
COIN C. Sarathchandra
INTERNET-DRAFT InterDigital Inc.
Intended Status: Informational D. Trossen
Expires: August 28, 2020 Huawei
 M. Boniface
 University of Southampton
 February 28, 2020

In-Network Computing for App-Centric Micro-Services
draft-sarathchandra-coin-appcentres-02

Abstract

 The application-centric deployment of 'Internet' services has
 increased over the past ten years with many million applications
 providing user-centric services, executed on increasingly more
 powerful smartphones that are supported by Internet-based cloud
 services in distributed data centres, the latter mainly provided by
 large scale players such as Google, Amazon and alike. This draft
 outlines a vision of evolving those data centres towards executing
 app-centric micro-services; we dub this evolved data centre as an
 AppCentre. Complemented with the proliferation of such AppCentres at
 the edge of the network, they will allow for such micro-services to
 be distributed across many places of execution, including mobile
 terminals themselves, while specific micro-service chains equal
 today's applications in existing smartphones. We outline the key
 enabling technologies that needs to be provided for such evolution to
 be realized, including references to ongoing IETF work in some
 areas.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Sarathchandra, et al. Expires August 28, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

INTERNET DRAFT App-Centric Micro-Services

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Copyright and License Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1 Introduction . 4
2 Terminology . 5
3. Use Cases . 5
3.1 Mobile Application Function Offloading 5
3.2 Collaborative Gaming 7
3.3. Distributed AI . 7
3.4. Content Delivery Networks 8
3.5. Compute-Fabric-as-a-Service (CFaaS) 8
3.6. Requirements Derived from Use Cases 9

4 Enabling Technologies . 10
4.1 Application Packaging 10
4.2 Service Deployment . 11
4.3. Compute Inter-Connection 12
4.4. Dynamic Contracts . 12
4.5 Service Routing . 12
4.6 Service Pinning . 13
4.7. Opportunistic Multicast 13
4.8 State Synchronization 13

5 Security Considerations . 13
6 IANA Considerations . 13
7 Conclusion . 13
8 References . 14
8.1 Normative References 14

http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Sarathchandra, et al. Expires August 28, 2020 [Page 2]

INTERNET DRAFT App-Centric Micro-Services

8.2 Informative References 14
 Authors' Addresses . 15

Sarathchandra, et al. Expires August 28, 2020 [Page 3]

INTERNET DRAFT App-Centric Micro-Services

1 Introduction

 With the increasing dominance of smartphones and application markets,
 the end-user experiences today have been increasingly centered around
 the applications and the ecosystems that smartphone platforms create.
 The experience of the 'Internet' has changed from 'accessing a web
 site through a web browser' to 'installing and running an application
 on a smartphone'. This app-centric model has changed the way services
 are being delivered not only for end-users, but also for business-to-
 consumer (B2C) and business-to-business (B2B) relationships.

 Designing and engineering applications is largely done statically at
 design time, such that achieving significant performance improvements
 thereafter has become a challenge (especially, at runtime in response
 to changing demands and resources). Applications today come
 prepackaged putting them at disadvantage for improving efficiency due
 to the monolithic nature of the application packaging. Decomposing
 application functions into micro-services [MSERVICE1] [MSERVICE2]
 allows applications to be packaged dynamically at run-time taking
 varying application requirements and constraints into consideration.
 Interpreting an application as a chain of micro-services, allows the
 application structure, functionality, and performance to be adapted
 dynamically at runtime in consideration of tradeoffs between quality
 of experience, quality of service and cost.

 Interpreting any resource rich networked computing (and storage)
 capability not just as a pico or micro-data centre, but as an
 application-centric execution data centre (AppCentre), allows
 distributed execution of micro-services where the notion of an
 application constitutes a set of objectives being realized in a
 combined packaging of micro-services under the governance of the
 'application provider'. These micro-services may then be deployed on
 the most appropriate AppCentre (edge/fog/cloud resources) to satisfy
 requirements under varying constraints. In addition, the high degree
 of distribution of application and data partitions, and compute
 resources offered by the execution environment decentralizes control
 between multiple cooperating parties (multi-technology, multi-domain,
 multi-ownership environments). Furthermore, compute resource
 availability may be volatile, particularly when moving along the
 spectrum from well-connected cloud resources over edge data centres
 to user-provided compute resources, such as (mobile) terminals or
 home-based resources such as NAS and IoT devices.

