
Network Working Group J. Schaad
Internet-Draft August Cellars
Intended status: Informational June 10, 2015
Expires: December 12, 2015

CBOR Encoded Message Syntax
draft-schaad-cose-msg-00

Abstract

 Concise Binary Object Representation (CBOR) is data format designed
 for small code size and small message size. There is a need for the
 ability to have the basic security services defined for this data
 format. This document specifies how to do signatures, message
 authentication codes and encryption using this data format. The work
 in this document is derived in part from the JSON web security
 documents using the same parameters and algorithm identifiers as they
 do.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 12, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Schaad Expires December 12, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft CBOR Encoded Message Syntax June 2015

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Design changes from JOSE 3
1.2. Requirements Terminology 4
1.3. CBOR Grammar . 4

2. The COSE_MSG structure 4
3. Header Parameters . 5
3.1. COSE Headers . 6

4. Signing Structure . 6
5. Encryption object . 9
5.1. Key Management Methods 10
5.1.1. Direct Encryption 11
5.1.2. Key Wrapping . 11
5.1.3. Key Encryption 11
5.1.4. Direct Key Agreement 12
5.1.5. Key Agreement with Key Wrapping 12

5.2. Encryption Algorithm for AEAD algorithms 13
5.3. Encryption algorithm for AE algorithms 13

6. MAC objects . 13
7. Key Structure . 15
8. CBOR Encoder Restrictions 16
9. IANA Considerations . 17
9.1. CBOR Tag assignment 17
9.2. COSE Parameter Table 17
9.3. COSE Header Key Table 17
9.4. COSE Header Algorithm Key Table 18
9.5. COSE Algorithm Registry 19
9.6. COSE Key Map Registry 19
9.7. COSE Key Parameter Registry 20

10. Security Considerations 20
11. References . 21
11.1. Normative References 21
11.2. Informative References 21

Appendix A. AEAD and AE algorithms 22
Appendix B. Three Levels of Recipient Information 23
Appendix C. Examples . 23
C.1. Direct MAC . 24
C.2. Wrapped MAC . 24
C.3. Multi-recipient MAC message 24
C.4. Direct ECDH . 25
C.5. Single Signature . 26
C.6. Multiple Signers . 26

Appendix D. Top Level Parameter Table 27

Schaad Expires December 12, 2015 [Page 2]

Internet-Draft CBOR Encoded Message Syntax June 2015

Appendix E. COSE Header Key Registry 29
Appendix F. COSE Header Algorithm Key Table 31
Appendix G. COSE Algorithm Name Values 31
Appendix H. COSE General Values 33
Appendix I. COSE Key Map Keys 33
Appendix J. COSE Key Parameter Keys 34

 Author's Address . 35

1. Introduction

 The JOSE working group produced a set of documents that defined how
 to perform encryption, signatures and message authentication (MAC)
 operations for JavaScript Object Notation (JSON) documents and then
 to encode the results using the JSON format [RFC7159]. This document
 does the same work for use with the Concise Binary Object
 Representation (CBOR) [RFC7049] document format. While there is a
 strong attempt to keep the flavor of the original JOSE documents, two
 considerations are taking into account:

 o CBOR has capabilities that are not present in JSON and should be
 used. One example of this is the fact that CBOR has a method of
 encoding binary directly without first converting it into a base64
 encoded sting.

 o The authors did not always agree with some of the decisions made
 by the JOSE working group. Many of these decisions have been re-
 examined, and where it seems to the authors to be superior or
 simpler, replaced.

1.1. Design changes from JOSE

 o Define a top level message structure so that encrypted, signed and
 MAC-ed messages can easily identified and still have a consistent
 view.

 o Signed messages separate the concept of protected and unprotected
 attributes that are for the content and the signature.

 o Key management has been made to be more uniform. All key
 management techniques are represented as a recipient rather than
 only have some of them be so.

 o MAC messages are separated from signed messages.

 o MAC messages have the ability to do key management on the MAC key.

 o Use binary encodings for binary data rather than base64url
 encodings.

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7049

Schaad Expires December 12, 2015 [Page 3]

Internet-Draft CBOR Encoded Message Syntax June 2015

 o Remove the authentiction tag for encryption algorithms as a
 separate item.

 o Remove the flattened mode of encoding. Forcing the use of an
 array of recipients at all times forces the message size to be two
 bytes larger, but one gets a corresponding decrease in the
 implementation size that should compenstate for this.

1.2. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 When the words appear in lower case, their natural language meaning
 is used.

1.3. CBOR Grammar

 There currently is no standard CBOR grammar available for use by
 specifications. In this document, we use the grammar defined in the
 CBOR data definition language (CDDL)
 [I-D.greevenbosch-appsawg-cbor-cddl].

2. The COSE_MSG structure

 The COSE_MSG structure is a top level CBOR object which corresponds
 to the DataContent type in [RFC5652]. This structure allows for a
 top level message to be sent which could be any of the different
 security services, where the security service is identified. The
 presence of this structure does not preclude a protocol to use one of
 the individual structures as a stand alone component.

 COSE_MSG = {msg_type=>1, COSE_Sign} /
 {msg_type=>2, COSE_encrypt} /
 {msg_type=>3, COSE_mac}

 COSE_Tagged_MSG = #6.999(COSE_MSG) ; Replace 999 with TBD1

 The top level of each of the COSE message structures are encoded as
 arrays.
 We use an integer to distingish bettwen the different security
 message types. By looking at the integer in the first element, one
 can determine which security message is being used and thus what the
 syntax is for the rest of the elements in the array.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5652

Schaad Expires December 12, 2015 [Page 4]

Internet-Draft CBOR Encoded Message Syntax June 2015

 Implementations SHOULD be prepared to find an integer in the location
 which does not correspond to the values 1 to 3. If this is found
 then the client MUST stop attempting to parse the structure and fail.
 Clients need to recognize that the set of values could be extended at
 a later date, but should not provide a security service based on
 guesses of what is there.

