
NETWORK WORKING GROUP L. Zhu
Internet-Draft G. Chander
Updates: 4279 (if approved) Microsoft Corporation
Intended status: Standards Track J. Altman
Expires: January 26, 2008 Secure Endpoints Inc.
 S. Santesson
 Microsoft Corporation
 July 25, 2007

Flexible Key Agreement for Transport Layer Security (FKA-TLS)
draft-santesson-tls-gssapi-03

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 26, 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 This document defines extensions to RFC 4279, "Pre-Shared Key
 Ciphersuites for Transport Layer Security (TLS)", to enable dynamic
 key sharing in distributed environments using a Generic Security
 Service Application Program Interface (GSS-API) mechanism, and then

Zhu, et al. Expires January 26, 2008 [Page 1]

https://datatracker.ietf.org/doc/html/rfc4279
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc4279

Internet-Draft FKA-TLS July 2007

 import that shared key as the "Pre-Shared Key" to complete the TLS
 handshake.

 This is a modular approach to perform authentication and key exchange
 based on off-shelf libraries. And it obviates the need of pair-wise
 key sharing by enabling the use of the widely-deployed Kerberos alike
 trust infrastructures that are highly scalable and robust.
 Furthermore, conforming implementations can provide server
 authentication without the use of certificates.

Table of Contents

1. Introduction . 3
2. Conventions Used in This Document 3
3. Protocol Definition . 3
4. Choosing GSS-API Mechanisms 8
5. Client Authentication . 8
6. Protecting GSS-API Authentication Data 8
7. Security Considerations 10
8. Acknowledgements . 10
9. IANA Considerations . 10
10. References . 11
10.1. Normative References 11
10.2. Informative References 11

Appendix A. An FKA-TLS Example: Kerberos TLS 13
Appendix B. Additional Use Cases for FXA-TLS 13

 Authors' Addresses . 15
 Intellectual Property and Copyright Statements 16

Zhu, et al. Expires January 26, 2008 [Page 2]

Internet-Draft FKA-TLS July 2007

1. Introduction

 [RFC4279] defines Transport Layer Security (TLS) based on pre-shared
 keys (PSK). This assumes a pair-wise key sharing scheme that is less
 scalable and more costly to manage in comparison with a trusted third
 party scheme such as Kerberos [RFC4120]. In addition, off-shelf GSS-
 API libraries that allow dynamic key sharing are not currently
 accessible to TLS applications. Lastly, [RFC4279] does not provide
 true mutual authentication against the server.

 This document extends [RFC4279] to establish a shared key, and
 optionally provide client or server authentication, by using off-
 shelf GSS-API libraries, and the established shared key is then
 imported as "PSK" to [RFC4279]. No new key cipher suite is defined
 in this document.

 As an example usage scenario, Kerberos [RFC4121] is a GSS-API
 mechanism that can be selected to establish a shared key between a
 client and a server based on either asymmetric keys [RFC4556] or
 symmetric keys [RFC4120]. By using the extensions defined in this
 document, a TLS connection is secured using the Kerberos version 5
 mechanism exposed as a generic security service via GSS-API.

 With regard to the previous work for the Kerberos support in TLS,
 [RFC2712] defines "Addition of Kerberos Cipher Suites to Transport
 Layer Security (TLS)" which has not been widely implemented due to
 violations of Kerberos Version 5 library abstraction layers,
 incompatible implementations from two major distributions (Sun Java
 and OpenSSL), and its lack of support for credential delegation.
 This document defines a generic extensible method that addresses the
 limitations associated with [RFC2712] and integrates Kerberos and
 TLS. Relying on [RFC4121] for Kerberos Version 5 support will
 significantly reduce the challenges associated with implementing this
 protocol as a replacement for [RFC2712].

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Protocol Definition

 In this protocol, the on-demand key exchange is implemented by
 encapsulating the GSS security context establishment within the TLS
 handshake messages when PSK cipher suites are requested in the

https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/rfc4279
https://datatracker.ietf.org/doc/html/rfc4279
https://datatracker.ietf.org/doc/html/rfc4279
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc4556
https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/rfc2712
https://datatracker.ietf.org/doc/html/rfc2712
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc2712
https://datatracker.ietf.org/doc/html/rfc2119

Zhu, et al. Expires January 26, 2008 [Page 3]

Internet-Draft FKA-TLS July 2007

 extended ClientHello message.

