, Talwar, M, Aggarwal, A, Vicisano,

L, Pusateri, T and T Morin, "Automatic IP

Multicast Tunneling", Internet-Draft draft-

ietf-mboned-auto-multicast-11, July 2011.

[I-D.ietf-p2psip-

base]

Jennings, C, Lowekamp, B, Rescorla, E, Baset,

S and H Schulzrinne, "REsource LOcation And

Discovery (RELOAD) Base Protocol", Internet-

Draft draft-ietf-p2psip-base-19, October 2011.

[I-D.ietf-p2psip-

sip]

Jennings, C, Lowekamp, B, Rescorla, E, Baset,

S and H Schulzrinne, "A SIP Usage for RELOAD",

Internet-Draft draft-ietf-p2psip-sip-06, July

2011.

[I-D.matuszewski-

p2psip-security-

overview]

Yongchao, S, Matuszewski, M and D York,

"P2PSIP Security Overview and Risk Analysis",

Internet-Draft draft-matuszewski-p2psip-

security-overview-01, October 2009.

[I-D.irtf-p2prg-

rtc-security]

Schulzrinne, H, Marocco, E and E Ivov,

"Security Issues and Solutions in Peer-to-peer

Systems for Realtime Communications",

Internet-Draft draft-irtf-p2prg-rtc-

security-05, September 2009.

[I-D.irtf-samrg-

common-api]

Waehlisch, M, Schmidt, T and S Venaas, "A

Common API for Transparent Hybrid Multicast",

Internet-Draft draft-irtf-samrg-common-api-03,

July 2011.

[I-D.irtf-sam-

hybrid-overlay-

framework]

Buford, J, "Hybrid Overlay Multicast

Framework", Internet-Draft draft-irtf-sam-

hybrid-overlay-framework-02, February 2008.

[AGU1984]

Aguilar, L., "Datagram Routing for Internet

Multicasting", ACM Sigcomm 84 1984, March

1984.

[CASTRO2002]

Castro, M., Druschel, P., Kermarrec, A.-M. and

A. Rowstron, "Scribe: A large-scale and

decentralized application-level multicast

infrastructure", IEEE Journal on Selected

Areas in Communications vol.20, No.8, October

2002.

[CASTRO2003]
Castro, M., Jones, M., Kermarrec, A.-M.,

Rowstron, A., Theimer, M., Wang, H. and A.

http://tools.ietf.org/html/rfc1930
http://tools.ietf.org/html/rfc3552
http://tools.ietf.org/html/rfc3552
http://tools.ietf.org/html/rfc4286
http://tools.ietf.org/html/rfc4286
mailto:deering@PESCADERO.STANFORD.EDU
http://tools.ietf.org/html/rfc1112
http://tools.ietf.org/html/rfc1112
http://tools.ietf.org/html/draft-ietf-mboned-auto-multicast-11
http://tools.ietf.org/html/draft-ietf-mboned-auto-multicast-11
http://tools.ietf.org/html/draft-ietf-p2psip-base-19
http://tools.ietf.org/html/draft-ietf-p2psip-base-19
http://tools.ietf.org/html/draft-ietf-p2psip-sip-06
http://tools.ietf.org/html/draft-matuszewski-p2psip-security-overview-01
http://tools.ietf.org/html/draft-irtf-p2prg-rtc-security-05
http://tools.ietf.org/html/draft-irtf-p2prg-rtc-security-05
http://tools.ietf.org/html/draft-irtf-samrg-common-api-03
http://tools.ietf.org/html/draft-irtf-samrg-common-api-03
http://tools.ietf.org/html/draft-irtf-sam-hybrid-overlay-framework-02
http://tools.ietf.org/html/draft-irtf-sam-hybrid-overlay-framework-02

Wolman, "An Evaluation of Scalable

Application-level Multicast Built Using Peer-

to-peer overlays", Proceedings of IEEE INFOCOM

2003, April 2003.

[HE2005]

He, Q. and M. Ammar, "Dynamic Host-Group/

Multi-Destination Routing for Multicast

Sessions", J. Telecommunication Systems vol.

28, pp. 409-433, 2005.

Appendix A. Additional Stuff

This becomes an Appendix.

Authors' Addresses

John Buford Buford Avaya Labs Research 233 Mt. Airy Rd Basking

Ridge, New Jersey 07920 USA Phone: +1 908 848 5675 EMail:

buford@avaya.com

Mario Kolberg editor Kolberg University of Stirling Dept. Computing

Science and Mathematics Stirling, FK9 4LA UK Phone: +44 1786 46 7440

EMail: mkolberg@ieee.org URI: http://www.cs.stir.ac.uk/~mko

mailto:buford@avaya.com
mailto:mkolberg@ieee.org
http://www.cs.stir.ac.uk/~mko

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language
	2. Definitions
	2.1. Overlay Network
	2.2. Overlay Multicast
	2.3. Peer
	3. Assumptions
	3.1. Overlay
	3.2. Overlay Multicast
	3.3. RELOAD
	3.4. NAT
	3.5. Tree Topology
	4. Architecture Extensions to RELOAD
	5. RELOAD ALM Usage
	6. ALM Tree Control Signaling
	7. ALM Messages Added to RELOAD Protocol
	7.1. Introduction
	7.2. Tree Lifecycle Messages
	7.2.1. Create Tree
	7.2.2. Join
	7.2.3. Join Accept
	7.2.4. Join Confirm
	7.2.5. Join Decline
	7.2.6. Leave
	7.2.7. Re-Form or Optimize Tree
	7.2.8. Heartbeat
	8. Scribe Algorithm
	8.1. Overview
	8.2. Create
	8.3. Join
	8.4. Leave
	8.5. JoinConfirm
	8.6. JoinDecline
	8.7. Multicast
	9. Examples
	9.1. Create Tree
	9.2. Join Tree
	9.3. Leave Tree
	9.4. Add Direct Application Edge
	9.5. Adjust Tree to Churn
	9.6. Push Data
	10. Kind Definitions
	10.1. ALMTree Kind Definition
	11. Configuration File Extensions
	12. Change History
	13. Open Issues
	14. IANA Considerations
	15. Security Considerations
	16. References
	16.1. Normative References
	16.2. Informative References
	Appendix A. Additional Stuff
	Authors' Addresses