3. Header Parameters

 The structure of COSE has been designed to have two buckets of
 information that are not considered to be part of the message
 structure itself, but are used for holding information about
 algorithms, keys, or evaluation hints for the processing of the
 layer. These two buckets are available for use in all of the
 structures in this document except for keys. While these buckets can
 be present, they may not all be usable in all instances. For
 example, while the protected bucket is present for recipient
 structures, most of the algorithms that are-used for recipients do
 not provide the necessary functionality to provide the needed
 protection and thus the element is not used.

 Both buckets are implemented as CBOR maps. The maps can be keyed by
 negative integers, unsigned integers and strings. The negative and
 unsigned integers are used for compactness of encoding. The value
 portion is dependent on the key definition. Both maps use the same
 set of key/value pairs. The integer key range has been divided into
 several sections with a standard range, a private range, and a range
 that is dependent on the algorithm selected. The tables of keys
 defined can be found in Appendix E.

 Two buckets are provided for each layer:

 protected contains attributes about the layer which are to be
 cryptographically protected. This bucket MUST NOT be used if it
 is not going to be included in a cryptographic computation.

 unprotected contains attributes about the layer which are not
 cryptographically protected.

 Both of the buckets are optional and are omitted if there are no
 items contained in the map. The CDDL fragment which describes the
 two buckets is:

Schaad Expires December 12, 2015 [Page 5]

Internet-Draft CBOR Encoded Message Syntax June 2015

 keys = int / tstr
 header_map = {+ keys => any }

 Headers = (
 ? protected => bstr,
 ? unprotected => header_map
)

3.1. COSE Headers

 TODO: Do we need to repeat definitions for all or just for some and
 refer to the JOSE documents?

 TODO: Should we move table Appendix E to here or leave it as an
 appendix. Some what redundant if we document things in text.

4. Signing Structure

 The signature structure allows for one or more signatures to be
 applied to a message payload. There are provisions for attributes
 about the content and attributes about the signature to be carried
 along with the signature itself. These attributes may be
 authenticated by the signature, or just present. Examples of
 attributes about the content would be the type of content, when the
 content was created, and who created the content. Examples of
 attributes about the signature would be the algorithm and key used to
 create the signature, when the signature was created, and counter-
 signatures.

 When more than one signature is present, the successful validation of
 one signature associated with a given signer is usually treated as a
 successful signature by that signer. However, there are some
 application environments where other rules are needed. An
 application that employs a rule other than one valid signature for
 each signer must specify those rules. Also, where simple matching of
 the signer identifier is not sufficient to determine whether the
 signatures were generated by the same signer, the application
 specification must describe how to determine which signatures were
 generated by the same signer. Support of different communities of
 recipients is the primary reason that signers choose to include more
 than one signature. For example, the COSE_Sign structure might
 include signatures generated with the RSA signature algorithm and
 with the Elliptic Curve Digital Signature Algorithm (ECDSA) signature
 algorithm. This allows recipients to verify the signature associated
 with one algorithm or the other. (Source of text is [RFC5652].)
 More detailed information on multiple signature evaluation can be
 found in [RFC5752].

https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc5752

Schaad Expires December 12, 2015 [Page 6]

Internet-Draft CBOR Encoded Message Syntax June 2015

 The CDDL grammar structure for a signature message is:

 COSE_Sign = (
 Headers,
 ? payload => bstr,
 signatures=> [+{COSE_signature}]
)

 The keys in the COSE_Sign map are keyed by the values in Appendix D.
 While other keys can be present in the map, it is not generally a
 recommended practice. The other keys can be either of integer or
 string type, use of other types is strongly discouraged. See the
 note in {{CBOR-Canonical} about options for allowing or disallowing
 other keys.

 The fields is the structure have the following semantics:

 protected contains attributes about the payload which are to be
 protected by the signature. An example of such an attribute would
 be the content type ('cty') attribute. The content is a CBOR map
 of attributes which is encoded to a byte stream. This field MUST
 NOT contain attributes about the signature, even if those
 attributes are common across multiple signatures. This fields in
 this map are typically keyed by Appendix E. Other keys can be
 used either as int or tstr values. Other types MUST NOT be
 present in the map as key values.

 unprotected contains attributes about the payload which are not
 protected by the signature. An example of such an attribute would
 be the content type ('cty') attribute. This field MUST NOT
 contain attributes about a signature, even if the attributes are
 common across multiple signatures. This fields int his map are
 typically keyed by Appendix E. Other keys can be used either as
 int or tstr values. Other types MUST NOT be present in the map as
 key values.

 payload contains the serialized content to be signed.
 If the payload is not present in the message, the application is
 required to supply the payload separately.
 The payload is wrapped in a bstr to ensure that it is transported
 without changes, if the payload is transported separately it is
 the responsibility of the application to ensure that it will be
 transported without changes.

 signatures is an array of signature items. Each of these items uses
 the COSE_signature structure for its representation.

Schaad Expires December 12, 2015 [Page 7]

Internet-Draft CBOR Encoded Message Syntax June 2015

 The keys in the COSE_signature map are keyed by the values in
Appendix D. While other keys can be present in the map, it is not

 generally a recommended practice. The other keys can be either of
 integer or string type, use of other types is strongly discouraged.
 See the note in {{CBOR-Canonical} about options for allowing or
 disallowing other keys.

 The CDDL grammar structure for a signature is:

 COSE_signature = (
 ? protected => bstr,
 ? unprotected => header_map,
 signature => bstr
)

 The fields in the structure have the following semantics:

 protected contains additional information to be authenticated by the
 signature. The field holds data about the signature operation.
 The field MUST NOT hold attributes about the payload being signed.
 The content is a CBOR map of attributes which is encoded to a byte
 stream. At least one of protected and unprotected MUST be
 present.

 unprotected contains attributes about the signature which are not
 protected by the signature. This field MUST NOT contain
 attributes about the payload being signed. At least one of
 protected and unprotected MUST be present.

 signature contains the computed signature value.