 The gss_api TLS extension is defined according to [RFC3546]. The
 extension data carries GSS-API token within the TLS hello messages.

 enum {
 gss_api(TBD), (65535)
 } ExtensionType;

 The client MUST NOT include a gss_api TLS extension if there is no
 PSK ciphersuite [RFC4279] included in the cipher_suites field of the
 client hello message.

 Initially the client computes the gss_api TLS extension data by
 calling GSS_Init_sec_context() [RFC2743] to establish a security
 context. The TLS client MUST set the mutual_req_flag and identify
 the server by targ_name so that mutual authentication is performed in
 the course of context establishment. The extension_data from the
 client contains the output token of GSS_Init_sec_context().

 If a GSS-API context cannot be established, the gss_api TLS extension
 MUST NOT be included in the client hello message and it is a matter
 of local policy on the client whether to continue or reject the TLS
 authentication as if the gss_api TLS extension is not supported.

 If the mutual authentication is not available on the established GSS-
 API context, the PSK key exchange described in Section 2 of [RFC4279]
 MUST NOT be selected, and the DHE_PSK or RSA_PSK key exchange MUST be
 negotiated instead in order to authenticate the server.

 Upon receipt of the gss_api TLS extension from the client, and if the
 server supports the gss_api TLS extension, the server calls
 GSS_Accept_sec_context() with the client GSS-API output token in the
 client's extension data as the input token. If
 GSS_Accept_sec_context() returns a token successfully, the server
 responds by including a gss_api TLS extension in the server hello
 message and places the output token in the extension_data. If
 GSS_Accept_sec_context() fails, it is a matter of local policy on the
 server whether to continue or reject the TLS authentication as if the
 gss_api TLS extension is not supported.

 The server MUST ignore a TLS gss_api extension in the extended
 ClientHello if its selected CipherSuite is not a PSK CipherSuite
 [RFC4279], and the server MUST NOT include a gss_api TLS extension in
 the server hello message.

 If after the exchange of extended ClientHello and extended
 ServerHello with the gss_api extension, at least one more additional

https://datatracker.ietf.org/doc/html/rfc3546
https://datatracker.ietf.org/doc/html/rfc4279
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc4279#section-2
https://datatracker.ietf.org/doc/html/rfc4279

Zhu, et al. Expires January 26, 2008 [Page 4]

Internet-Draft FKA-TLS July 2007

 GSS token is required in order to complete the GSS security context
 establishment, the additional GSS-API token is encapsulated in a new
 TLS Handshake message called the token_transfer message.

 enum {
 token_transfer(TBD), (255)
 } HandshakeType;

 struct {
 HandshakeType msg_type; /* handshake type */
 uint24 length; /* bytes in message */
 select (HandshakeType) {
 case token_transfer: /* NEW */
 TokenTransfer;
 } body;
 } Handshake;

 enum {
 gss_api_token(1), (255)
 } TokenTransferType;

 struct {
 TokenTransferType token_type; /* token type */
 opaque token<0..2^16-1>;
 } TokenTransfer;

 The TokenTransfer structure is filled out as follows:

 o The token_type is gss_api_token.

 o The token field contains the GSS-API context establishment tokens
 from the client and the server.

 The client calls GSS_Init_sec_context() with the token in the
 TokenTransfer stucture from the server as the input token, and then
 places the output token, if any, into the TokenTransfer message and
 sends the handshake message to the server. The server calls
 GSS_Accept_sec_context() with the token in the TokenTransfer
 structure from the client as the input token, and then places the
 output token, if any, into the TokenTransfer message and sends the
 handshake message to the client.