 We believe that the emergence of AppCentreS will democratize
 infrastructure and service provision to anyone with compute resources
 with the notion of applications providing an element of governing the
 execution of micro-services. This increased distribution will lead to
 new forms of application interactions and user experiences based on

Sarathchandra, et al. Expires August 28, 2020 [Page 4]

INTERNET DRAFT App-Centric Micro-Services

 cooperative AppCentreS (pico-micro and large cloud data centres), in
 which applications are being designed, dynamically composed and
 executed.

2 Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Use Cases

 Although our motivation for the 'AppCentre' term stems from the
 (mobile) application ecosystem, the use cases in this section are not
 limited to mobile applications only. Instead, we interpret
 'applications' as a governing concept of executing a set of micro-
 services where the 'application provider' can reach from those
 realizing mobile applications over novel network applications to
 emerging infrastructure offerings serving a wide range of
 applications in a purpose- (and therefore application-)agnostic
 manner. The following use cases provide examples for said spectrum of
 applications.

3.1 Mobile Application Function Offloading

 Partitioning an application into micro-services allows for denoting
 the application as a collection of functions for a flexible
 composition and a distributed execution, e.g., most functions of a
 mobile application can be categorized into any of three, "receiving",
 "processing" and "displaying" function groups.

 Any device may realize one or more of the micro-services of an
 application and expose them to the execution environment. When the
 micro-service sequence is executed on a single device, the outcome is
 what you see today as applications running on mobile devices.
 However, if any of the three functions are terminated on the device,
 the execution of the rest of the functions may be moved to other
 (e.g., more suitable) devices which have exposed the corresponding
 micro-services to the environment. The result of the latter is
 flexible mobile function offloading, for possible reduction of power
 consumption (e.g., offloading CPU intensive process functions to a
 remote server) or for improved end user experience (e.g., moving
 display functions to a nearby smart TV).

 The above scenario can be exemplified in an immersive gaming
 application, where a single user plays a game using a VR headset. The
 headset hosts functions that "display" frames to the user, as well as
 the functions for VR content processing and frame rendering combining

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Sarathchandra, et al. Expires August 28, 2020 [Page 5]

INTERNET DRAFT App-Centric Micro-Services

 with input data received from sensors in the VR headset. Once this
 application is partitioned into micro-services and deployed in an
 app-centric execution environment, only the "display" micro-service
 is left in the headset, while the compute intensive real-time VR
 content processing micro-services can be offloaded to a nearby
 resource rich home PC, for a better execution (faster and possibly
 higher resolution generation).

 Figure 1 shows one realization of the above scenario, where a 'DPR
 app' running on a mobile device (containing the partitioned
 Display(D), Process(P) and Receive(R) micro services) over an SDN
 network. The packaged applications are made available through a
 localized 'playstore server'. The application installation is
 realized as a 'service deployment' process (Section 4.2.), combining
 the local app installation with a distributed micro-service
 deployment (and orchestration) on most suitable AppCentreS
 ('processing server').

 +----------+
 Mobile |Processing|
 +---------+ | Server |
 | App | +----------+
 | +-----+ | |
 | |D|P|R| | +--+
 | +-----+ | |SR| Internet
 | +-----+ | +--+ /
 | | SR | | | /
 | +-----+ | +----------+ +------+
 +---------+ /|SDN Switch|_____|Border|
 \ +-------+ / +----------+ | SR |
 \| 5GAN |/ | +------+
 +-------+ |
 |
 +----------+
 +---------+ /|SDN Switch|
 | +-----+ | +-------+ / +----------+
 | | SR | | /|WIFI AP|/ \
 | +-----+ | / +-------+ +--+
 |+-------+|/ |SR|
 ||Display|| /+--+
 || || +---------+
 |+-------+| |Playstore|
 +---------+ | Server |
 TV +---------+

 Figure 1: Application Function Offloading Example

 Such localized deployment could, for instance, be provided by a

Sarathchandra, et al. Expires August 28, 2020 [Page 6]

INTERNET DRAFT App-Centric Micro-Services

 visiting site, such as a hotel or a theme park. Once the 'processing'
 micro-service is terminated on the mobile device, the 'service
 routing' (SR) elements in the network (Section 4.3.) route requests
 to the previously deployed 'processing' micro-service running on the
 'processing server' AppCentre over an existing SDN network.