 The COSE structure used to create the byte stream to be signed uses
 the following CDDL grammar structure:

 Sig_structure = [
 body_protected => bstr,
 sign_protected => bstr,
 payload => bstr
]

 How to compute a signature:

 1. Create a Sig_structure object and populate it with the
 appropriate fields. For body_protected and sign_protected, if
 the fields are not present in their corresponding maps, an bstr
 of length zero is be used.

Schaad Expires December 12, 2015 [Page 8]

Internet-Draft CBOR Encoded Message Syntax June 2015

 2. Create the value to be hashed by encoding the Sig_structure to a
 byte string.

 3. Comput the hash value from the byte string.

 4. Sign the hash

 5. Place the signature value into the appropriate signature field.

5. Encryption object

 In this section we describe the structure and methods to be used when
 doing an encryption in COSE. In COSE, we use the same techniques and
 structures for encrypting both the plain text and the keys used to
 protect the text. This is different from the approach used by both
 [RFC5652] and [RFC7516] where different structures are used for the
 plain text and for the different key management techniques.

 One of the byproducts of using the same technique for encrypting and
 encoding both the content and the keys using the various key
 management techniques, is a requirement that all of the key
 management techniques use an Authenticated Encryption (AE) algorithm.
 (For the purpose of this document we use a slightly loose definition
 of AE algorithms.) When encrypting the plain text, it is normal to
 use an Authenticated Encryption with Additional Data (AEAD)
 algorithm. For key management, either AE or AEAD algorithms can be
 used. See Appendix A for more details about the different types of
 algorithms.

 I don't follow/understand this text{:aeds}

 The CDDL grammar structure for encryption is:

 COSE_encrypt = (
 Headers,
 ? iv => bstr,
 ? aad => bstr,
 ? ciphertext => bstr,
 ? recipients => [+COSE_encrypt_a]
)

 COSE_encrypt_a = {COSE_encrypt}

 Description of the fields:

 protected contains the information about the plain text or
 encryption process that is to be integrity protected. The field

https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc7516

Schaad Expires December 12, 2015 [Page 9]

Internet-Draft CBOR Encoded Message Syntax June 2015

 is encoded in CBOR as a 'bstr'. The contents of the protected
 field is a CBOR map of the protected data names and values. The
 map is CBOR encoded before placing it into the bstr. Only values
 associated with the current cipher text are to be placed in this
 location even if the value would apply to multiple recipient
 structures.

 unprotected contains information about the plain text that is not
 integrity protected. Only values associated with the current
 cipher text are to be placed in this location even if the value
 would apply to multiple recipient structures.

 iv contains the initialization vector (IV), or it's equivalent, if
 one is needed by the encryption algorithm.

 aad contains additional authenticated data (aad) supplied by the
 application. This field contains information about the plain text
 data that is authenticated, but not encrypted.

 cipherText contains the encrypted plain text. If the cipherText is
 to be transported independently of the control information about
 the encryption process (i.e. detached content) then the field is
 omitted.

 recipients contains the recipient information. The field can have
 one of two data types:

 o An array of COSE_encrypt elements, one for each recipient.

5.1. Key Management Methods

 There are a number of different key management methods that can be
 used in the COSE encryption system. In this section we will discuss
 each of the key management methods and what fields need to be
 specified to deal with each of them.

 The names of the key management methods used here are the same as are
 defined in [RFC7517]. Other specifications use different terms for
 the key management methods or do not support some of the key
 management methods.

 At the moment we do not have any key management methods that allow
 for the use of protected headers. This may be changed in the future
 if, for example, the AES-GCM Key wrap method defined in [RFC7518]
 were extended to allow for authenticated data. In that event the use
 of the 'protected' field, which is current forbidden below, would be
 permitted.

https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc7518

Schaad Expires December 12, 2015 [Page 10]

Internet-Draft CBOR Encoded Message Syntax June 2015

5.1.1. Direct Encryption

 In direct encryption mode, a shared secret between the sender and the
 recipient is used as the CEK. When direct encryption mode is used,
 it MUST be the only mode used on the message. It is a massive
 security leak to have both direct encryption and a different key
 management mode on the same message.

 For JOSE, direct encryption key management is the only key management
 method allowed for doing MAC-ed messages. In COSE, all of the key
 management methods can be used for MAC-ed messages.

 The COSE_encrypt structure for the recipient is organized as follows:

 o The 'protected', 'iv', 'aad', 'ciphertext' and 'recipients' fields
 MUST be absent.

 o At a minimum, the 'unprotected' field SHOULD contain the 'alg'
 parameter as well as a parameter identifying the shared secret.

5.1.2. Key Wrapping

 In key wrapping mode, the CEK is randomly generated and that key is
 then encrypted by a shared secret between the sender and the
 recipient. All of the currently defined key wrapping algorithms for
 JOSE (and thus for COSE) are AE algorithms. Key wrapping mode is
 considered to be superior to direct encryption if the system has any
 capability for doing random key generation. This is because the
 shared key is used to wrap random data rather than data has some
 degree of organization and may in fact be repeating the same content.

 The COSE_encrypt structure for the recipient is organized as follows:

 o The 'protected', 'aad', and 'recipients' fields MUST be absent.

 o The plain text to be encrypted is the key from next layer down
 (usually the content layer).

 o At a minimum, the 'unprotected' field SHOULD contain the 'alg'
 parameter as well as a parameter identifying the shared secret.

 o Use of the 'iv' field will depend on the key wrap algorithm.

