
Atompub Working Group R. Sayre
Internet-Draft January 24, 2006
Expires: July 28, 2006

The Atom Publishing Protocol (Basic)
draft-sayre-atompub-protocol-basic-06

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on July 28, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This memo presents a protocol that uses XML and HTTP to publish and
 edit Web resources.

Sayre Expires July 28, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft APP Basic January 2006

Table of Contents

1. Introduction . 3
2. Notational Conventions . 3
3. The Atom Publishing Protocol Model 3
4. Discovery . 3
5. Listing . 4
6. Authoring . 4
7. Atom Protocol Feeds . 6
8. Media Feeds . 8
9. Service Description . 10
10. IANA Considerations . 14
11. Security Considerations 14
12. Informative References . 15
Appendix A. Acknowledgements 15
Appendix B. Change History 15

 Author's Address . 16
 Intellectual Property and Copyright Statements 17

Sayre Expires July 28, 2006 [Page 2]

Internet-Draft APP Basic January 2006

1. Introduction

 The Atom Publishing Protocol uses HTTP [RFC2616] and XML [W3C.REC-
 xml-20040204] to publish and edit Web resources.

2. Notational Conventions

 The Atom Protocol namespace is "http://purl.org/atom/app#". This
 specification refers to it by using the prefix "pub", but that prefix
 is arbitrary.

 The terms 'URI' and 'IRI' are shorthand for the identifiers specified
 in [RFC3986] and [RFC3987].

3. The Atom Publishing Protocol Model

 The Atom Protocol uses HTTP to operate on collections of Web
 resources represented by Atom feeds [AtomFormat]. This section
 illustrates the editing cycle for Atom entries.
 o GET is used to retrieve a representation of a resource or perform
 a read-only query.
 o POST is used to create a new, dynamically-named resource.
 o PUT is used to update a known resource.
 o DELETE is used to remove a resource.

4. Discovery

 To discover the location of the feeds exposed by an Atom Protocol
 service, the client must locate and request a Service Description
 Document (Section 6).

 Client Server
 | |
 | 1.) GET Service URI |
 |------------------------------->|
 | |
 | 2.) Service Description Doc |
 |<-------------------------------|
 | |

 1. The client sends a GET request to the Service Description URI.

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3987

Sayre Expires July 28, 2006 [Page 3]

Internet-Draft APP Basic January 2006

 2. The server responds with a Service Description Document
 containing the locations of feeds provided by the service. The
 content of this document can vary based on aspects of the client
 request, including, but not limited to, authentication
 credentials.

5. Listing

 Once the client has discovered the location of a feed in the outline,
 it can request a listing of the feed's entries. However, a feed
 might contain an extremely large number of entries, so servers are
 likely to list a small subset of them by default.

 Client Server
 | |
 | 1.) GET to Atom Feed URI |
 |------------------------------->|
 | |
 | 2.) 200 OK, Atom Feed Doc |
 |<-------------------------------|
 | |

 1. The client sends a GET request to the Atom Feed's URI.
 2. The server responds with an Atom Feed Document containing a full
 or partial listing of the feed's membership.

6. Authoring

 After locating a feed, a client can add entries by sending a POST
 request to the feed; other changes are accomplished by sending HTTP
 requests to each entry.

6.1. Create

 Client Server
 | |
 | 1.) POST Entry to Feed URI |
 |------------------------------->|
 | |
 | 2.) 201 Created @ Location |
 |<-------------------------------|
 | |

Sayre Expires July 28, 2006 [Page 4]

Internet-Draft APP Basic January 2006

 1. The client sends an Atom Entry to the server via HTTP POST. The
 Request URI is that of the Atom Feed.
 2. The server responds with a response of "201 Created" and a
 "Location" header containing the URI of the newly-created Atom
 Entry.

6.2. Read

 Client Server
 | |
 | 1.) GET or HEAD to Entry URI |
 |------------------------------->|
 | |
 | 2.) 200 OK Atom Entry |
 |<-------------------------------|
 | |

 1. The client sends a GET (or HEAD) request to the entry's URI.
 2. The server responds with an Atom Entry document.

6.3. Update

 Client Server
 | |
 | 1.) PUT to Entry URI |
 |------------------------------->|
 | |
 | 2.) 200 OK |
 |<-------------------------------|
 | |

 1. The client PUTs an updated Atom Entry Document to the entry's
 URI.
 2. The server responds with a successful status code.