 This loop repeats until either the context fails to establish or the
 context is established successfully. To prevent an infinite loop,
 both the client and the server MUST have a policy to limit the
 maximum number of GSS-API context establishment calls for a given
 session. The recommended value is a total of five (5) calls
 including the GSS_Init_sec_context() and GSS_Accept_sec_context()

Zhu, et al. Expires January 26, 2008 [Page 5]

Internet-Draft FKA-TLS July 2007

 from both the client and server. Exceeding the maximum number of
 calls is to be treated as a GSS security context establishment
 failure. It is RECOMMENDED that the client and server enforce the
 same maximum number

 If the GSS-API context fails to establish, it is a matter of local
 policy whether to continue or reject the TLS authentication as if the
 gss_api TLS extension is not supported.

 When the last GSS-API context establishment token is sent by the
 client or when the GSS-API context fails to establish on the client
 side and the local policy allows the TLS authentication to proceed as
 if the TLS gss_api extension is not supported, the client sends an
 empty TokenTransfer handshake message.

 If the GSS-API context fails to establish and local policy allows the
 TLS authentication continue as if the gss_api TLS extension is not
 supported, the server MAY send another ServerHello message in order
 to choose a different cipher suite. The client then MUST expect the
 second ServerHello message from the server before the session is
 established. The additional ServerHello message MUST only differ
 from the first ServerHello message in the choice of CipherSuite and
 it MUST NOT include a TLS gss_api extension. The second ServerHello
 MUST NOT be present if there is no TokenTransfer message.

 If the client and the server establish a security context
 successfully, both the client and the server call GSS_Pseudo_random()
 [RFC4401] to compute a sufficiently long shared secret with the same
 value based on the negotiated cipher suite (see details below), and
 then proceed according to [RFC4279] using this shared secret value as
 the "PSK".

 When the shared key is established using a GSS-API mechanism as
 described in this document, the identity of the server and the
 identity of the client MUST be obtained from the GSS security
 context. In this case, the PSK identity MUST be processed as
 follows:

 o The PSK identity as defined in Section 5.1 of [RFC4279] MUST be
 specified as an empty string.

 o If the server key exchange message is present, the PSK identity
 hint as defined in Section 5.2 of [RFC4279] MUST be empty, and it
 MUST be ignored by the client.

 The input parameters to GSS_Pseudo_random() to compute the shared
 secret value MUST be provided as follows:

https://datatracker.ietf.org/doc/html/rfc4401
https://datatracker.ietf.org/doc/html/rfc4279
https://datatracker.ietf.org/doc/html/rfc4279#section-5.1
https://datatracker.ietf.org/doc/html/rfc4279#section-5.2

Zhu, et al. Expires January 26, 2008 [Page 6]

Internet-Draft FKA-TLS July 2007

 o The context is the handle to the GSS-API context established in
 the given session.

 o The prf_key is GSS_C_PRF_KEY_FULL.

 o The prf_in contains the UTF8 encoding of the string "GSS-API TLS
 PSK".

 o The desired_output_len is 64. In other words, the output keying
 mastering size is 64 in bytes. Note that this is the maximum PSK
 length required to be supported by implementations conforming to
 [RFC4279].

 The following text art summaries the protocol message flow.

 Client Server

 ClientHello -------->
 <--------* ServerHello
 TokenTransfer* -------->
 <-------- TokenTransfer*
 .
 .
 .
 TokenTransfer* -------->
 ServerHello*
 Certificate*
 ServerKeyExchange*
 CertificateRequest*
 <-------- ServerHelloDone
 Certificate*
 ClientKeyExchange
 CertificateVerify*
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <-------- Finished
 Application Data <--------> Application Data

 Fig. 1. Message flow for a full handshake

 * Indicates optional or situation-dependent messages that are
 not always sent.

 There could be multiple TokenTransfer handshake messages, and the
 last TokenTransfer message, if present, is always sent from the
 client to the server and it can carry an empty token.

https://datatracker.ietf.org/doc/html/rfc4279

Zhu, et al. Expires January 26, 2008 [Page 7]

Internet-Draft FKA-TLS July 2007

4. Choosing GSS-API Mechanisms

 If more than one GSS-API mechanism is shared between the client and
 the server, it is RECOMMENDED to deploy a pseudo GSS-API mechanism
 such as [RFC4178] to choose a mutually preferred GSS-API mechanism.

