
CoRE Working Group T. Savolainen
Internet-Draft Nokia
Intended status: Standards Track K. Hartke
Expires: October 12, 2014 Universitaet Bremen TZI
 B. Silverajan
 Tampere University of Technology
 April 10, 2014

CoAP over WebSockets
draft-savolainen-core-coap-websockets-02

Abstract

 This document specifies how to retrieve and update CoAP resources
 using CoAP requests and responses over the WebSocket Protocol.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 12, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Savolainen, et al. Expires October 12, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft CoAP over WebSockets April 2014

Table of Contents

1. Introduction . 3
1.1. Overview . 4
1.2. Terminology . 6

2. CoAP over WebSockets . 6
2.1. Opening Handshake . 6
2.2. Message Format . 7
2.3. Message Transmission 8
2.4. Connection Health . 8
2.5. Closing the Connection 8

3. CoAP over WebSockets URIs 9
4. Security Considerations 9
5. IANA Considerations . 10
5.1. URI Scheme Registrations 10
5.2. WebSocket Subprotocol Registration 12
5.3. Well-Known URI Suffix Registration 12

6. Acknowledgements . 12
7. References . 12
7.1. Normative References 12
7.2. Informative References 13

Appendix A. Examples . 14
 Authors' Addresses . 17

Savolainen, et al. Expires October 12, 2014 [Page 2]

Internet-Draft CoAP over WebSockets April 2014

1. Introduction

 The Constrained Application Protocol (CoAP) [I-D.ietf-core-coap] is a
 web protocol designed for communications between resource constrained
 nodes. By default, CoAP operates on top of UDP or DTLS, but there is
 interest in using CoAP also over other types of transports, such as
 SMS [I-D.becker-core-coap-sms-gprs].

 An interesting transport for CoAP could be the WebSocket Protocol
 [RFC6455]. The WebSocket protocol provides two-way communication
 between a client and a server after upgrading an HTTP [RFC2616]
 connection, and may be available in an environment that does not
 allow transportation of CoAP over UDP. This environment can be, for
 example, a corporate network with Internet access only via an HTTP
 proxy, or a CoAP application running in a web browser without access
 to connectivity means other than HTTP and WebSockets.

 This document specifies how to access resources using CoAP requests
 and responses over the WebSocket Protocol. This allows connectivity-
 limited applications to obtain end-to-end CoAP connectivity either by
 communicating CoAP directly with a CoAP server that is accessible
 over a WebSocket Connection, or via an intermediary that proxies CoAP
 requests and responses between different transports, such as between
 WebSockets and UDP.

 +---------------------------------------+
 | |
 | Application |
 | |
 +---------------------------------------+
 | |
 | CoAP |
 | Requests and Responses |
 | |
 + - - - - - - - - - +-------------------+
 | | |
 | CoAP | CoAP over |
 | Messaging | WebSockets |
 | | |
 +---------+---------+-------------------+
 | | | |
 | UDP | DTLS | WebSockets |
 | | | |
 +---------+---------+-------------------+

 Figure 1: Abstract layering of CoAP extended by WebSockets

https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc2616

Savolainen, et al. Expires October 12, 2014 [Page 3]

Internet-Draft CoAP over WebSockets April 2014

1.1. Overview

 CoAP over WebSockets can be used in a number of configurations. The
 most basic configuration is a CoAP client seeking to retrieve or
 update a CoAP resource located at a CoAP server that exposes a
 WebSocket endpoint (Figure 2). The CoAP client takes the role of the
 WebSocket client, establishes a WebSocket Connection and sends a CoAP
 request, to which the CoAP server returns a CoAP response. The
 WebSocket Connection can be used for any number of requests.

 ___________ ___________
 | | | |
 | _|___ requests ___|_ |
 | CoAP / \ \ -------------> / / \ CoAP |
 | Client __/__/ <------------- ____/ Server |
 | | responses | |
 |___________| |___________|
 WebSocket =============> WebSocket
 Client Connection Server

 Figure 2: CoAP client (WebSocket client)
 accesses CoAP server (WebSocket server)

 The challenge in this configuration is to identify resource in the
 namespace of the CoAP server: When the WebSocket Protocol is used by
 a dedicated client directly (i.e., not from a web page through a web
 browser), the client can connect to any WebSocket endpoint. This
 means it is necessary that the client is able to determine both the
 WebSocket endpoint (identified by a "ws" or "wss" URI) and the path
 and query of the CoAP resource within that endpoint from the same
 URI. When the WebSocket Protocol is used from a web page, the
 choices are more limited [RFC6454], but the challenge persists.