6.4. Delete

 Client Server
 | |
 | 1.) DELETE to Entry URI |
 |------------------------------->|
 | |
 | 2.) 204 No Content |

Sayre Expires July 28, 2006 [Page 5]

Internet-Draft APP Basic January 2006

 |<-------------------------------|
 | |

 1. The client sends a DELETE request to the entry's URI.
 2. The server responds with successful status code.

6.5. Success and Failure

 HTTP defines classes of response. HTTP status codes of the form 2xx
 signal that a request was successful. HTTP status codes of the form
 4xx or 5xx signal that an error has occurred, and the request has
 failed. Consult the HTTP specification for more detailed definitions
 of each status code.

7. Atom Protocol Feeds

7.1. GET

 Feeds can contain extremely large numbers of resources. A naive
 client such as a web spider or web browser would be overwhelmed if
 the response to a GET contained every entry in the feed, and the
 server would waste large amounts of bandwidth and processing time on
 clients unable to handle the response. As a result, responses to a
 simple GET request represent a server-determined subset of the
 entries in the feed.

Sayre Expires July 28, 2006 [Page 6]

Internet-Draft APP Basic January 2006

 An example Atom Protocol feed:

 <feed xmlns="http://www.w3.org/2005/Atom"
 xmlns:pub="http://purl.org/atom/app#">
 <title>My Posts1</title>
 <id>urn:uuid:ce61592c-14e2-4557-978e-dfbd444aefa6</id>
 <updated>2005-12-21T04:11:00-08:00</updated>
 <!-- 0 or more atom:entry elements follow -->
 <entry>
 <title type="text">title 25</title>
 <updated>2005-12-21T04:11:00-08:00</updated>
 <author>
 <name>Foo</name>
 </author>
 <summary>It started out looking simple enough...</summary>
 <id>urn:uuid:941e12b4-6eeb-4753-959d-0cbc51875387</id>
 <pub:edit href="./entry7.atom"/>
 <link href="/permalink7.html" />
 </entry>
 ...
 </feed>

 Each member entry is represented by an atom:entry element, but those
 entries are not an editable representation of the entry. To retrieve
 the source representation of the entry, clients send a GET request to
 the URI found in each entry's pub:edit element (see Section 4.3.1).
 Derived resources are located by examining an entry's atom:link
 elements.

7.2. POST

 An Atom Protocol feed also accepts POST requests. The client POSTs a
 representation of the desired resource to the APP feed. Some feeds
 only accept POST requests with certain media-types, so a POST request
 could result in a response with a status code of 415 ("Unsupported
 Media Type"). In the case of a successful creation, the status code
 is 201 ("Created").

Sayre Expires July 28, 2006 [Page 7]

Internet-Draft APP Basic January 2006

 Example request creating a new entry in a feed:

 POST /collection HTTP/1.1
 Host: example.org
 User-Agent: Cosimo/1.0
 Content-Type: application/atom+xml
 Content-Length: nnnn

 ...data...

 Example response.

 HTTP/1.1 201 Created
 Date: Mon, 21 Mar 2005 19:20:19 GMT
 Server: CountBasic/2.0
 ETag: "4c083-268-423f1dc6"
 Location: http://example.org/stuff/foo13241234.atom

8. Media Feeds

 The entries within Media Feeds do not represent uniform types of
 content. For example, they might contain JPEG images, text
 documents, MPEG movies, or any other type of resource the server
 allows.

8.1. GET

 Media Feeds return an Atom feed much like the textual Atom Protcol
 feeds described above, but with a few additions. The entries also
 contain an atom:content element with a 'src' attribute pointing to
 the media resource. This URI can be used to edit the uploaded media
 resource, using PUT and DELETE. Such entries may contain edit links
 used to edit the entry metadata. As with any Atom entry, related and
 derived resources can be located by inspecting an entry's atom:link
 elements.

Sayre Expires July 28, 2006 [Page 8]

Internet-Draft APP Basic January 2006

 An example Media Feed:

 <feed xmlns="http://www.w3.org/2005/Atom"
 xmlns:pub="http://purl.org/atom/app#">
 <title>My Posts1</title>
 <author>
 <name>Foo</name>
 </author>
 <id>urn:uuid:ce61592c-14e2-4557-978e-dfbd444aefa6</id>
 <updated>2005-12-21T04:11:00-08:00</updated>
 <!-- 0 or more atom:entry elements follow -->
 <entry>
 <title type="text">Title25</title>
 <updated>2005-12-21T04:11:00-08:00</updated>
 <id>urn:uuid:941e12b4-6eeb-4753-959d-0cbc51875387</id>
 <link href="/permalink7.html" type="text/html" />
 <link href="/stuff/public/beach.jpg" type="image/jpg"
 title="Low res public version" />
 <summary>This was awesome.</summary>
 <content src="http://example.org/beach.tiff" />
 </entry>
 ...
 </feed>

 The Atom Syndication Format requires that each such entry contain an
 atom:title and atom:summary element. This requirement can be
 challenging to meet without requiring users to enter tedious
 metadata, but servers should attempt to provide textual data about
 the resource in the interests of accessibility. The atom:title
 element will likely be provided by the client, as a way for users to
 associate their local resources with those they have uploaded to the
 server (see POST below).