3.2 Collaborative Gaming

 There has been a recent shift from applications that provide single-
 user experiences, such as the ones described in the previous section
 to collaborative/cooperative experiences such as multi-user gaming
 and mixed/virtual reality. The latter leads to increasing amounts of
 interaction where input (e.g., gesture, gaze, touch, movement) and
 output (e.g., visual display, sound, and actuation) needs to be
 processed within strict timing constraints and synchronized to ensure
 temporal and spatial consistency with local and distant users. App-
 centric design allows functions with high data and process coupling
 to be modularized, deployed and executed, such that the subset of
 micro-services is cooperatively executed towards optimizing multi-
 user experiences.

 The same example in previous section can be envisaged from a multi-
 player gaming scenario. Here the micro-services that need to be
 executed cooperatively are executed in a localized and synchronized
 manner for player coordination and synchronizing interaction and
 state between collaborating players.

3.3. Distributed AI

 There is a growing range of use cases demanding for the realization
 of AI capabilities among distributed endpoints. Such demand may be
 driven by the need to increase overall computational power for large-
 scale problems. Other solutions may desire the localization of
 reasoning logic, e.g., for deriving attributes that better preserve
 privacy of the utilized raw input data. Examples for large-scale AI
 problems include biotechnology and astronomy related reasoning over
 massive amounts of observational input data. Examples for localizing
 input data for privacy reasons include radar-like application for the
 development of topological mapping data based on (distributed) radio
 measurements at base stations (and possibly end devices), while the
 processing within radio access networks (RAN) already constitute a
 distributed AI problem to a certain extent albeit with little
 flexibility in distributing the execution of the AI logic.

 Reasoning frameworks, such as TensorFlow, may be utilized for the
 realization of the (distributed) AI logic, building on remote service
 invocation through protocols such as gRPC [GRPC] or MPI [MPI] with
 the intention of providing an on-chip NPU (neural processor unit)

Sarathchandra, et al. Expires August 28, 2020 [Page 7]

INTERNET DRAFT App-Centric Micro-Services

 like abstraction to the AI framework.

3.4. Content Delivery Networks

 Delivery of content to end user often relies on Content Delivery
 Networks (CDNs) storing said content closer to end users for latency
 reduced delivery with DNS-based indirection being utilized to serve
 the request on behalf of the origin server. From the perspective of
 this draft, a CDN can be interpreted as a (network service level)
 application with distributed logic for distributing content from
 origin server to CDN ingress and further to the CDN replication
 points which ultimately serve the user-facing content requests.
 Studies such as those in [FCDN] have shown that content distribution
 at the level of named content, utilizing efficiency Layer 2 multicast
 for replication towards edge CDN nodes, can significantly increase
 the overall network and server efficiency, while reducing indirection
 latency for content retrieval but also reducing required edge storage
 capacity by benefiting from the increased network efficiency to renew
 edge content more quickly against changing demand.

3.5. Compute-Fabric-as-a-Service (CFaaS)

 App-centric execution environments, consisting of Layer 2 connected
 appcentres in the sense outlined in this draft, provide the
 opportunity for infrastructure providers to offer CFaaS type of
 offerings to application providers for them to utilize the compute
 fabric exposed by this CFaaS offering for the purposes defined
 through their applications. In other words, the compute resources can
 be utilized to execute the desired micro-services of which the
 application is composed, while utilizing the inter-connection between
 those compute resources to do so in a distributed manner. We foresee
 those CFaaS offerings to be tenant-specific, a tenant here defined as
 the provider of at least one application. For this, we foresee an
 interaction between CFaaS provider and tenant to dynamically select
 the appropriate resources to define the demand side of the fabric.
 Conversely, we also foresee the supply side of the fabric to be
 highly dynamic with resources being offered to the fabric through,
 e.g., user-provided resources (whose supply might depend on highly
 context-specific supply policies) or infrastructure resources of
 intermittent availability such as those provided through road-side
 infrastructure in vehicular scenarios. The resulting dynamic demand-
 supply matching establishes a dynamic nature of the compute fabric
 that in turn requires trust relationships to be built dynamically
 between the resource provider(s) and the CFaaS provider. This also
 requires the communication resources to be dynamically adjusted to
 interconnect all resources suitably into the (tenant-specific) fabric
 exposed as CFaaS.

