
Network Working Group P. Sarolahti
Internet-Draft HIIT/ICSI
Intended status: Experimental March 4, 2010
Expires: September 5, 2010

Multi-address Interface in the Socket API
draft-sarolahti-mptcp-af-multipath-01.txt

Abstract

 This document specifies a new address family to be used for sockets
 that are bound to more than one IP address, as motivated by the
 Multipath TCP work in the IETF. The goal is to use the same set of
 function calls as traditionally, but by new address family make it
 possible for them to express multiple addresses to connect or bind
 to. The document gives a high-level definition of the behavior of
 the traditional function calls, but a detailed specification of the
 API syntax is not in the scope of this document.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on September 5, 2010.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Sarolahti Expires September 5, 2010 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft AF-Multipath March 2010

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. The Multipath Address Family 4
4. Behaviour with Different Networking Functions 6
4.1. Bind . 6
4.2. Connect . 6
4.3. Name resolution . 7
4.4. Get Local Address / Get Remote Address 8

5. Discussion . 8
5.1. Address Family or Protocol Family? 8
5.2. Comparison to Alternative Design Options 9
5.3. Open Issues . 10

6. Security Considerations 11
7. Acknowledgments . 11
8. References . 11
8.1. Normative References 11
8.2. Informative References 11

Appendix A. Change log . 12
 Author's Address . 13

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Sarolahti Expires September 5, 2010 [Page 2]

Internet-Draft AF-Multipath March 2010

1. Introduction

 The socket API is designed as a generic protocol-independent
 interface that includes a compact set of operations for network
 applications to communicate to the network. Despite the small number
 of basic operations, the socket API has proved to be enough powerful
 to carry out various different kinds of tasks, arguably because of
 the generic enough interface definitions. In addition to Internet
 communication, the socket API is also used, for example, in the Unix
 domain sockets that operate on Unix filenames as communication
 identifiers, and various control tasks between the applications and
 the communication stack, for example in IPsec key management sockets
 [RFC2367], or so called netlink or routing sockets that interact with
 the routing table in the network stack. The exact semantics of the
 socket API methods are not defined by the API itself, but depend on
 the parameters given when a new socket is created.

 The socket API is designed to expose the addresses used for the
 communication to the applications. Consistent with the generic
 design of the API, the addresses are passed in a generic type-length
 encoded structure, that is interpreted based on the address family
 given in the beginning of the structure. In practice, primarily two
 address families are currently used for Internet communication: IPv4
 (also known as AF_INET) or IPv6 (AF_INET6). Perhaps confusingly,
 traditionally the same constants used to indicate the address family
 are often also used to indicate the protocol family for creating
 socket. This dependency is discussed in more detail in Section 5.1.

 This document proposes a new way to use the socket API to better
 support protocols that use multiple IP addresses at either end of a
 connection. The primary motivation for this specification is the
 ongoing work on Multipath TCP (e.g., [I-D.ietf-mptcp-architecture],
 [I-D.ford-mptcp-multiaddressed]), but the same API can be used with
 any other protocol that runs multiple addresses on a single socket.
 One of the design goals in this specification is to enable support
 for multiple addresses in a socket without changing the binary
 function call API at the operation system interface, or the set of
 networking function calls available in the system. This design also
 aims to maintain unchanged semantics with the previously familiar
 operations to the extent it is possible, while avoiding backwards
 compatibility issues by explicitly using a new address family.

 Using Multipath TCP with a traditional single-homed socket API can be
 problematic, as discussed in the API considerations document
 [I-D.scharf-mptcp-api]. The socket API was designed with an
 assumption that a socket is using just one address, with this address
 being explicitly visible to the applications. When the API is used
 with a protocol that uses multiple addresses for communication,

https://datatracker.ietf.org/doc/html/rfc2367

Sarolahti Expires September 5, 2010 [Page 3]

Internet-Draft AF-Multipath March 2010

 defining the semantics of existing function calls that directly refer
 to one IP address becomes problematic, possibly making the existing
 applications behave defectively when using the legacy socket API with
 Multipath TCP. While the motivation of Multipath TCP to operate on
 unmodified legacy APIs is well understandable, eventually a more
 expressive API is needed to better manage connections using multiple
 addresses at either end.