 When Kerberos is selected as the GSS-API mechanism, the extensions
 defined in [KRB-ANON] can perform server authentication without
 client authentication, thus provide the functional equivalence to the
 certificate-based TLS [RFC4346].

 If the Kerberos client does not have access to the KDC but the server
 does, [IAKERB] can be chosen to tunnel the Kerberos authentication
 exchange within the TLS handshake messages.

5. Client Authentication

 If the GSS-API mechanism in the gss_api TLS extension provides client
 authentication [RFC2743], the CertificateRequest, the client
 Certificate and the CertificateVerify handshake messages MUST NOT be
 present. This is illustrated in Appendix A.

6. Protecting GSS-API Authentication Data

 GSS-API [RFC2743] provides security services to callers in a generic
 fashion, supportable with a range of underlying mechanisms and
 technologies and hence allowing source-level portability of
 applications to different environments. For example, Kerberos is a
 GSS-API mechanism defined in [RFC4121]. It is possible to design a
 GSS-API mechanism that can be used with FKA-TLS in order to, for
 example, provide client authentication, and is so weak that its GSS-
 API token MUST NOT be in clear text over the open network. A good
 example is a GSS-API mechanism that implements basic authentication.
 Although such mechanisms are unlikely to be standardized and will be
 encouraged in no circumstance, they exist for practical reasons. In
 addition, it is generally beneficial to provide privacy protection
 for mechanisms that send client identities in the clear.

 In order to provide a standard way for protecting weak GSS-API data
 for use over FKA-TLS, TLSWrap is defined in this section as a pseudo
 GSS-API mechanism that wraps around the real GSS-API authentication
 context establishment tokens. This pseudo GSS-API mechanism does not
 provide per-message security. The real GSS-API mechanism protected
 by TLSWrap may provide per-message security after the context is
 established.

https://datatracker.ietf.org/doc/html/rfc4178
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc4121

Zhu, et al. Expires January 26, 2008 [Page 8]

Internet-Draft FKA-TLS July 2007

 The syntax of the initial TLSWrap token follows the
 initialContextToken syntax defined in Section 3.1 of [RFC2743]. The
 TLSWrap pseudo mechanism is identified by the Object Identifier
 iso.org.dod.internet.security.mechanism.tls-wrap (1.3.6.1.5.5.16).
 Subsequent TLSWrap tokens MUST NOT be encapsulated in this GSS-API
 generic token framing.

 TLSWrap encapsulates the TLS handshake and data protection in its
 context establishment tokens.

 The innerContextToken [RFC2743] for the initial TLSWrap context token
 contains the ClientHello message encoded according to [RFC4346]. No
 PSK ciphersuite can be included in the client hello message. The
 targ_name is used by the client to identify the server and it follows
 the name forms defined in Section 4 of [PKU2U].

 Upon receipt of the initial TLSWrap context token, the GSS-API server
 processes the client hello message. The output GSS-API context token
 for TLSWrap contains the ServerHello message and the ServerHelloDone
 potentially with the optional handshake messages in the order as
 defined in [RFC4346].

 The GSS-API client then processes the server reply and returns the
 ClientKeyExchange message and the Finished message potentially with
 the optional handshake messages in the order as defined in [RFC4346].
 The client places the real GSS-API authentication mechanism token as
 an application data record right after the TLS Finished message in
 the same GSS-API context token for TLSWrap. Because the real
 mechanism token is placed after the ChangeCipherSpec message, the
 GSS-API data for the real mechanism is encrypted. If the GSS-API
 server is not authenticated at this point of the TLS handshake for
 TLSWrap, the TLSWrap context establishment MUST fail and the real
 authentication mechanism token MUST not be returned.

 The GSS-API server in turn processes the client reply and returns the
 TLS Finished message, the server places the reply token from the real
 authentication mechanism, if present, as an application data record.

 If additional TLS messages are needed before the application data,
 these additional TLS messages are encapsulated in the context token
 of TLSWrap in the same manner how the client hello message and the
 server hello message are encapsulated as described above.