5.1.3. Key Encryption

 Key Encryption mode is also called key transport mode in some
 standards. Key Encryption mode differs from Key Wrap mode in that it
 uses an asymmetric encryption algorithm rather than a symmetric

Schaad Expires December 12, 2015 [Page 11]

Internet-Draft CBOR Encoded Message Syntax June 2015

 encryption algorithm to protect the key. The only current Key
 Encryption mode algorithm supported is RSAES-OAEP.

 The COSE_encrypt structure for the recipient is organized as follows:

 o The 'protected', 'aad', and 'iv' fields MUST be absent.

 o The plain text to be encrypted is the key from next layer down
 (usually the content layer).

 o At a minimum, the 'unprotected' field SHOULD contain the 'alg'
 parameter as well as a parameter identifying the asymmetric key.

5.1.4. Direct Key Agreement

 Direct Key Agreement derives the CEK from the shared secret computed
 by the key agreement operation.

 When direct key agreement mode is used, it SHOULD be the only mode
 used on the message. This method creates the CEK directly and that
 makes it difficult to mix with additional recipients.

 The COSE_encrypt structure for the recipient is organized as follows:

 o The 'protected', 'aad', and 'iv' fields MUST be absent.

 o At a minimum, the 'unprotected' field SHOULD contain the 'alg'
 parameter as well as a parameter identifying the asymmetric key.

 o The 'unprotected' field MUST contain the 'epk' parameter.

5.1.5. Key Agreement with Key Wrapping

 Key Agreement with Key Wrapping uses a randomly generated CEK. The
 CEK is then encrypted using a Key Wrapping algorithm and a key
 derived from the shared secret computed by the key agreement
 algorithm.

 The COSE_encrypt structure for the recipient is organized as follows:

 o The 'protected', 'aad', and 'iv' fields MUST be absent.

 o The plain text to be encrypted is the key from next layer down
 (usually the content layer).

 o At a minimum, the 'unprotected' field SHOULD contain the 'alg'
 parameter, a parameter identifying the recipient asymmetric key,
 and a parameter with the sender's asymmetric public key.

Schaad Expires December 12, 2015 [Page 12]

Internet-Draft CBOR Encoded Message Syntax June 2015

5.2. Encryption Algorithm for AEAD algorithms

 The encryption algorithm for AEAD algorithms is fairly simple.
 In order to get a consistent encoding of the data to be
 authenticated, the Enc_structure is used to have canonical form of
 the AAD.

 Enc_structure = [
 protected => bstr,
 aad => bstr
]

 1. If there is protected data, CBOR encode the map to a byte string
 and place in the protected field of the Enc_structure and the
 COSE_Encrypt structure.

 2. Copy the 'aad' field from the COSE_Encrypt structure to the
 Enc_Structure.

 3. Encode the Enc_structure using a CBOR Canonical encoding
Section 8 to get the AAD value.

 4. Encrypt the plain text and place it in the 'ciphertext' field.
 The AAD value is passed in as part of the encryption process.

 5. For recipient of the message, recursively perform the encryption
 algorithm for that recipient using the encryption key as the
 plain text.

5.3. Encryption algorithm for AE algorithms

 1. Verify that the 'protected' field is absent.

 2. Verify that the 'aad' field is absent.

 3. Encrypt the plain text and place in the 'ciphertext' field.

6. MAC objects

 In this section we describe the structure and methods to be used when
 doing MAC authentication in COSE. JOSE used a variant of the
 signature structure for doing MAC operations and it is restricted to
 using a single pre-shared secret to do the authentication. This
 document allows for the use of all of the same methods of key
 management as are allowed for encryption.

Schaad Expires December 12, 2015 [Page 13]

Internet-Draft CBOR Encoded Message Syntax June 2015

 When using MAC operations, there are two modes in which it can be
 used. The first is just a check that the content has not been
 changed since the MAC was computed. Any of the key management
 methods can be used for this purpose. The second mode is to both
 check that the content has not been changed since the MAC was
 computed, and to use key management to verify who sent it. The key
 management modes that support this are ones that either use a pre-
 shared secret, or do static-static key agreement. In both of these
 cases the entity MAC-ing the message can be validated by a key
 binding. (The binding of identity assumes that there are only two
 parties involved and you did not send the message yourself.)

 COSE_mac = (
 Headers,
 ? payload => bstr,
 tag => bstr,
 ? recipients => [+COSE_encrypt_a]
)

 Field descriptions:

 protected contains attributes about the payload which are to be
 protected by the MAC. An example of such an attribute would be
 the content type ('cty') attribute. The content is a CBOR map of
 attributes which is encoded to a byte stream. This field MUST NOT
 contain attributes about the recipient, even if those attributes
 are common across multiple recipients. At least one of protected
 and unprotected MUST be present.

 unprotected contains attributes about the payload which are not
 protected by the MAC. An example of such an attribute would be
 the content type ('cty') attribute. This field MUST NOT contain
 attributes about a recipient, even if the attributes are common
 across multiple recipients. At least one of protected and
 unprotected MUST be present.

 payload contains the serialized content to be MAC-ed.
 If the payload is not present in the message, the application is
 required to supply the payload separately.
 The payload is wrapped in a bstr to ensure that it is transported
 without changes, if the payload is transported separately it is
 the responsibility of the application to ensure that it will be
 transported without changes.

 tag contains the MAC value.

Schaad Expires December 12, 2015 [Page 14]

Internet-Draft CBOR Encoded Message Syntax June 2015

 recipients contains the recipient information. See the description
 under COSE_Encryption for more info.

 MAC_structure = [
 protected => bstr,
 payload => bstr
]

 How to compute a MAC:

 1. Create a MAC_structure and copy the protected and payload
 elements from the COSE_mac structure.

 2. Encode the MAC_structure using a canonical CBOR encoder. The
 resulting bytes is the value to compute the MAC on.

 3. Compute the MAC and place the result in the 'tag' field of the
 COSE_mac structure.

 4. Encrypt and encode the MAC key for each recipient of the message.

7. Key Structure

 There are only a few changes between JOSE and COSE for how keys are
 formatted. As with JOSE, COSE uses a map to contain the elements of
 a key. Those values, which in JOSE, are base64url encoded because
 they are binary values, are encoded as bstr values in COSE.