 This document specifies a new multipath-compatible address family to
 be used with the familiar socket operations, called AF_MULTIPATH.
 This address family is composed as a sequence of one or multiple
 elements that are each structured in the same way as one of the
 existing address families supported by the system, such as AF_INET or
 AF_INET6. At the same time, this lets the application indicate if it
 supports the use of multiple addresses for the socket, for example
 using multipath TCP. One advantage of the Multipath Address Family
 is that it supports using different address families, such as IPv4 or
 IPv6, in the same address set, thereby enabling dual-stack
 functionality between both IPv4 and IPv6 interfaces (although we note
 that IPv4 addresses can be expressed as a AF_INET6 structure).

 The AF_MULTIPATH address family could be used also with other
 protocols capable of multihoming, for example SCTP [RFC4960]. It may
 possibly be applicable also to shim-layer approaches to multihoming
 such as SHIM6 [RFC5533] or HIP [RFC5206], although these are based on
 a different philosophy of splitting locators (IP addresses) from the
 host identity. Different API extensions for multihomed protocols
 have been specified (or are being worked on), for example one using a
 set of socket options [I-D.ietf-shim6-multihome-shim-api], and
 another extending the set of socket operations in the socket API
 [I-D.ietf-tsvwg-sctpsocket]. This document deliberately proposes a
 new approach as an alternative to these, and discusses the benefits
 and disadvantages of different approaches in Section 5.2

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. The Multipath Address Family

 Multipath address family (AF_MULTIPATH) is composed of a sequence of
 addresses, each expressed using one of the existing address family
 formats supported in the system. A desirable behavior would be that
 in a system that supports the multipath address family, opening a

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc5533
https://datatracker.ietf.org/doc/html/rfc5206
https://datatracker.ietf.org/doc/html/rfc2119

Sarolahti Expires September 5, 2010 [Page 4]

Internet-Draft AF-Multipath March 2010

 socket using one of the traditional single-address families should be
 taken as an indication that multiple addresses should not be used for
 that socket. However, to allow migration period for legacy
 applications that are not converted to use the new address family,
 but would benefit from multipath communication, an additional option
 switch may be needed to control the behavior on traditional single-
 address families.

 The address family is structured according to the generic sockaddress
 structure as follows. The fields are given in network byte order.

 o Length (8 bits)

 o Address family (=AF_MULTIPATH) (8 bits)

 o Number of addresses (8 bits)

 o Address 1

 o Address 2

 o

 o Address N

 Each of the address records above takes the generic sockaddress
 format, i.e.:

 o Length (8 bits)

 o Address family (8 bits)

 o Address (...i.e., the rest of sockaddr structure as defined by the
 address family...)

 In a dynamic multipath connection the set of address fields can
 change over time: new addresses may be added and earlier addresses
 can be removed. This characteristic, that the socket address content
 can change during a connection, differs from traditional behavior.
 However, this just reflects the changed behavior of multipath TCP
 compared to traditional TCP, which uses the same pair of addresses
 through the connection life cycle.

 In today's systems the address family is commonly either AF_INET or
 AF_INET6, although also other address families can exist. Depending
 on the address family, the address would typically be structured as
 sockaddr_in or sockaddr_in6 structure, with the length set
 appropriately. Different address families can be combined in a

Sarolahti Expires September 5, 2010 [Page 5]

Internet-Draft AF-Multipath March 2010

 single AF_MULTIPATH record.

4. Behaviour with Different Networking Functions

 This section defines the intended behavior of commonly used network
 operations when used with AF_MULTIPATH address family. The section
 gives a high-level definition of the operations to be applied as
 appropriate in different application environments.