Sarathchandra, et al. Expires August 28, 2020 [Page 8]

INTERNET DRAFT App-Centric Micro-Services

3.6. Requirements Derived from Use Cases

 The following requirements are derived from the presented use cases
 in Section 3.1. to 3.5., numbered according to the section numbers
 although those requirements apply in some cases across more than one
 of the presented use cases.

 Req 1.1: Any app-centric execution environment MUST provide means for
 routing of service requests between resources in the distributed
 environment.

 Req 1.2: Any app-centric execution environment MUST provide means for
 dynamically choosing the best possible micro-service sequence (i.e.,
 chaining of micro-services) for a given application experience.

 Req 1.3: Any app-centric execution environment MUST provide means for
 pinning the execution of a specific micro-service to a specific
 resource instance in the distributed environment.

 Req 1.4: Any app-centric execution environment SHOULD provide means
 for packaging micro-services for deployments in distributed networked
 computing environments, including any constraints regarding the
 deployment of service instances in specific network locations or
 compute resources. Such packaging SHOULD conform to existing
 application deployment models, such as mobile application packaging,
 TOSCA orchestration templates or tar balls or combinations thereof.

 Req 2.1: Any app-centric execution environment MUST provide means for
 real-time synchronization and consistency of distributed application
 states.

 Req 3.1: Any app-centric execution environment MUST provide means to
 specify the constraints for placing (AI) execution logic in certain
 logical execution points (and their associated physical locations).

 Req 3.2: Any app-centric execution environment MUST provide support
 for app/micro-service specific invocation protocols.

 Req 4.1: Any app-centric execution environment SHOULD utilize Layer 2
 multicast transmission capabilities for responses to concurrent
 service requests.

 Req 5.1: Any app-specific execution environment SHOULD expose means
 to specify the requirements for the tenant-specific compute fabric
 being utilized for the app execution.

 Req 5.2: Any app-specific execution environment SHOULD allow for
 dynamic integration of compute resources into the compute fabric

Sarathchandra, et al. Expires August 28, 2020 [Page 9]

INTERNET DRAFT App-Centric Micro-Services

 being utilized for the app execution; those resources include, but
 are not limited to, end user provided resources.

 Req 5.3: Any app-specific execution environment MUST provide means to
 optimize the inter-connection of compute resources, including those
 dynamically added and removed during the provisioning of the tenant-
 specific compute fabric.

 Req 5.4: Any app-specific execution environment MUST provide means
 for ensuring availability and usage of resources is accounted for.

4 Enabling Technologies

 EDITOR NOTE: Section 4 will be updated and extended in the next
 version of the draft, including the addressing of specific
 requirements listed in Section 3.6.

4.1 Application Packaging

 Applications often consist of one or more sub-elements (e.g., audio,
 visual, hepatic elements) which are 'packaged' together, resulting in
 the final installable software artifact. Conventionally, application
 developers perform the packaging process at design time, by packaging
 a set of software components as a (often single) monolithic software
 package, for satisfying a set of predefined application
 requirements.

 Decomposing micro-services of an application, and then executing them
 on peer execution points in AppCentreS (e.g., on an app-centric
 serverless runtime [SRVLESS]) can be done with design-time planning.
 Micro-service decomposition process involves, defining clear
 boundaries of the micro-service (e.g., using wrapper classes for
 handling input/output requests), which could be done by the
 application developer at design-time (e.g., through Android app
 packaging by including, as part of the asset directory, a service
 orchestration template [TOSCA] that describes the decomposed micro-
 services). Likewise, the peer execution points could be 'known' to
 the application (e.g., using well-known and fixed peer execution
 points on AppCentreS) and incorporated with the micro-services by the
 developer at design-time.