Section 3 proposes a new "coap+ws" URI scheme that identifies both a
 WebSocket endpoint and a resource within that endpoint as follows:

 coap+ws://example.org/sensors/temperature?u=Cel
 ______ ______/___________ ___________/
 \/ \/
 Uri-Path: "sensors"
 ws://example.org/.well-known/coap Uri-Path: "temperature"
 Uri-Query: "u=Cel"

 Figure 3: The "coap+ws" URI Scheme

https://datatracker.ietf.org/doc/html/rfc6454

Savolainen, et al. Expires October 12, 2014 [Page 4]

Internet-Draft CoAP over WebSockets April 2014

 Another possible configuration is to set up a CoAP forward proxy at
 the WebSocket endpoint. Depending on what transports are available
 to the proxy, it could forward the request to a CoAP server with a
 CoAP UDP endpoint (Figure 4), an SMS endpoint (a.k.a. mobile phone),
 or even another WebSocket endpoint. The client specifies the
 resource to be updated or retrieved in the Proxy-URI Option.

 ___________ ___________ ___________
 | | | | | |
 | _|___ ___|_ _|___ ___|_ |
 | CoAP / \ \ ---> / / \ CoAP / \ \ ---> / / \ CoAP |
 | Client __/__/ <--- ____/ Proxy __/__/ <--- ____/ Server |
 | | | | | |
 |___________| |___________| |___________|
 WebSocket ===> WebSocket UDP UDP
 Client Server Client Server

 Figure 4: CoAP Client (WebSocket client) accesses CoAP Server
 (UDP server) via a CoAP proxy (WebSocket server/UDP client)

 In a completely different way, another possible configuration is a
 CoAP server running inside a web browser (Figure 5). The web browser
 initially connects to a WebSocket endpoint and is then reachable
 through the WebSocket server. When no connection exists, the CoAP
 server is not reachable; it therefore can be considered a Sleepy
 Endpoint [I-D.dijk-core-sleepy-reqs].

 ___________ ___________ ___________
 | | | | | |
 | _|___ ___|_ _|___ ___|_ |
 | CoAP / \ \ ---> / / \ CoAP / / \ ---> / \ \ CoAP |
 | Client __/__/ <--- ____/ Proxy ____/ <--- __/__/ Server |
 | | | | | |
 |___________| |___________| |___________|
 UDP UDP WebSocket <=== WebSocket
 Client Server Server Client

 Figure 5: CoAP Client (UDP client) accesses sleepy CoAP Server
 (WebSocket client) via a CoAP proxy (UDP server/WebSocket server)

 The challenge, again, is to identify the resource. Since the CoAP
 server is running inside the web browser, this requires not only to
 identify the WebSocket client and the path and query, but also the
 intermediary, which is the only path to reach the server. The

Savolainen, et al. Expires October 12, 2014 [Page 5]

Internet-Draft CoAP over WebSockets April 2014

 problem can be avoided if the intermediary is turned into a Reverse
 Proxy or a Mirror Server [I-D.vial-core-mirror-server].

 Further configurations are possible, including those where a
 WebSocket Connection is established through an HTTP proxy.

1.2. Terminology

 This document assumes that readers are familiar with the terms and
 concepts that are used in [RFC6455] and [I-D.ietf-core-coap].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. CoAP over WebSockets

 CoAP over WebSockets is intentionally very similar to CoAP as defined
 over UDP. Therefore, instead of presenting CoAP over WebSockets as a
 new protocol, this document specifies it as a series of deltas from
 [I-D.ietf-core-coap].

2.1. Opening Handshake

 Before CoAP requests and responses can be exchanged, a WebSocket
 Connection needs to be established as defined in Section 4 of
 [RFC6455]. The WebSocket client MUST include the subprotocol name
 "coap.v1" in the list of protocols, which indicates support for the
 protocol defined in this document. Figure 6 shows an example.