4.1. Bind

 An AF_MULTIPATH socket can bind to several addresses using a single
 call. It is possible to use wildcard ("Any") address in some of
 entries of the address set. Technically, multiple "Any" addresses
 could allow binding several ports to the same socket, although it is
 unclear if there is any viable reason for doing so. AF_MULTIPATH can
 also contain just one address entry, in which case the behavior is
 similar to traditional single-homed bind. On return, the function
 call should indicate how many addresses were successfully bound, and
 use failure response to indicate that binding failed to all
 addresses. "Get Local Address" operation (getsockname in Posix) can
 be used to investigate which addresses were successfully bound.

 Differing from its past use, bind can be called multiple times for
 the same socket, to allow the application dynamically change the set
 of local addresses. When a subsequent bind call does not include an
 address that is currently in use, it indicates to the protocol that
 this address should not be used anymore in a connection. When a
 subsequent bind call includes addresses that are not currently in
 use, it indicates that these addresses should be added to the
 connection. The protocol implementation may change the set of used
 addresses dynamically without a trigger from application. Before the
 bind call the set of currently used addresses can be obtained using
 the "Get Local Address" (getsockname) call as described in

Section 4.4.

4.2. Connect

 An AF_MULTIPATH socket can give multiple addresses to connect,
 assuming the addresses belong to the same host. The underlying
 protocol may need to activate these connections one at a time, if the
 protocol logic does not permit connecting to multiple addresses
 simultaneously. On return, the function call should indicate how
 many of the addresses were successfully connected, or an error code.
 It is expected that commonly this call is used together with name
 resolution, as described below. "Get Remote Address" (getpeername)
 operation can be used to investigate which addresses were

Sarolahti Expires September 5, 2010 [Page 6]

Internet-Draft AF-Multipath March 2010

 successfully connected to.

 Similarly to bind operation, connect can be called multiple times for
 the same socket, to allow the application dynamically change the set
 of remote addresses. When a subsequent connect call does not include
 an address that is currently in use, it indicates to the protocol
 that this address should not be used anymore in a connection. When a
 subsequent bind call includes addresses that are not currently in
 use, it indicates that these addresses should be added to the
 connection (in practice triggering this from application can be
 unusual for remote addresses). The protocol implementation may
 change the set of used addresses dynamically without a trigger from
 application. Before the connect call the set of currently used
 addresses can be obtained using the "Get Remote Address"
 (getpeername) call as described in Section 4.4.

 An application may give multiple addresses that seem reachable, but
 belong to different hosts. The underlying protocol that supports
 AF_MULTIPATH API MUST be able to detect such situation, and prevent
 connections to multiple hosts. Often there are sufficient protocol
 mechanisms (such as connection tokens in multipath TCP) and other
 protocol state that cause such connections to fail automatically.

4.3. Name resolution

 In a typical usage of a name resolver, multiple addresses may be
 returned from a name server, and a client cycles through the given
 addresses until connection is successfully established. This is
 useful, for example, in dual-stack IPv4/IPv6 hosts. A client may
 need to try connecting separately to IPv6 addresses and IPv4
 addresses, when it is not certain whether IPv6 is supported on the
 path.

 When an AF_MULTIPATH-enabled name resolver is called, it returns the
 available address records as separate entries in a single
 AF_MULTIPATH structure. This would mean that the call returns a
 single AF_MULTIPATH host entry that may contain multiple addresses as
 specified in the AF_MULTIPATH format. An application may directly
 place the returned AF_MULTIPATH structure as a parameter of a connect
 call, indicating that a multipath protocol should try these addresses
 as subflows of the multipath connection. When a name resolver
 receives an AF_MULTIPATH-enabled call in a host that supports both
 IPv6 and IPv4, it is useful to invoke name server queries for both
 IPv6 and IPv4 addresses. If available, records of both types are
 returned to the application, that can pass them to connect call, in
 attempt to invoke a multipath connection over both IPv4 and IPv6
 paths. This may be useful feature supporting transition from IPv4 to
 IPv6.