 Existing programming frameworks address decomposition and execution
 of applications centering around other aspects such as concurrency
 [ERLANG]. For decomposing at runtime, application elements can be
 profiled using various techniques such as dynamic program analysis or
 dwarf application benchmarks. The local profiler information can be
 combined with the profiler information of other devices in the

Sarathchandra, et al. Expires August 28, 2020 [Page 10]

INTERNET DRAFT App-Centric Micro-Services

 network for improved accuracy. The output of such a profiler process
 can then be used to identify smaller constituting sub-components of
 the application in forms of pico-services, their interdependencies
 and data flow (e.g., using caller/callee information, instruction
 usage). Due to the complex nature of resulting application structure
 and therefore its increased overhead, in most cases, it may not be
 optimal to decompose applications at the pico level. Therefore, one
 may cluster pico-services into micro-services with common
 characteristics, enabling a meaningful (e.g., clustering pico-
 services with same resource dependency) and a performant
 decomposition of applications. Characteristics of micro-services can
 be defined as a set of concepts using an ontology language, which can
 then be used for clustering similar pico-services into micro-
 services. Micro-services may then be partitioned along their
 identified borders. Moreover, mechanisms for governance, discovery
 and offloading can be employed for 'unknown' peer execution points on
 AppCentreS with distributed loci of control.

 Therefore, with this app-centric model, application packaging can be
 done at runtime by constructing micro-service chains for satisfying
 requirements of experiences (e.g., interaction requirements), under
 varying constraints (e.g., temporal consistency between multiple
 players within a shared AR/VR world)[SCOMPOSE]. Such packaging
 includes mechanisms for selecting the best possible micro-services
 for a given experience at runtime in the multi-X environment. These
 run-time packaging operations may continuously discover the 'unknown'
 and adapt towards an optimal experience. Such decision mechanisms
 handle the variability, volatility and scarcity within this multi-X
 framework.

4.2 Service Deployment

 The service function chains, constituting each individual
 application, will need deployment mechanisms in a true multi-X
 (multi-user, multi-infrastructure, multi-domain) environment
 [SDEPLOY1][SDEPLOY2]. Most importantly, application installation and
 orchestration processes are married into one, as a set of procedures
 governed by device owners directly or with delegated authority.
 However, apart from extending towards multi-X environments, the
 process also needs to cater for changes in the environment, caused,
 e.g., by movement of users, new pervasive sensors/actuators, and
 changes to available infrastructure resources. Methods to deploy
 service functions as executable code into chosen service execution
 points, supporting the various endpoint realizations (e.g., device
 stacks, COTS stacks, etc.), and service function endpoint realization
 through utilizing existing and emerging virtualization techniques.

 A combination of application installation procedure and orchestrated

Sarathchandra, et al. Expires August 28, 2020 [Page 11]

INTERNET DRAFT App-Centric Micro-Services

 service deployment can be achieved by utilizing the application
 packaging with integrated service deployment templates described in

Section 4.1 such that the application installation procedure on the
 installing device is being extended to not only install the local
 application package but also extract the service deployment template
 for orchestrating with the localized infrastructure, using, for
 instance, REST APIs for submitting the template to the orchestrator.

4.3. Compute Inter-Connection

 NOTE: left for future revision

4.4. Dynamic Contracts

 NOTE: left for future revision

4.5 Service Routing

 Service routing within a combined compute and network infrastructure
 that will enable true end-to-end experiences across distributed
 application execution points provisioned on distant cloud, edge and
 device-centric resources (e.g., using ICN/name-based routing
 methods), is a key aspect of app-centric micro-service execution.
 Once the micro-services are packaged and deployed in such highly
 distributed micro-data centres, the routing mechanisms will ensure
 efficient information exchange (e.g., for satisfying application
 requirements) between corresponding micro-services within the multi-X
 execution environment.

 Routing becomes a problem of routing the micro-service requests, not
 just packets, as done through IP. Traditionally, the combination of
 the Domain Naming Service (DNS) and IP routing has been used for this
 purpose. However, the advent of virtualization with use cases such as
 those outlined above have made it challenging to further rely on the
 DNS. This is mainly down to the long delay in updating DNS entries to
 'point' to the right micro-service instances. If one was to use the
 DNS, one would be updating the DNS entries at a high rate, caused by
 the diversity of trigger, e.g., through movement. DNS has not been
 designed for such frequent update, rendering it useless for such
 highly dynamic applications. With many edge scenarios in the VR/AR
 space demanding interactivity and being latency-sensitive, efficient
 routing will be key to any solution.