 GET /.well-known/coap HTTP/1.1
 Host: example.org
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
 Sec-WebSocket-Protocol: coap.v1
 Sec-WebSocket-Version: 13

 HTTP/1.1 101 Switching Protocols
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
 Sec-WebSocket-Protocol: coap.v1

 Figure 6: Example of an Opening Handshake

https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6455#section-4
https://datatracker.ietf.org/doc/html/rfc6455#section-4

Savolainen, et al. Expires October 12, 2014 [Page 6]

Internet-Draft CoAP over WebSockets April 2014

2.2. Message Format

 Once a WebSocket Connection has been established, CoAP requests and
 responses can be exchanged as WebSocket messages. Since CoAP uses a
 binary message format, the messages are transmitted in binary data
 frames as specified in Sections 5 and 6 of [RFC6455].

 The message format is very similar to the format specified for CoAP
 over UDP [I-D.ietf-core-coap]. The differences are as follows:

 o Since the underlying TCP connection provides retransmissions and
 deduplication, there is no need for the reliability mechanisms
 provided by CoAP over UDP. This means the "T" and "Message ID"
 fields in the CoAP message header can be elided.

 o Furthermore, since the CoAP version is already negotiated during
 the opening handshake, the "Ver" field can be elided as well.

 The resulting message format is shown in Figure 7. The four most-
 significant bits of the first byte are reserved (R). The remaining
 fields and structure are the same as defined in [I-D.ietf-core-coap].

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | R | TKL | Code | Token (TKL bytes) ...
 +-+
 | Options (if any) ...
 +-+
 |1 1 1 1 1 1 1 1| Payload (if any) ...
 +-+

 Figure 7: CoAP Message Format over WebSockets

 Requests and response messages can be fragmented as specified in
Section 5.4 of [RFC6455], though typically they are sent unfragmented

 as they tend to be small and fully buffered before transmission. The
 WebSocket protocol does not provide means for multiplexing; if it is
 not desirable for a large message to monopolize the connection, a
 multiplexing extension such as [I-D.ietf-hybi-websocket-multiplexing]
 can be used. Alternatively, requests and responses can be
 transferred in a blockwise fashion, as defined in
 [I-D.ietf-core-block].

 Messages MUST NOT be Empty (Code 0.00), i.e., messages always carry
 either a request or a response.

https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6455#section-5.4

Savolainen, et al. Expires October 12, 2014 [Page 7]

Internet-Draft CoAP over WebSockets April 2014

2.3. Message Transmission

 CoAP requests and responses are exchanged asynchronously over the
 WebSocket Connection, i.e., a CoAP client can send multiple requests
 without waiting for a response, and the CoAP server can return
 responses in any order. Responses MUST be returned over the same
 connection as the originating request. Concurrent requests are
 differentiated by the Token, which is locally scoped to the
 connection.

 The connection is bi-directional, so requests can be sent both by the
 entity that established the connection and the remote host.

 Retransmission and deduplication of messages is provided by the
 WebSocket Protocol. CoAP over WebSockets therefore does not make a
 distinction between Confirmable or Non-Confirmable messages, and does
 not provide Acknowledgement or Reset messages.

 Since the WebSocket Protocol provides ordered delivery of messages,
 the mechanism for reordering detection when observing resources
 [I-D.ietf-core-observe] is not needed. The value of the Observe
 Option in notifications therefore MAY be empty on transmission and
 MUST be ignored on reception.

2.4. Connection Health

 When a client does not receive any response for some time after
 sending a CoAP request (or, similarly, when a client observes a
 resource and it does not receive any notification), the connection
 between the WebSocket client and the WebSocket server may be lost or
 temporarily disrupted without the client being aware of it.

 To check the health of the WebSocket Connection (and thereby of all
 active requests, if any), the client can send a Ping frame or an
 unsolicited Pong frame, as specified in Section 5.5 of [RFC6455].

2.5. Closing the Connection

 The WebSocket Connection is closed as specified in Section 7 of
 [RFC6455].

 All requests (if any) for which the CoAP client has not received a
 response yet, are cancelled when the connection is closed. If the
 client observes one or more resource over the WebSocket Connection,
 then the CoAP server (or intermediary in the role of the CoAP server)
 MUST remove all entries associated with the client from the lists of
 observers when the connection is closed.

https://datatracker.ietf.org/doc/html/rfc6455#section-5.5
https://datatracker.ietf.org/doc/html/rfc6455#section-7
https://datatracker.ietf.org/doc/html/rfc6455#section-7

Savolainen, et al. Expires October 12, 2014 [Page 8]

Internet-Draft CoAP over WebSockets April 2014

3. CoAP over WebSockets URIs

 For the first configuration discussed in Section 1.1, this document
 defines two new URIs schemes that can be used for identifying CoAP
 resources and providing a means of locating these resources:
 "coap+ws" and "coap+wss".