Sarolahti Expires September 5, 2010 [Page 7]

Internet-Draft AF-Multipath March 2010

 It is not uncommon that a DNS name is associated to multiple hosts,
 for example to perform DNS-based load balancing. As discussed above
 with the connect call, the underlying protocol implementation should
 be able to prevent connect attempts to separate hosts.

4.4. Get Local Address / Get Remote Address

 The basic operation of these calls happens as before: they return a
 sockaddress structure either at the local or the remote end.
 AF_MULTIPATH address family is returned if it has been used earlier
 with the same socket. The set of local or remote addresses SHOULD be
 up-to-date with the currently active set in the protocol
 implementation. When the underlying protocol is able to change the
 active address set during the connection, this implies that
 subsequent calls to these functions can return different sets of
 addresses. Along with the current addresses, an application learns
 also about the connection identifier with this call. The connection
 identifier returned with "Get Remote Address" MUST be the same as the
 identifier returned with "Get Local Address", since it only has local
 meaning, and therefore the other end of the connection typically gets
 entirely different connection identifier for the connection.

5. Discussion

5.1. Address Family or Protocol Family?

 The socket API defines separately the protocol family, that is used
 to define the semantics of the socket behavior when a socket is
 created, and the address family that is used to distinguish different
 socket address formats [RFC2553]. By convention, in many systems
 AF_INET is defined to have an equal value to PF_INET, and AF_INET6 is
 defined to have an equal value to PF_INET6, allowing the pairs of
 definitions to be used interchangeably in implementations.

 Defining separate protocol families for IPv6 and IPv4 has some
 unfortunate consequences: in principle, it needs to be decided at
 socket creation time whether to use IPv6 or IPv4. In practice, IPv6
 defines a specific address range, IPv4-mapped addresses, to
 "virtually" represent IPv4 addresses in IPv6 address space.
 Implementations can use this feature to signal, that IPv4 should be
 used on the wire. An alternative design choice could have been to
 use same protocol family for both IPv4 and IPv6, and distinguish use
 of IPv4 and IPv6 with the address family, that can be selected also
 after the socket is created. After all, the transport protocol
 implementation, and its semantics, are the same in both cases.

 In case of AF_MULTIPATH, the format of the socket address structure

https://datatracker.ietf.org/doc/html/rfc2553

Sarolahti Expires September 5, 2010 [Page 8]

Internet-Draft AF-Multipath March 2010

 changes, while for example in the case of multipath TCP, the
 semantics of the socket calls are intended to remain unchanged. This
 would suggest that when AF_MULTIPATH address family is used with
 socket address structures, the protocol family definition should
 remain at its typical value. Here an argument can be made that
 AF_MULTIPATH changes the behavior of bind and connect calls, but on
 the other hand, it is correct to say that from the applications point
 of view the outcome of a successful completion -- choosing a local
 access point, or successfully establishing connection with the peer
 -- is exactly the same as with the traditional use of the API. It is
 unclear at this point, whether the pairwise definitions of protocol
 family and address family has lead to dependencies in implementations
 that would hinder the implementation of the AF_MULTIPATH address
 family, or whether such dependencies would be difficult to be fixed.

5.2. Comparison to Alternative Design Options

 Replacing the current socket API with a "connect-by-name" API has
 been proposed. Different proposals have slightly different
 abstraction levels, but commonly in these APIs application passes a
 DNS name with the connect call. The benefit of such API is that the
 application does not need to handle the network addresses, that
 arguably shouldn't be application's concern in most cases, and it
 thus avoids a separate name resolution step. In a long term this
 seems a promising direction to take in API design, but involves
 inter-operation between the name resolver that is often implemented
 in user space in current systems, and may need changes in operating
 system kernel interface. This proposal intentionally has taken the
 traditional, more short term approach, to expose the network
 addresses to applications.