 Various ongoing work on service request forwarding [nSFF] with the
 service function chaining [RFC7665] framework as well as name-based
 routing [ICN5G][ICN4G] addressing some aspects described above albeit
 with a focus on HTTP as the main invocation protocol. Extensions will
 be required to support other invocation protocols, such as GRPC or

https://datatracker.ietf.org/doc/html/rfc7665

Sarathchandra, et al. Expires August 28, 2020 [Page 12]

INTERNET DRAFT App-Centric Micro-Services

 MPI (for distributed AI use cases, as outlined in Section 3.3.).

4.6 Service Pinning

 Allocating the right resources to the right micro-services is a
 fundamental task when executing micro-services on such highly
 distributed app-centric micro-data centres (e.g., resource management
 in cloud [CLOUDFED]), particularly in the light of volatile resource
 availability as well as concurrent and highly dynamic resource
 access. Once the specific set of micro-services of an application has
 been identified, during the lifetime of the application, requirements
 (e.g., QoS) must be ensured by the execution environment. Therefore,
 all micro-data centres and the execution environment will realize
 mechanisms for ensuring the utilization of specific resources within
 a pool of resources (i.e., resources in all app-centric micro-data
 centres), for a specific set of micro-services belonging to one
 application, while also ensuring integrity in the wider system.

4.7. Opportunistic Multicast

 NOTE: left for future revision

4.8 State Synchronization

 Given the highly distributed nature of app-centric micro-services,
 their state exchange and synchronization is a very crucial aspect for
 ensuring in-application and system wide consistency. Mechanisms that
 ensure consistency will ensure that data is synchronized with
 different spatial, temporal and relational data within a given time
 period.

5 Security Considerations

 N/A

6 IANA Considerations

 N/A

7 Conclusion

 This draft positions the evolution of data centres as one of becoming
 execution centres for the app-centric experiences provided today
 mainly by smart phones directly. With the proliferation of data
 centres closer to the end user in the form of edge-based micro data
 centres, we believe that app-centric experiences will ultimately be
 executed across those many, highly distributed execution points that
 this increasingly rich edge environment will provide, such as smart

Sarathchandra, et al. Expires August 28, 2020 [Page 13]

INTERNET DRAFT App-Centric Micro-Services

 glasses and IoT devices. Although a number of activities are
 currently underway to address some of the challenges for realizing
 such AppCentre evolution, we believe that the proposed COIN research
 group will provide a suitable forum to drive forward the remaining
 research and its dissemination into working systems and the necessary
 standardization of key aspects and protocols.

8 References

8.1 Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI
 10.17487/RFC2119, March 1997, <https://www.rfc-

editor.org/info/rfc2119>.

 [RFC7665] Halpern, J., Ed., and C. Pignataro, Ed., "Service Function
 Chaining (SFC) Architecture", RFC 7665, DOI
 10.17487/RFC7665, October 2015, <https://www.rfc-

editor.org/info/rfc7665>.

8.2 Informative References

 [MSERVICE1] Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara,
 M., Montesi, F., Mustafin, R., & Safina, L. (2017).
 Microservices: yesterday,today, and tomorrow. In Present
 and Ulterior Software Engineering (pp. 195-216). Springer,
 Cham.

 [MSERVICE2] Balalaie, A., Heydarnoori, A., & Jamshidi, P. (2016).
 Microservices architecture enables devops: Migration to a
 cloud-native architecture. IEEE Software, 33(3), 42-52.

 [SRVLESS] C. Cicconetti, M. Conti and A. Passarella, "An
 Architectural Framework for Serverless Edge Computing:
 Design and Emulation Tools," 2018 IEEE International
 Conference on Cloud Computing Technology and Science
 (CloudCom), Nicosia, 2018, pp. 48-55. doi:
 10.1109/CloudCom2018.2018.00024

 [TOSCA] Topology and Orchestration Specification for Cloud
 Applications Version 1.0. 25 November 2013. OASIS
 Standard. <http://docs.oasis-

open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html>.

 [ERLANG] Armstrong, Joe, et al. "Concurrent programming in ERLANG."
 (1993).