 Similar to the "coap" and "coaps" schemes, the "coap+ws" and "coap+
 wss" schemes organize resources hierarchically under a CoAP origin
 server. The key difference is that the server is potentially
 reachable on a WebSocket endpoint instead of a UDP endpoint.

 The WebSocket endpoint is identified by an "ws" or "wss" URI that is
 composed of the authority part of the "coap+ws" or "coap+wss" URI,
 respectively, and the well-known path "/.well-known/coap" [RFC5785].
 The path and query parts of a "coap+ws" or "coap+wss" URI identify a
 resource within the specified endpoint which can be operated on by
 the methods defined by the CoAP protocol.

 The syntax of the "coap+ws" and "coap+wss" URI schemes is specified
 below in Augmented Backus-Naur Form (ABNF) [RFC5234]. The
 definitions of "host", "port", "path-abempty" and "query" are the
 same as in [RFC3986].

 coap-ws-URI =
 "coap+ws:" "//" host [":" port] path-abempty ["?" query]

 coap-wss-URI =
 "coap+wss:" "//" host [":" port] path-abempty ["?" query]

 The port component is OPTIONAL; the default for "coap+ws" is port 80,
 while the default for "coap+wss" is port 443.

 Fragment identifiers are not part of the request URI and thus MUST
 NOT be transmitted in a WebSocket handshake or in a CoAP request.

4. Security Considerations

 CoAP over WebSockets and CoAP over TLS-secured WebSockets do not
 introduce additional security issues beyond CoAP and DTLS-secured
 CoAP respectively [I-D.ietf-core-coap].

 The security considerations of [RFC6455] apply.

https://datatracker.ietf.org/doc/html/rfc5785
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc6455

Savolainen, et al. Expires October 12, 2014 [Page 9]

Internet-Draft CoAP over WebSockets April 2014

5. IANA Considerations

5.1. URI Scheme Registrations

5.1.1. "coap+ws"

 This document requests the registration of the Uniform Resource
 Identifier (URI) scheme "coap+ws".

 URI scheme name.
 coap+ws

 Status.
 Permanent.

 URI scheme syntax.
 Defined in Section 3.

 URI scheme semantics.
 The "coap+ws" URI scheme provides a way to identify resources that
 are potentially accessible over the Constrained Application
 Protocol (CoAP) using the WebSocket Protocol.

 Encoding considerations.
 The scheme encoding conforms to the encoding rules established for
 URIs in [RFC3986], i.e., internationalized and reserved characters
 are expressed using UTF-8-based percent-encoding.

 Applications/protocols that use this URI scheme name.
 The scheme is used by CoAP endpoints to access CoAP resources
 using the WebSocket protocol.

 Interoperability considerations.
 None.

 Security considerations.
 See Section 4.

 Contact.
 IETF Chair <chair@ietf.org>

 Author/Change controller.
 IESG <iesg@ietf.org>

 References.
 This document.

https://datatracker.ietf.org/doc/html/rfc3986

Savolainen, et al. Expires October 12, 2014 [Page 10]

Internet-Draft CoAP over WebSockets April 2014

5.1.2. "coap+wss"

 This document requests the registration of the Uniform Resource
 Identifier (URI) scheme "coap+wss".

 URI scheme name.
 coap+wss

 Status.
 Permanent.

 URI scheme syntax.
 Defined in Section 3.

 URI scheme semantics.
 The "coap+wss" URI scheme provides a way to identify resources
 that are potentially accessible over the Constrained Application
 Protocol (CoAP) using the WebSocket Protocol secured with
 Transport Layer Security (TLS).

 Encoding considerations.
 The scheme encoding conforms to the encoding rules established for
 URIs in [RFC3986], i.e., internationalized and reserved characters
 are expressed using UTF-8-based percent-encoding.

 Applications/protocols that use this URI scheme name.
 The scheme is used by CoAP endpoints to access CoAP resources
 using the WebSocket protocol secured with TLS.

 Interoperability considerations.
 None.

 Security considerations.
 See Section 4.