 For COSE we use the same set of fields that were defined in
 [RFC7517].

 COSE_Key = {
 kty => tstr / int,
 ? key_ops => [+tstr / int],
 ? alg => tstr / int,
 ? kid => bstr,
 * keys => values
 }

 COSE_KeySet = [+COSE_Key]

 The element "kty" is a required element in a COSE_Key map.
 All other elements are optional and not all of the elements listed in
 [RFC7517] or [RFC7518] have been listed here even though they can all
 appear in a COSE_Key map.

https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc7518

Schaad Expires December 12, 2015 [Page 15]

Internet-Draft CBOR Encoded Message Syntax June 2015

 The "key_ops" element is prefered over the "use" element as the
 information provided that way is more finely detailed about the
 operations allowed. It is strongly suggested that this element be
 present for all keys.

 The same fields defined in [RFC7517] are used here with the following
 changes in rules:

 o Any item which is base64 encoded in JWK, is bstr encoded for COSE.

 o Any item which is integer encoded in JWK, is int encoded for COSE.

 o

 Any item which is string (but not base64) encoded in JWK, is tstr
 encoded for COSE.

 Exceptions to this are the following fields:

 kid is always bstr encoded rather than tstr encoded. This change
 in encoded is due to the fact that frequently, values such as a
 hash of the public key is used for a kid value. Since the
 field is defined as not having a specific structure, making it
 binary rather than textual makes sense.

8. CBOR Encoder Restrictions

 There as been an attempt to resrict the number of places where the
 document needs to impose restrictions on how the CBOR Encoder needs
 to work. We have managed to narrow it down to the following
 restrictions:

 o The restriction applies to the encoding the Sig_structure, the
 Enc_structure, and the MAC_structure.

 o The rules for Canonical CBOR (Section 3.9 of RFC 7049) MUST be
 used in these locations. The main rule that needs to be enforced
 is that all lengths in these structures MUST be encoded such that
 they are encoded using definite lengths and the minimum length
 encoding is used.

 o All parsers used SHOULD fail on both parsing and generation if the
 same key is used twice in a map.

 While it is permitted to have key values other than those specified
 in this document in the outer maps (COSE_Sign, COSE_Signature,
 COSE_encrypt, COSE_recipient and COSE_mac), doing so is not
 encouraged. Applications should make a determination if it will be

https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc7049#section-3.9

Schaad Expires December 12, 2015 [Page 16]

Internet-Draft CBOR Encoded Message Syntax June 2015

 permitted for that application. In general, any needed new fields
 can be accomadated by the introduction of new header fields to be
 carried in the protected or unprotected fields. Applications that
 need to have new fields in these maps should consider getting new
 message types assigned for these usages. Without this change, old
 applications will not see and process the new fields.

9. IANA Considerations

9.1. CBOR Tag assignment

 It is requested that IANA assign a new tag from the "Concise Binary
 Object Represetion (CBOR) Tags" registry. It is requested that the
 tag be assigned in the 0 to 23 value range.

 Tag Value: TBD1

 Data Item: CBOR map

 Semantics: COSE security message.

9.2. COSE Parameter Table

9.3. COSE Header Key Table

 It is requested that IANA create a new registry entitled "COSE Header
 Key".

 The columns of the registry are:

 name The name is present to make it easier to refer to and discuss
 the registration entry. The value is not used in the protocol.
 Names are to be unique in the table.

 key This is the value used for the key. The key can be either an
 integer or a string. Registration in the table is based on the
 value of the key requested. Integer values between 0 and 255 and
 strings of length 1 are designated as Standards Track Document
 required. Integer values from 256 to 65535 and strings of length
 2 are designated as Specification Required. Integer values of
 greater than 65535 and strings of length greater than 2 are
 designated as first come first server. Integer values in the
 range -1 to -65536 are delegated to the "COSE Header Algorithm
 Key" registry. Integer values beyond -65536 are marked as private
 use.

 value This contains the CBOR type for the value portion of the key.

Schaad Expires December 12, 2015 [Page 17]

Internet-Draft CBOR Encoded Message Syntax June 2015

 value registry This contains a pointer to the registry used to
 contain values where the set is limited.

 description This contains a brief description of the header field.

 specification This contains a pointer to the specification defining
 the header field (where public).

 The initial contents of the registry can be found in Appendix E. The
 specification column for all rows in that table should be this
 document.

 NOTE: Need to review the range assignments. It does not necessarily
 make sense as specification required uses 1 byte positive integers
 and 2 byte strings.

9.4. COSE Header Algorithm Key Table

 It is requested that IANA create a new registry entitled "COSE Header
 Algorithm Keys".

 The columns of the registry are:

 name The name is present to make it easier to refer to and discuss
 the registration entry. The value is not used in the protocol.

 algorithm The algorithm(s) that this registry entry is used for.
 This value is taken from the "COSE Algorithm Value" registry.
 Multiple algorithms can be specified in this entry. For the
 table, the algorithm, key pair MUST be unique.

 key This is the value used for the key. The key is an integer in
 the range of -1 to -65536.

 value This contains the CBOR type for the value portion of the key.

 value registry This contains a pointer to the registry used to
 contain values where the set is limited.

 description This contains a brief description of the header field.

 specification This contains a pointer to the specification defining
 the header field (where public).

 The initial contents of the registry can be found in Appendix F. The
 specification column for all rows in that table should be this
 document.

Schaad Expires December 12, 2015 [Page 18]

Internet-Draft CBOR Encoded Message Syntax June 2015

9.5. COSE Algorithm Registry

 It is requested that IANA create a new registry entitled "COSE
 Algorithm Registry".