 Additions to the set of calls in the socket API has been proposed,
 for example, alternative operations for multi-address bind and
 connect [I-D.ietf-tsvwg-sctpsocket]. In the beginning this document
 lauded the elegance of simple, generic socket API with a small basic
 set of operations, and addition of new purpose-specific operations
 would be a deviation from this design principle. In addition adding
 operations to socket API would cause changes to the operating system
 kernel function interface, that could cause interoperability and
 maintenance issues. One way to implement such extended operations
 would be through an user-space library that maps the operations to
 the existing socket calls in the kernel implementation. In mapping
 the additional operations to existing kernel interface, such library
 might leverage a mechanism similar to what presented in this
 document, or use, for example socket options or ioctl calls.

 Socket options can be used tune parameters affecting the protocol
 behavior. The extensibility of the socket option format can make it

Sarolahti Expires September 5, 2010 [Page 9]

Internet-Draft AF-Multipath March 2010

 appealing to use this interface for more significant run-time tasks,
 such as adding or deleting addresses in a multi-address session, as
 done in [I-D.ietf-shim6-multihome-shim-api]. In this approach the
 semantics of the traditional single-homed operations still need to be
 specified. It can also be questioned whether it is appropriate to
 use socket options to trigger actions that can be seen to fall beyond
 the scope of the original meaning of "socket option".

 In summary, introducing a new address family as proposed in this
 document allows keeping the existing set of socket operations in the
 API, which the author believes to be a useful property, for example
 concerning the maintenance of the interfaces between the operation
 system and applications. If an operating system does not support
 AF_MULTIPATH, it can gracefully return an appropriate error code to
 an application, that can then revert to use the traditional single-
 homed address family, if desired. There are no backwards
 compatibility issues with old applications, because applications
 explicitly signal their support of this address family with the
 connect or bind calls.

 Presenting the multiple addresses associated with the connection
 using the socket addresses seems a natural and native way of
 expressing this fairly new kind of property to applications. The
 recent discussion on this idea showed, however, that the use of more
 dynamic socket addresses can be perceived as unconventional and can
 raise doubts, for example regarding the possible assumptions about
 the persistence of the address structure in the implementations. It
 is unclear how actual this concern is, given that the underlying
 protocol that dynamically maintains the set of addresses is a fairly
 new feature, compared to decades of past use of the end-to-end
 transport.

5.3. Open Issues

 Below are listed some potentially open issues that need to be taken
 in to account in follow-up discussion on this document.

 o Are there any constraints on the generic format of the socket
 address structure, that would conflict with what proposed above?
 It appears that for example BSD and Linux use different formats
 for this structure, so that the Linux structure follows the "old
 BSD" convention, without a common length field (sa_len). Are
 there reasons to follow one of these conventions, or would it be
 possible, for example, to specify a 16-bit length field that could
 be useful for large sets of IPv6 addresses?

 o Is there a need to expose pairwise source-destination subflow
 associations, instead of just a group of source and destination

Sarolahti Expires September 5, 2010 [Page 10]

Internet-Draft AF-Multipath March 2010

 addresses? Currently no such reason can be seen: the socket
 should represent one logical connection between a source host and
 a destination host, that in this case may have multiple IP
 addresses in use for the connection.

 o Is a separate connection identifier field needed, as in the
 earlier version of this document? Currently the author cannot
 identify such need.

6. Security Considerations

 No additional security threats are known because of the multipath
 address family. This document referred to the possibility that
 dynamic end host multihoming may enable new ways to maliciously
 transfer a connection to another host. A multi-address interface may
 open this possibility to applications, but ultimately the multihomed
 protocol should have mechanisms to protect from such behavior.

7. Acknowledgments

 The author is thankful to Alan Ford for pointing out specific
 technical issues to be addressed, and to the people who have
 participated the discussion on the MPTCP mailing list.