8.2. POST

 To add an entry to a Media Feed, clients POST the resource to the
 Media Feed's URI. Clients should provide a 'Title' request header to
 provide the server with a short string identifying the resource to
 users. Clients may include a 'Content-Description' header [RFC2045]
 providing a more complete description of the content. In addition,
 servers may inspect the POSTed entity for additional metadata to be
 exposed in an atom:entry element when listed in a Media Feed. For
 example, the server might inspect a JPEG file for EXIF headers
 containing creator data.

https://datatracker.ietf.org/doc/html/rfc2045

Sayre Expires July 28, 2006 [Page 9]

Internet-Draft APP Basic January 2006

 An example request:

 POST /collection HTTP/1.1
 Host: example.org
 User-Agent: Cosimo/1.0
 Content-Type: image/tiff
 Content-Length: nnnn
 Title: A Trip to the beach
 Content-Description: It was so fun.

 ...binary data...

 An example response:

 HTTP/1.1 201 Created
 Date: Mon, 21 Mar 2005 19:20:19 GMT
 Server: CountBasic/2.0
 ETag: "4c083-268-423f1dc6"
 Location: http://example.org/stuff/beach.tiff

 [@@ deal with response ambiguity noted in WG]

9. Service Description

 Many Atom Protocol applications require a basic resource layout in
 order to ease configuration requirements. Servers use Service
 Description documents to convey information about related groups of
 Atom Protocol feeds. On a blogging service, for example, each group
 might represent a distinct blog and associated resources.

 Example Service Description document:

 <app xmlns="http://purl.org/atom/app#">
 <service name="My Blog" class="feed"
 href="http://example.com/entries">
 <service name="Photos" class="media feed"
 href="http://example.com/photos"/>
 <service name="Drafts" class="feed"
 href="http://example.com/drafts"/>
 </service>
 <service class="feed" name="Sidebar Blog"
 href="http://example.org/details"/>

Sayre Expires July 28, 2006 [Page 10]

Internet-Draft APP Basic January 2006

 </app>

 Servers are not required to expose a Service Description document,
 but experimental deployment experience has shown that a single
 document which signals some basic information about the server's
 configuration can greatly simplify client implementations. The
 simplest useful Service Description document shows the location of a
 single resource:

 <app>
 <service name="My Blog" class="feed"
 href="http://blog.example.com/app.cgi"/>
 </app>

 If another service is added, the document can be upgraded to reflect
 new resources.

 <app>
 <service name="My Blog" class="feed"
 href="http://blog.example.com/app.cgi"/>
 <service name="Another Blog" class="feed"
 href="http://another.example.com/app.cgi"/>
 </app>

 Finally, more extensive services could require some amount of
 hierarchical grouping.

 <app>
 <service name="My Blog" class="feed"
 href="http://blog.example.com/app.cgi">
 <service name="Photos" class="media feed"
 href="http://example.com/photos"/>
 </service>
 <service name="Other Things">
 <service name="Another Blog" class="feed"
 href="http://another.example.com/app.cgi"/>
 <service name="A Third Blog" class="feed"
 href="http://third.example.com/app.cgi"/>
 </service>
 </app>

Sayre Expires July 28, 2006 [Page 11]

Internet-Draft APP Basic January 2006

 This example shows that links to APP feeds can appear in <service>
 elements used to group other resources. The <service> element named
 "Other Things" does not contain an 'href' attribute, so it functions
 as a simple named group of the services it contains.

9.1. Categories

 [@@ tbd]

9.2. Document Format

 Service Description documents MUST be well-formed XML [W3C.REC-xml-
 20040204].

 The root element of an APP Service Description Document is "<app>".
 This specification does not define any attributes of the <app>
 element, but the element can have any number of attributes.

 Zero or more <service> elements appear as child elements of <app>.
 Also, <service> elements may contain zero or more <service> elements.
 This specification defines three attributes of the <service> element.
 <service> elements contain at least a 'name' or 'href' attribute.
 Additional service properties too large or structured to include in
 attribute values could appear as child elements of the service
 element.

 <app> elements can contain any number of elements that are not
 <service> elements, and <service> elements can contain any number of
 elements that are not <service> elements.