 The columns of the registry are:

 key The value to be used to identify this algorithm. Algorithm keys
 MUST be unique. The key can be a positive integer, a negative
 integer or a string. Integer values between 0 and 255 and strings
 of length 1 are designated as Standards Track Document required.
 Integer values from 256 to 65535 and strings of length 2 are
 designated as Specification Required. Integer values of greater
 than 65535 and strings of length greater than 2 are designated as
 first come first server. Integer values in the range -1 to -65536
 are delegated to the "COSE Header Algorithm Key" registry.
 Integer values beyond -65536 are marked as private use.

 description A short description of the algorithm.

 specification A document where the algorithm is defined (if publicly
 available).

 The initial contents of the registry can be found in Appendix G. The
 specification column for all rows in that table should be this
 document.

9.6. COSE Key Map Registry

 It is requested that IANA create a new registry entitied "COSE Key
 Map Registry".

 The columns of the registry are:

 name This is a descriptive name that enables easier reference to the
 item. It is not used in the encoding.

 key The value to be used to identify this algorithm. Algorithm keys
 MUST be unique. The key can be a positive integer, a negative
 integer or a string. Integer values between 0 and 255 and strings
 of length 1 are designated as Standards Track Document required.
 Integer values from 256 to 65535 and strings of length 2 are
 designated as Specification Required. Integer values of greater
 than 65535 and strings of length greater than 2 are designated as
 first come first server. Integer values in the range -1 to -65536
 are used for key parameters specific to a single algoirthm
 delegated to the "COSE Key Parameter Key" registry. Integer
 values beyond -65536 are marked as private use.

Schaad Expires December 12, 2015 [Page 19]

Internet-Draft CBOR Encoded Message Syntax June 2015

 CBOR Type This field contains the CBOR type for the field

 registry This field denotes the registry that values come from, if
 one exists.

 description This field contains a brief description for the field

 specification This contains a pointer to the public specification
 for the field if one exists

 This registry will be initially populated bythe values in Appendix I.
 The specification column for all of these entries will be this
 document.

9.7. COSE Key Parameter Registry

 It is requested that IANA create a new registry "COSE Key
 Parameters".

 The columns of the table are:

 key type This field contains a descriptive string of a key type.
 This should be a value that is in the COSE General Values table
 and is placed in the 'kty' field of a COSE Key structure.

 name This is a descriptive name that enables easier reference to the
 item. It is not used in the encoding.

 key The key is to be unqiue for every value of key type. The range
 of values is from -256 to -1. Keys are expected to be re-used for
 different keys.

 CBOR type This field contains the CBOR type for the field

 description This field contains a brief description for the field

 specification This contains a pointer to the public specification
 for the field if one exists

 This registry will be initially populated bythe values in Appendix J.
 The specification column for all of these entries will be this
 document.

10. Security Considerations

 There are security considerations:

 1. Protect private keys

Schaad Expires December 12, 2015 [Page 20]

Internet-Draft CBOR Encoded Message Syntax June 2015

 2. MAC messages with more than one recipient means one cannot figure
 out who sent the message

 3. Use of direct key with other recipient structures hands the key
 to other recipients.

 4. Use of direcct ECDH direct encryption is easy for people to leak
 information on if there are other recipients in the message.

 5. Considerations about protected vs unprotected header fields.

11. References

11.1. Normative References

 [I-D.greevenbosch-appsawg-cbor-cddl]
 Vigano, C., Birkholz, H., and R. Sun, "CBOR data
 definition language: a notational convention to express
 CBOR data structures.", draft-greevenbosch-appsawg-cbor-

cddl-05 (work in progress), March 2015.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, October 2013.

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518, May
 2015.

11.2. Informative References

 [AES-GCM] Dworkin, M., "NIST Special Publication 800-38D:
 Recommendation for Block Cipher Modes of Operation:
 Galois/Counter Mode (GCM) and GMAC.", June 2015.

 [I-D.mcgrew-aead-aes-cbc-hmac-sha2]
 McGrew, D., Foley, J., and K. Paterson, "Authenticated
 Encryption with AES-CBC and HMAC-SHA", draft-mcgrew-aead-

aes-cbc-hmac-sha2-05 (work in progress), July 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3394] Schaad, J. and R. Housley, "Advanced Encryption Standard
 (AES) Key Wrap Algorithm", RFC 3394, September 2002.

 [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
 Standards (PKCS) #1: RSA Cryptography Specifications
 Version 2.1", RFC 3447, February 2003.

https://datatracker.ietf.org/doc/html/draft-greevenbosch-appsawg-cbor-cddl-05
https://datatracker.ietf.org/doc/html/draft-greevenbosch-appsawg-cbor-cddl-05
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/draft-mcgrew-aead-aes-cbc-hmac-sha2-05
https://datatracker.ietf.org/doc/html/draft-mcgrew-aead-aes-cbc-hmac-sha2-05
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc3447

Schaad Expires December 12, 2015 [Page 21]

Internet-Draft CBOR Encoded Message Syntax June 2015

 [RFC3610] Whiting, D., Housley, R., and N. Ferguson, "Counter with
 CBC-MAC (CCM)", RFC 3610, September 2003.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, September 2009.

 [RFC5752] Turner, S. and J. Schaad, "Multiple Signatures in
 Cryptographic Message Syntax (CMS)", RFC 5752, January
 2010.

 [RFC5990] Randall, J., Kaliski, B., Brainard, J., and S. Turner,
 "Use of the RSA-KEM Key Transport Algorithm in the
 Cryptographic Message Syntax (CMS)", RFC 5990, September
 2010.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, May 2015.

 [RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
RFC 7516, May 2015.

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517, May 2015.