 If additional tokens are required by the real authentication
 mechanism in order to establish the context, these tokens are placed
 as an application data record, encoded according to [RFC4346] and
 then returned as TLSWrap GSS-API context tokens, with one TLSWrap
 context token per each real mechanism context token. The real

https://datatracker.ietf.org/doc/html/rfc2743#section-3.1
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc4346

Zhu, et al. Expires January 26, 2008 [Page 9]

Internet-Draft FKA-TLS July 2007

 mechanism context tokens are decrypted by TLSWrap and then supply to
 the real mechanism to complete the context establishment.

7. Security Considerations

 As described in Section 3, when the shared key is established using a
 GSS-API mechanism as described in this document, the identity of the
 server MUST be obtained from the GSS security context and the
 identity of the client MUST be obtained from the GSS security
 context. Authentication methods such as GSS security context and
 X.509 certificate mixed MUST NOT conflict. Such confusion about the
 identity will interfere with the ability to properly determine the
 client's authorization privileges, thus potentially result in a
 security weakness.

 When Kerberos as defined in [RFC4120] is used to establish the share
 key, it is vulnerable to offline dictionary attacks. The threat is
 mitigated by deploying Kerberos FAST [KRB-FAST].

 Shared symmetric keys obtained from mutual calls to
 GSS_Pseudo_random() are not susceptible to off-line dictionary
 attacks in the same way that traditional pre-shared keys are. The
 strength of the generated keys are determined based upon the security
 properties of the selected GSS mechanism. Implementers MUST take
 into account the Security Considerations associated with the GSS
 mechanisms they decide to support.

8. Acknowledgements

 Ari Medvinsky was one of the designers of the original TLS Kerberos
 version 5 CipherSuite and contributed to the first two revisions of
 this protocol specification.

 Raghu Malpani provided insightful comments and was very helpful along
 the way.

 Ryan Hurst contributed significantly to the use cases of FKA-TLS.

 Love Hornquist Astrand, Nicolas Williams and Martin Rex provided
 helpful comments while reviewing early revisions of this document.

9. IANA Considerations

 A new handshake message token_transfer is defined according to
 [RFC4346] and a new TLS extension called the gss_api extension is

https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/rfc4346

Zhu, et al. Expires January 26, 2008 [Page 10]

Internet-Draft FKA-TLS July 2007

 defined according to [RFC3546]. The registry needs to be updated to
 include these new types.

 This document defines the type of the transfer tokens in Section 3, a
 registry need to be setup and the allocation policy is "Specification
 Required".

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [RFC3546] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
 and T. Wright, "Transport Layer Security (TLS)
 Extensions", RFC 3546, June 2003.

 [RFC4178] Zhu, L., Leach, P., Jaganathan, K., and W. Ingersoll, "The
 Simple and Protected Generic Security Service Application
 Program Interface (GSS-API) Negotiation Mechanism",

RFC 4178, October 2005.

 [RFC4279] Eronen, P. and H. Tschofenig, "Pre-Shared Key Ciphersuites
 for Transport Layer Security (TLS)", RFC 4279,
 December 2005.

 [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346, April 2006.

 [RFC4401] Williams, N., "A Pseudo-Random Function (PRF) API
 Extension for the Generic Security Service Application
 Program Interface (GSS-API)", RFC 4401, February 2006.

10.2. Informative References

 [IAKERB] Zhu, L., "Initial and Pass Through Authentication Using
 Kerberos V5 and the GSS-API", draft-zhu-ws-kerb-03.txt
 (work in progress), 2007.

 [KRB-ANON]
 Zhu, L. and P. Leach, "Kerberos Anonymity Support",

draft-ietf-krb-wg-anon-04.txt (work in progress), 2007.

https://datatracker.ietf.org/doc/html/rfc3546
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc3546
https://datatracker.ietf.org/doc/html/rfc4178
https://datatracker.ietf.org/doc/html/rfc4279
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc4401
https://datatracker.ietf.org/doc/html/draft-zhu-ws-kerb-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-anon-04.txt

Zhu, et al. Expires January 26, 2008 [Page 11]

Internet-Draft FKA-TLS July 2007

 [KRB-FAST]
 Zhu, L. and S. Hartman, "A Generalized Framework for
 Kerberos Pre-Authentication",

draft-ietf-krb-wg-preauth-framework-06.txt (work in
 progress), 2007.