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7665
https://www.rfc-editor.org/info/rfc7665
https://www.rfc-editor.org/info/rfc7665
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html

Sarathchandra, et al. Expires August 28, 2020 [Page 14]

INTERNET DRAFT App-Centric Micro-Services

 [SCOMPOSE] M. Hirzel, R. Soule, S. Schneider, B. Gedik, and R. Grimm,
 "A Catalog of Stream Processing Optimizations", ACM
 Computing Surveys,46(4):1-34, Mar. 2014

 [SDEPLOY1] Lu, H., Shtern, M., Simmons, B., Smit, M., & Litoiu, M.
 (2013, June). Pattern-based deployment service for next
 generation clouds. In 2013 IEEE Ninth World Congress on
 Services (pp. 464-471). IEEE.

 [SDEPLOY2] Eilam, T., Elder, M., Konstantinou, A. V., & Snible, E.
 (2011, May). Pattern-based composite application
 deployment. In 12th IFIP/IEEE International Symposium on
 Integrated Network Management (IM 2011) and Workshops (pp.
 217-224). IEEE.

 [nSFF] Trossen, D., Purkayastha, D., Rahman, A., "Name-Based
 Service Function Forwarder (nSFF) component within SFC
 framework", <https://datatracker.ietf.org/doc/draft-

trossen-sfc-name-based-sff> (work in progress), April
 2019.

 [ICN5G] Ravindran, R., Suthar, P., Trossen, D., Wang, C., White,
 G., "Enabling ICN in 3GPP's 5G NextGen Core Architecture",
 <https://tools.ietf.org/html/draft-ravi-icnrg-5gc-icn-03>
 (work in progress), March 2019.

 [ICN4G] Suthar, P., Jangam, Ed., Trossen, D., Ravindran, R.,
 "Native Deployment of ICN in LTE, 4G Mobile Networks",
 <https://tools.ietf.org/html/draft-irtf-icnrg-icn-lte-4g-

03> (work in progress), March 2019.

 [CLOUDFED] M. Liaqat, V. Chang, A. Gani, S. Hafizah Ab Hamid, M.
 Toseef, U. Shoaib, R. Liaqat Ali, "Federated cloud
 resource management: Review and discussion", Elsevier
 Journal of Network and Computer Applications, 2017.

 [GRPC] High performance open source universal RPC framework,
https://grpc.io/

 [MPI] A. Vishnu, C. Siegel, J. Daily, "Distributed TensorFlow with
 MPI", https://arxiv.org/pdf/1603.02339.pdf

 [FCDN] M. Al-Naday, M. J. Reed, J. Riihijarvi, D. Trossen, N. Thomos,
 M. Al-Khalidi, "fCDN: A Flexible and Efficient CDN
 Infrastructure without DNS Redirection of Content
 Reflection", https://arxiv.org/pdf/1803.00876.pdf

Authors' Addresses

https://datatracker.ietf.org/doc/draft-trossen-sfc-name-based-sff
https://datatracker.ietf.org/doc/draft-trossen-sfc-name-based-sff
https://tools.ietf.org/html/draft-ravi-icnrg-5gc-icn-03
https://tools.ietf.org/html/draft-irtf-icnrg-icn-lte-4g-03
https://tools.ietf.org/html/draft-irtf-icnrg-icn-lte-4g-03
https://grpc.io/
https://arxiv.org/pdf/1603.02339.pdf
https://arxiv.org/pdf/1803.00876.pdf

Sarathchandra, et al. Expires August 28, 2020 [Page 15]

INTERNET DRAFT App-Centric Micro-Services

 Chathura Sarathchandra
 InterDigital Europe, Ltd.
 64 Great Eastern Street, 1st Floor
 London EC2A 3QR
 United Kingdom

 Email: Chathura.Sarathchandra@InterDigital.com

 Dirk Trossen
 Huawei Technologies Duesseldorf GmbH
 Riesstr. 25C
 80992 Munich
 Germany

 Email: Dirk.Trossen@Huawei.com

 Michael Boniface
 University of Southampton
 University Road
 Southampton SO17 1BJ
 United Kingdom

 Email: mjb@it-innovation.soton.ac.uk

Sarathchandra, et al. Expires August 28, 2020 [Page 16]