 The author is supported by Finland-ICSI Center for Novel Internet
 Architectures (FICNIA) and the Finnish Funding Agency for Technology
 and Innovation (TEKES).

8. References

8.1. Normative References

 [I-D.ietf-mptcp-architecture]
 Ford, A., Raiciu, C., Barre, S., and J. Iyengar,
 "Architectural Guidelines for Multipath TCP Development",

draft-ietf-mptcp-architecture-00 (work in progress),
 March 2010.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

8.2. Informative References

 [I-D.ford-mptcp-multiaddressed]
 Ford, A., Raiciu, C., and M. Handley, "TCP Extensions for

https://datatracker.ietf.org/doc/html/draft-ietf-mptcp-architecture-00
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Sarolahti Expires September 5, 2010 [Page 11]

Internet-Draft AF-Multipath March 2010

 Multipath Operation with Multiple Addresses",
draft-ford-mptcp-multiaddressed-02 (work in progress),

 October 2009.

 [I-D.ietf-shim6-multihome-shim-api]
 Komu, M., Bagnulo, M., Slavov, K., and S. Sugimoto,
 "Socket Application Program Interface (API) for
 Multihoming Shim", draft-ietf-shim6-multihome-shim-api-13
 (work in progress), February 2010.

 [I-D.ietf-tsvwg-sctpsocket]
 Stewart, R., Poon, K., Tuexen, M., Yasevich, V., and P.
 Lei, "Sockets API Extensions for Stream Control
 Transmission Protocol (SCTP)",

draft-ietf-tsvwg-sctpsocket-21 (work in progress),
 February 2010.

 [I-D.scharf-mptcp-api]
 Scharf, M. and A. Ford, "MPTCP Application Interface
 Considerations", draft-scharf-mptcp-api-00 (work in
 progress), October 2009.

 [RFC2367] McDonald, D., Metz, C., and B. Phan, "PF_KEY Key
 Management API, Version 2", RFC 2367, July 1998.

 [RFC2553] Gilligan, R., Thomson, S., Bound, J., and W. Stevens,
 "Basic Socket Interface Extensions for IPv6", RFC 2553,
 March 1999.

 [RFC4960] Stewart, R., "Stream Control Transmission Protocol",
RFC 4960, September 2007.

 [RFC5206] Nikander, P., Henderson, T., Vogt, C., and J. Arkko, "End-
 Host Mobility and Multihoming with the Host Identity
 Protocol", RFC 5206, April 2008.

 [RFC5533] Nordmark, E. and M. Bagnulo, "Shim6: Level 3 Multihoming
 Shim Protocol for IPv6", RFC 5533, June 2009.

Appendix A. Change log

 Changes from version -00 to -01

 o Added more background to the Introduction

 o Added section to discuss protocol family/address family issues,
 and comparison to related API designs

https://datatracker.ietf.org/doc/html/draft-ford-mptcp-multiaddressed-02
https://datatracker.ietf.org/doc/html/draft-ietf-shim6-multihome-shim-api-13
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-sctpsocket-21
https://datatracker.ietf.org/doc/html/draft-scharf-mptcp-api-00
https://datatracker.ietf.org/doc/html/rfc2367
https://datatracker.ietf.org/doc/html/rfc2553
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc5206
https://datatracker.ietf.org/doc/html/rfc5533

Sarolahti Expires September 5, 2010 [Page 12]

Internet-Draft AF-Multipath March 2010

 o Removed the connection identifier from the address structure, and
 changed related descriptions related to socket calls.

 o Added discussion about open issues in Section 3

Author's Address

 Pasi Sarolahti
 HIIT/ICSI
 1947 Center Street (Suite 600)
 Berkeley, CA 94704
 USA

 Phone: +1 (510) 409 - 9972
 Email: pasi.sarolahti@iki.fi
 URI: http://www.iki.fi/pasi.sarolahti/

http://www.iki.fi/pasi.sarolahti/

Sarolahti Expires September 5, 2010 [Page 13]