 [PKU2U] Zhu, L., Altman, J., and A. Medvinsky, "Public Key
 Cryptography Based User-to-User Authentication - (PKU2U)",

draft-zhu-pku2u-02.txt (work in progress), 2007.

 [RFC2487] Hoffman, P., "SMTP Service Extension for Secure SMTP over
 TLS", RFC 2487, January 1999.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2712] Medvinsky, A. and M. Hur, "Addition of Kerberos Cipher
 Suites to Transport Layer Security (TLS)", RFC 2712,
 October 1999.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3920] Saint-Andre, P., Ed., "Extensible Messaging and Presence
 Protocol (XMPP): Core", RFC 3920, October 2004.

 [RFC4120] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
 Kerberos Network Authentication Service (V5)", RFC 4120,
 July 2005.

 [RFC4121] Zhu, L., Jaganathan, K., and S. Hartman, "The Kerberos
 Version 5 Generic Security Service Application Program
 Interface (GSS-API) Mechanism: Version 2", RFC 4121,
 July 2005.

 [RFC4402] Williams, N., "A Pseudo-Random Function (PRF) for the
 Kerberos V Generic Security Service Application Program
 Interface (GSS-API) Mechanism", RFC 4402, February 2006.

 [RFC4510] Zeilenga, K., "Lightweight Directory Access Protocol
 (LDAP): Technical Specification Road Map", RFC 4510,
 June 2006.

 [RFC4556] Zhu, L. and B. Tung, "Public Key Cryptography for Initial
 Authentication in Kerberos (PKINIT)", RFC 4556, June 2006.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-preauth-framework-06.txt
https://datatracker.ietf.org/doc/html/draft-zhu-pku2u-02.txt
https://datatracker.ietf.org/doc/html/rfc2487
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2712
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3920
https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc4402
https://datatracker.ietf.org/doc/html/rfc4510
https://datatracker.ietf.org/doc/html/rfc4556

Zhu, et al. Expires January 26, 2008 [Page 12]

Internet-Draft FKA-TLS July 2007

 [RFC4559] Jaganathan, K., Zhu, L., and J. Brezak, "SPNEGO-based
 Kerberos and NTLM HTTP Authentication in Microsoft
 Windows", RFC 4559, June 2006.

Appendix A. An FKA-TLS Example: Kerberos TLS

 This section provides a non-normative description of the message flow
 when Kerberos Version 5 is used to established the shared secret
 according to [RFC4121] and that shared secret is then used to secure
 the TLS connection according to FKA-TLS defined in this document.

 Client Server

 ClientHello(with AP-REQ) -------->
 ServerHello(with AP-REP)
 <-------- ServerHelloDone
 ClientKeyExchange
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <-------- Finished
 Application Data <--------> Application Data

 Fig. 2. Kerberos FKA-TLS example message flow

 In this successful authentication sample, the TLS client sends the
 Kerberos AP-REQ [RFC4120] in the inital context token according to
 [RFC4121]. The initial GSS-API context token from the GSS-API client
 contains the Object Identifier that signifies the Kerberos mechanism
 and it is encapsulated in the gss_api TLS extension in the client
 hello message. The TLS client always requests mutual authentication,
 and the TLS server then sends a GSS-API context token that contains
 the AP-REP [RFC4120] according to [RFC4121]. The TLS server's GSS-
 API context token is encapsulated in the gss_api TLS extension in the
 server hello message. The GSS-API context is established at that
 point and both sides can derive the shared secret value according to
 [RFC4402].

 In this example, the ServerKeyExchange handshake message is not
 needed and it is not present. And according to Section 5 none of the
 CertificateRequest, the client Certificate or the CertificateVerify
 handshake messages is present.