Appendix A. AEAD and AE algorithms

 The set of encryption algorithms that can be used with this
 specification is restricted to authenticated encryption (AE) and
 authenticated encryption with additional data (AEAD) algorithms.
 This means that there is a strong check that the data decrypted by
 the recipient is the same as what was encrypted by the sender.
 Encryption modes such as counter have no check on this at all. The
 CBC encryption mode had a weak check that the data is correct, given
 a random key and random data, the CBC padding check will pass one out
 of 256 times. There have been several times that a normal encryption
 mode has been combined with an integrity check to provide a content
 encryption mode that does provide the necessary authentication. AES-
 GCM [AES-GCM], AES-CCM [RFC3610], AES-CBC-HMAC
 [I-D.mcgrew-aead-aes-cbc-hmac-sha2] are examples of these composite
 modes.

 2PKCS v1.5 RSA key transport does not qualify as an AE algorithm.
 There are only three bytes in the encoding that can be checked as
 having decrypted correctly, the rest of the content can only be
 probabilistically checked as having decrypted correctly. For this
 reason, PKCS v1.5 RSA key transport MUST NOT be used with this

https://datatracker.ietf.org/doc/html/rfc3610
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc5752
https://datatracker.ietf.org/doc/html/rfc5990
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc3610

Schaad Expires December 12, 2015 [Page 22]

Internet-Draft CBOR Encoded Message Syntax June 2015

 specification. RSA-OAEP was designed to have the necessary checks
 that that content correctly decrypted and does qualify as an AE
 algorithm.

 When dealing with authenticated encryption algorithms, there is
 always some type of value that needs to be checked to see if the
 authentication level has passed. This authentication value may be:

 o A separately generated tag computed by both the encrypter and
 decrypter and then compared by the decryptor. This tag value may
 be either placed at the end of the cipher text (the decision we
 made) or kept separately (the decision made by the JOSE working
 group). This is the approach followed by AES-GCM [AES-GCM] and
 AES-CCM [RFC3610].

 o A fixed value which is part of the encoded plain text. This is
 the approach followed by the AES key wrap algorithm [RFC3394].

 o A computed value is included as part of the encoded plain text.
 The computed value is then checked by the decryptor using the same
 computation path. This is the approach followed by RSAES-OAEP
 [RFC3447].

Appendix B. Three Levels of Recipient Information

 All of the currently defined Key Management methods only use two
 levels of the COSE_Encrypt structure. The first level is the message
 content and the second level is the content key encryption. However,
 if one uses a key management technique such as RSA-KEM (see

Appendix A of RSA-KEM [RFC5990], then it make sense to have three
 levels of the COSE_Encrypt structure.

 These levels would be:

 o Level 0: The content encryption level. This level contains the
 payload of the message.

 o Level 1: The encryption of the CEK by a KEK.

 o Level 2: The encryption of a long random secret using an RSA key
 and a key derivation function to convert that secret into the KEK.

Appendix C. Examples

 The examples can be found at https://github.com/cose-wg/Examples. I
 am currently still in the process of getting the examples up there
 along with some control information for people to be albe to check
 and reproduce the examples.

https://datatracker.ietf.org/doc/html/rfc3610
https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc5990
https://github.com/cose-wg/Examples

Schaad Expires December 12, 2015 [Page 23]

Internet-Draft CBOR Encoded Message Syntax June 2015

C.1. Direct MAC

 This example has some features that are in questions but not yet
 incorporated in the document.

 To make it easier to read, this uses CBOR's diagnostic notation
 rather than a binary dump.

 This example is uses HMAC with SHA-256 as the digest algorithm. The
 key manangment is uses two static ECDH keys along with HKDF to
 directly derive the key used in the HMAC operation.

{1: 3, 2: h'A10104', 4: h'546869732069732074686520636F6E74656E742E',
 10: h'82C136D2C8CB27356635FAFE6F2E1AB2BC23FA706A33357DB017EE51710EEDE5',
 9: [
 {3: {1: "ECDH-SS", 5: "meriadoc.brandybuck@buckland.example",
 "spk": {"kid": "peregrin.took@tuckborough.example"},
 "apu": h'4D8553E7E74F3C6A3A9DD3EF286A8195CBF8A23D19558CCFEC7D34
 B824F42D92BD06BD2C7F0271F0214E141FB779AE2856ABF585A58368B017E7F2A
 9E5CE4DB5'}}]}

C.2. Wrapped MAC

 This example has some features that are in questions but not yet
 incorporated in the document.

 To make it easier to read, this uses CBOR's diagnostic notation
 rather than a binary dump.

 This exmple uses AES-128-MAC trucated to 64-bits as the digest
 algorithm. It uses AES-256 Key wrap for the key manangment algorithm
 wrapping the 128-bit key used for the digest algorthm.

 {1: 3, 2: h'A1016E4145532D3132382D4D41432D3634',
 4: h'546869732069732074686520636F6E74656E742E',
 10: h'A61AE6CFB7CABCC9', 9: [
 {3: {1: -5, 5: "018c0ae5-4d9b-471b-bfd6-eef314bc7037"},
 4: h'711AB0DC2FC4585DCE27EFFA6781C8093EBA906F227B6EB0'}]}

C.3. Multi-recipient MAC message

 This example has some features that are in questions but not yet
 incorporated in the document.

 To make it easier to read, this uses CBOR's diagnostic notation
 rather than a binary dump.

Schaad Expires December 12, 2015 [Page 24]

Internet-Draft CBOR Encoded Message Syntax June 2015

 This example uses HMAC with SHA-256 for the digest algorithm. There
 are three different key manangment techniques applied:

 o An ephemeral static ECDH key agrement operation using AES-128 key
 wrap on the digest key.

 o Key transport using RSA-OAEP with SHA-256 for the hash and the mfg
 function operations.

 o AES 256-bit Key wrap using a pre-shared secret.