 Contact.
 IETF Chair <chair@ietf.org>

 Author/Change controller.
 IESG <iesg@ietf.org>

 References.
 This document.

https://datatracker.ietf.org/doc/html/rfc3986

Savolainen, et al. Expires October 12, 2014 [Page 11]

Internet-Draft CoAP over WebSockets April 2014

5.2. WebSocket Subprotocol Registration

 This document requests the registration of the subprotocol name
 "coap.v1" in the WebSocket Subprotocol Name Registry.

 Subprotocol Identifier.
 coap.v1

 Subprotocol Common Name.
 Constrained Application Protocol (CoAP).

 Subprotocol Definition.
 This document.

5.3. Well-Known URI Suffix Registration

 This document requests the registration of the Well-Known URI suffix
 "coap" in the Well-Known URI Registry.

 URI suffix.
 coap

 Change controller.
 IETF.

 Specification document(s).
 This document.

 Related information.
 None.

6. Acknowledgements

 Thanks to Nadir Javed for helpful comments and discussions that have
 shaped the document.

7. References

7.1. Normative References

 [I-D.ietf-core-coap]
 Shelby, Z., Hartke, K., and C. Bormann, "Constrained
 Application Protocol (CoAP)", draft-ietf-core-coap-18
 (work in progress), June 2013.

 [I-D.ietf-core-observe]

https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-18

Savolainen, et al. Expires October 12, 2014 [Page 12]

Internet-Draft CoAP over WebSockets April 2014

 Hartke, K., "Observing Resources in CoAP",
draft-ietf-core-observe-13 (work in progress), April 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 April 2010.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
RFC 6455, December 2011.

7.2. Informative References

 [I-D.becker-core-coap-sms-gprs]
 Becker, M., Li, K., Poetsch, T., and K. Kuladinithi,
 "Transport of CoAP over SMS",

draft-becker-core-coap-sms-gprs-04 (work in progress),
 August 2013.

 [I-D.dijk-core-sleepy-reqs]
 Dijk, E., "Sleepy Devices using CoAP - Requirements",

draft-dijk-core-sleepy-reqs-00 (work in progress),
 June 2013.

 [I-D.ietf-core-block]
 Bormann, C. and Z. Shelby, "Blockwise transfers in CoAP",

draft-ietf-core-block-14 (work in progress), October 2013.

 [I-D.ietf-hybi-websocket-multiplexing]
 Tamplin, J. and T. Yoshino, "A Multiplexing Extension for
 WebSockets", draft-ietf-hybi-websocket-multiplexing-11
 (work in progress), July 2013.

 [I-D.vial-core-mirror-server]
 Vial, M., "CoRE Mirror Server",

draft-vial-core-mirror-server-01 (work in progress),
 April 2013.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-13
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc5785
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/draft-becker-core-coap-sms-gprs-04
https://datatracker.ietf.org/doc/html/draft-dijk-core-sleepy-reqs-00
https://datatracker.ietf.org/doc/html/draft-ietf-core-block-14
https://datatracker.ietf.org/doc/html/draft-ietf-hybi-websocket-multiplexing-11
https://datatracker.ietf.org/doc/html/draft-vial-core-mirror-server-01
https://datatracker.ietf.org/doc/html/rfc2616

Savolainen, et al. Expires October 12, 2014 [Page 13]

Internet-Draft CoAP over WebSockets April 2014

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 December 2011.

Appendix A. Examples

 This section gives examples for the first two configurations
 discussed in Section 1.1.

 An example of the process followed by a CoAP client to retrieve the
 representation of a resource identified by a "coap+ws" URI might be
 as follows. Figure 8 below illustrates the WebSocket and CoAP
 messages exchanged in detail.

 1. The CoAP client obtains the URI
 <coap+ws://example.org/sensors/temperature?u=Cel>, for example,
 from a resource representation that it retrieved previously.

 2. It establishes a WebSocket Connection to the endpoint URI
 composed of the authority "example.org" and the well-known path
 "/.well-known/coap", <ws://example.org/.well-known/coap>.

 3. It sends a single-frame, masked, binary message containing a CoAP
 request. The request indicates the target resource with the Uri-
 Path ("sensors", "temperature") and Uri-Query ("u=Cel") options.