9.2.1. The 'name' Attribute

 The 'name' attribute contains a short string describing the service
 element. Entities such as "&" and "<" represent their
 corresponding characters ("&" and "<" respectively), not markup.

9.2.2. The 'href' Attribute

 The 'href' attribute contains an IRI reference interpreted relative
 to the in-scope base IRI [RFC3987]. Most protocols require URIs
 [RFC3986], so IRIs usually need to be converted to URIs before being
 dereferenced.

9.2.3. The 'class' Attribute

 The 'class' attribute contains a space-separated list of strings used
 to classify the service element. This specification defines two
 values for the 'class' attribute:

https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc3986

Sayre Expires July 28, 2006 [Page 12]

Internet-Draft APP Basic January 2006

 o feed
 o media feed

 These values correspond to standard feeds and media feeds,
 respectively. If the 'class' attribute is not present, the <service>
 element can be processed as if the attribute were present with a
 value of 'feed'.

9.2.4. Relax NG Schema

 Service Description documents conform to the schema below.

 default namespace = "http://purl.org/atom/app#"
 start = app

 app = element app {
 anyAttribute*,
 (service* & anyElement*)
 }

 service = element service {
 (nameAtt | hrefAtt), anyAttribute*,
 (service* & anyElement*)
 }

 nameAtt = attribute name { text }
 hrefAtt = attribute href { text }
 classAtt = attribute class { text }

 anyElement = element * { (anyAttribute | text | anyElement)* }
 anyAttribute = attribute * { text }

9.2.5. Extending Service Description

 The Service Description document format can be freely extended by
 adding attributes and elements not defined by this specification.

 Valid Service Description document with extensions:

 <app xmlns="http://purl.org/atom/app#" foo="bar">
 <blog-userid>42</blog-userid>
 <service name="Baz" qux="hmmm" href="http://example.com">
 <some-other-extension>hmm</some-other-extension>
 </service>
 </app>

Sayre Expires July 28, 2006 [Page 13]

Internet-Draft APP Basic January 2006

 Additional service properties too large or structured to include in
 attribute values could appear as child elements of the <service> or
 <app> elements. <app> elements may contain any number of elements
 that are not <service> elements, and <service> elements may contain
 any number of elements that are not <service> elements.

9.2.6. User Agent Conformance

 Foreign markup is markup not defined by this specification.

 Software consuming Service Description documents must not halt
 processing when any foreign markup is encountered. Software may
 ignore the markup and process any content of foreign elements as
 though the surrounding markup were not present. For example,
 software may process

 <app>
 <workspace>
 <service name="My Blog"
 href="http://example.com/entries">
 <service name="Photos" class="media feed"
 href="http://example.com/jpgs"/>
 <view title="Archives" seek="...">
 <view title="2005" href="..." />
 ...
 </view>
 </service>
 </workspace>
 </app>

 as though the <workspace> and <view> elements were not present.

 Software conforming to this specification may halt processing when
 documents that do not conform to the schema are encountered.

10. IANA Considerations

 [@@ fill out in for application/sd+xml (service description)]

11. Security Considerations

Sayre Expires July 28, 2006 [Page 14]

Internet-Draft APP Basic January 2006

12. Informative References

Appendix A. Acknowledgements

 This draft is a variant of the in-progress Atom Publishing Protocol
 specification from the IETF Atompub WG, and owes a debt to the WG's
 members.

Appendix B. Change History
 -06: Change service description format.
 Change IPR terms to full3978
 -interlude: More unproductive WG thrashing.
 -05: Death to collections!
 Switch APPO instead of XOXO.
 State the obvious about the extension elements.
 Remove RFC2119 reference.
 Change "Normative References" to "References".
 -04: Add pub:control element.
 Reword collection POST.
 Prophesize about atom:id.
 -03: Remove search/query capabilities added in -02 Drop round-
 tripping. Most of them were writable, some folks wanted to edit
 atom:updated, that leaves atom:id, and that seems foolish to try
 and edit, so go ahead and try it if you think you can.
 -02: Add search/query capabilities.
 -01: Split from WG draft, cut SOAP, and much other cruft.
 -interlude: Becomes WG draft.
 -00: Split from WG draft.

https://datatracker.ietf.org/doc/html/rfc2119

Sayre Expires July 28, 2006 [Page 15]

Internet-Draft APP Basic January 2006

Author's Address

 Robert Sayre

 Email: rfsayre@boswijck.com

Sayre Expires July 28, 2006 [Page 16]

Internet-Draft APP Basic January 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Sayre Expires July 28, 2006 [Page 17]