Appendix B. Additional Use Cases for FXA-TLS

https://datatracker.ietf.org/doc/html/rfc4559
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc4402

 TLS runs on layers beneath a wide range of application protocols such

Zhu, et al. Expires January 26, 2008 [Page 13]

Internet-Draft FKA-TLS July 2007

 as LDAP [RFC4510], SMTP [RFC2487], and XMPP [RFC3920] and above a
 reliable transport protocol. TLS can add security to any protocol
 that uses reliable connections (such as TCP). TLS is also
 increasingly being used as the standard method for protecting SIP
 [RFC3261] application signaling. TLS can provide authentication and
 encryption of the SIP signaling associated with VOIP (Voice over IP)
 and other SIP-based applications.

 Today these applications use public key certificates to verify the
 identity of endpoints.

 However, it is overwhelmingly complex to manage the assurance level
 of the certificates when deploying PKI and such complexity has
 gradually eroded the confidence for the PKI-based systems in general.
 In addition, the perceived overhead of deploying and managing
 certificates is fairly high. As a result, the industry badly needs
 the ability to secure TLS connections by leveraging the existing
 credential infrastructure. For many customers that means Kerberos.
 It is highly desirable to enable PKI-less deployments yet still offer
 strong authentication.

 Having Kerberos/GSS-API in the layer above TLS means all TLS
 applications need to be changed in the protocol level. In many
 cases, such changes are not technically feasible. For example,
 [RFC4559] provides integration with Kerberos in the HTTP level. It
 suffers from a couple of drawbacks, most notably it only supports
 single-round-trip GSS-API mechanisms and it lacks of channel bindings
 to the underlying TLS connection which makes in unsuitable for
 deployment in situations where proxies exists. Furthermore,
 [RFC4559] lacks of session-based re-authentication (comparing with
 TLS). The root causes of these problems are inherent to the HTTP
 protocol and can't be fixed trivially.

 Consequently, It is a better solution to integrate Kerberos/GSS-API
 in the TLS layer. Such integration allows the existing
 infrastructure work seamlessly with TLS for the products based on
 them in ways that were not practical to do before. For instance, an
 increasing number of client and server products support TLS natively,
 but many still lack support. As an alternative, users may wish to
 use standalone TLS products that rely on being able to obtain a TLS
 connection immediately, by simply connecting to a separate port
 reserved for the purpose. For example, by default the TCP port for
 HTTPS is 443, to distinguish it from HTTP on port 80. TLS can also
 be used to tunnel an entire network stack to create a VPN, as is the
 case with OpenVPN. Many vendors now marry TLS's encryption and
 authentication capabilities with authorization. There has also been
 substantial development since the late 1990s in creating client
 technology outside of the browser to enable support for client/server

https://datatracker.ietf.org/doc/html/rfc4510
https://datatracker.ietf.org/doc/html/rfc2487
https://datatracker.ietf.org/doc/html/rfc3920
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc4559
https://datatracker.ietf.org/doc/html/rfc4559

Zhu, et al. Expires January 26, 2008 [Page 14]

Internet-Draft FKA-TLS July 2007

 applications. When compared against traditional IPSec VPN
 technologies, TLS has some inherent advantages in firewall and NAT
 traversal that make it easier to administer for large remote-access
 populations.

 PSK-TLS as defined in [RFC4279] is a good start but this document
 finishes the job by making it more deployable. FKA-TLS also fixes
 the mutual-authentication problem in [RFC4279] in the cases where the
 PSK can be shared among services on the same host.

Authors' Addresses

 Larry Zhu
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 US

 Email: lzhu@microsoft.com

 Girish Chander
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 US

 Email: gchander@microsoft.com

 Jeffrey Altman
 Secure Endpoints Inc.
 255 W 94th St
 New York, NY 10025
 US

 Email: jaltman@secure-endpoints.com

 Stefan Santesson
 Microsoft Corporation
 Tuborg Boulevard 12
 2900 Hellerup, WA
 Denmark

 Email: stefans@microsoft.com

https://datatracker.ietf.org/doc/html/rfc4279
https://datatracker.ietf.org/doc/html/rfc4279

Zhu, et al. Expires January 26, 2008 [Page 15]

Internet-Draft FKA-TLS July 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Zhu, et al. Expires January 26, 2008 [Page 16]