 4. It waits for the server to return a response.

 5. The CoAP client uses the connection for further requests, or the
 connection is closed.

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc6454

Savolainen, et al. Expires October 12, 2014 [Page 14]

Internet-Draft CoAP over WebSockets April 2014

 CoAP CoAP
 Client Server
 (WebSocket (WebSocket
 Client) Server)

 | |
 | |
 +=========>| GET /.well-known/coap HTTP/1.1
 | | Host: example.org
 | | Upgrade: websocket
 | | Connection: Upgrade
 | | Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
 | | Sec-WebSocket-Protocol: coap.v1
 | | Sec-WebSocket-Version: 13
 | |
 |<=========+ HTTP/1.1 101 Switching Protocols
 | | Upgrade: websocket
 | | Connection: Upgrade
 | | Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
 | | Sec-WebSocket-Protocol: coap.v1
 | |
 | |
 +--------->| Binary frame (opcode=%x2, FIN=1, MASK=1)
 | | +-------------------------+
 | | | GET |
 | | | Token: 0x53 |
 | | | Uri-Path: "sensors" |
 | | | Uri-Path: "temperature" |
 | | | Uri-Query: "u=Cel" |
 | | +-------------------------+
 | |
 |<---------+ Binary frame (opcode=%x2, FIN=1, MASK=0)
 | | +-------------------------+
 | | | 2.05 Content |
 | | | Token: 0x53 |
 | | | Payload: "22.3 Cel" |
 | | +-------------------------+
 : :
 : :
 | |
 +--------->| Close frame (opcode=%x8, FIN=1, MASK=1)
 | |
 |<---------+ Close frame (opcode=%x8, FIN=1, MASK=0)
 | |

 Figure 8: A CoAP client retrieves the representation of a resource
 identified by a "coap+ws" URI

Savolainen, et al. Expires October 12, 2014 [Page 15]

Internet-Draft CoAP over WebSockets April 2014

 Figure 9 shows how a CoAP client uses a CoAP forward proxy with a
 WebSocket endpoint to retrieve the representation of the resource
 <coap://[2001:DB8::1]/>. The use of the forward proxy and the
 address of the WebSocket endpoint are determined by the client from
 local configuration rules. The request URI is specified in the
 Proxy-Uri Option. Since the request URI uses the "coap" URI scheme,
 the proxy fulfills the request by issuing a Confirmable GET request
 over UDP to the CoAP server and returning the response over the
 WebSocket connection to the client.

 CoAP CoAP CoAP
 Client Proxy Server
 (WebSocket (WebSocket (UDP
 Client) Server) Endpoint)

 | | |
 +--------->| | Binary frame (opcode=%x2, FIN=1, MASK=1)
 | | | +------------------------------------+
 | | | | GET |
 | | | | Token: 0x7d |
 | | | | Proxy-Uri: "coap://[2001:DB8::1]/" |
 | | | +------------------------------------+
 | | |
 | +--------->| CoAP message (Ver=1, T=Con, MID=0x8f54)
 | | | +------------------------------------+
 | | | | GET |
 | | | | Token: 0x0a15 |
 | | | +------------------------------------+
 | | |
 | |<---------+ CoAP message (Ver=1, T=Ack, MID=0x8f54)
 | | | +------------------------------------+
 | | | | 2.05 Content |
 | | | | Token: 0x0a15 |
 | | | | Payload: "ready" |
 | | | +------------------------------------+
 | | |
 |<---------+ | Binary frame (opcode=%x2, FIN=1, MASK=0)
 | | | +------------------------------------+
 | | | | 2.05 Content |
 | | | | Token: 0x7d |
 | | | | Payload: "ready" |
 | | | +------------------------------------+
 | | |

 Figure 9: A CoAP client retrieves the representation of a resource
 identified by a "coap" URI via a WebSockets-enabled CoAP proxy

Savolainen, et al. Expires October 12, 2014 [Page 16]

Internet-Draft CoAP over WebSockets April 2014

Authors' Addresses

 Teemu Savolainen
 Nokia
 Hermiankatu 12 D
 Tampere FI-33720
 Finland

 Email: teemu.savolainen@nokia.com

 Klaus Hartke
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63905
 Email: hartke@tzi.org

 Bilhanan Silverajan
 Tampere University of Technology
 Korkeakoulunkatu 10
 Tampere FI-33720
 Finland

 Email: bilhanan.silverajan@tut.fi

Savolainen, et al. Expires October 12, 2014 [Page 17]