{1: 3, 2: h'A10104', 4: h'546869732069732074686520636F6E74656E742E',
 10: h'051FA3288A39AC726B4FAE79A4B93FB17D8DC3F6E666247EE7AD40CE1665FCDE',
 9: [
 {3: {1: "ECDH-ES+A128KW",
 5: h'62696C626F2E62616767696E7340686F626269746F6E2E6578616D706C65',
 4: {1: 1, -1: 5, -2: h'43B12669ACAC3FD27898FFBA0BCD2E6C366D53BC4DB
 71F909A759304ACFB5E18CDC7BA0B13FF8C7636271A6924B1AC63C02688075
 B55EF2D613574E7DC242F79C3',
 -3: h'812DD694F4EF32B11014D74010A954689C6B6E8785B333D1AB44F22B
 9D1091AE8FC8AE40B687E5CFBE7EE6F8B47918A07BB04E9F5B1A51A334A16B
 C09777434113'}},
 4: h'1B120C848C7F2F8943E402CBDBDB58EFB281753AF4169C70D0126C0D164362771
 60821790EF4FE3F'},
 {3: {1: -2, 5: h'62696C626F2E62616767696E7340686F626269746F6E2E6578616D
 706C65'},
 4: h'46C4F88069B650909A891E84013614CD58A3668F88FA18F3852940A20B3509859
 1D3AACF91C125A2595CDA7BEE75A490579F0E2F20FD6BC956623BFDE3029C318
 F82C426DAC3463B261C981AB18B72FE9409412E5C7F2D8F2B5ABAF780DF6A282D
 B033B3A863FA957408B81741878F466DCC437006CA21407181A016CA608CA8208
 BD3C5A1DDC828531E30B89A67EC6BB97B0C3C3C92036C0CB84AA0F0CE8C3E4A21
 5D173BFA668F116CA9F1177505AFB7629A9B0B5E096E81D37900E06F561A32B6B
 C993FC6D0CB5D4BB81B74E6FFB0958DAC7227C2EB8856303D989F93B4A0518307
 06A4C44E8314EC846022EAB727E16ADA628F12EE7978855550249CCB58'},
 {3: {1: -5, 5: "018c0ae5-4d9b-471b-bfd6-eef314bc7037"},
 4: h'0B2C7CFCE04E98276342D6476A7723C090DFDD15F9A518E7736549E99837
 0695E6D6A83B4AE507BB'}]}

C.4. Direct ECDH

 This example has some features that are in questions but not yet
 incorporated in the document.

 To make it easier to read, this uses CBOR's diagnostic notation
 rather than a binary dump.

 Encoded in CBOR - 216 bytes, content is 14 bytes long

Schaad Expires December 12, 2015 [Page 25]

Internet-Draft CBOR Encoded Message Syntax June 2015

 {1: 2, 2: h'A10101', 7: h'C9CF4DF2FE6C632BF7886413',
 4: h'45FCE2814311024D3A479E7D3EED063850F3F0B94EE043BAFDFA14636E632CF6
 75AF2DAE',
 9: [{3: {1: "ECDH-ES", 5: "meriadoc.brandybuck@buckland.example",
 4: {1: 1, -1: 4, -2: h'98F50A4FF6C05861C8860D13A638EA56C3F5AD75
 90BBFBF054E1C7B4D91D6280',
 -3: h'F01400B089867804B8E9FC96C3932161F1934F4223069170D924B7
 E03BF822BB'}}}]}

C.5. Single Signature

 This example has some features that are in questions but not yet
 cooperated in the document.

 To make it easier to read, this uses CBOR's diagnostic notation
 rather than a binary dump.

 {1: 1, 4: h'546869732069732074686520636F6E74656E742E',
 5: [{2: h'A20165505333383405781E62696C626F2E62616767696E7340686F626
 269746F6E2E6578616D706C65',
 6: h'4D645B5FF17BCDAD7EB29ABA0EBBFFA747E72767714F26EDBC5B4C1D2
 1CBE799B71388CCC73BDB25C4443D0EA2226B774A5B4815ABA82233B33DA
 4C3958D08285384A854A8F7F8FA9635A1A63BAB2A5D8CF45939A7FA2D95C
 C827EF94EF85276611B957B402BD1756D952597751C7AF5D26023012D3DC
 BFD785F9C0BE57F60719EFB0D2F9280A8D2B18D142F76942D007B4E24087
 DA4BE8F793B646D7B03A86C12731A8EDB36A95DFE6C281B58388380354A2
 94CC21DBC1C1EEE2DB35293AD406F50283874475B9A7E22920BD79B3D055
 214EE1C9D941F125548B9F23A87DCC26CBBEFD0919CF6F89E192A78130AC
 018D1921EF5B4D0A47659E9CBC1CE58ED26'}]}

C.6. Multiple Signers

 This example has some features that are in questions but not yet
 cooperated in the document.

 To make it easier to read, this uses CBOR's diagnostic notation
 rather than a binary dump.

 Encoded in CBOR - 491 bytes, content is 14 bytes long

Schaad Expires December 12, 2015 [Page 26]

Internet-Draft CBOR Encoded Message Syntax June 2015

 {1: 1, 4: h'546869732069732074686520636F6E74656E742E',
 5: [{2: h'A10129', 3: {5: "bilbo.baggins@hobbiton.example"},
 6: h'1FD44A2BA1A8A0A664024E7E2AFD1D1D1159460E3C03B9BE8C8F60639CE
 614F59AF33108B65BBDEF3C330FB97E335DA11EEA9B6CBD7E7908FB8B5F61D
 FEB76EC6ED6A62BD9F3D338E373E1903CE2D5D3BD20086BBCA82A6F424E9F4
 1591BD6261835A74F0C0425E88666D530B72ADC1E33C10DC1D0361922B6ADC
 685B76E5CEA79FACA7C4CB66B1379B3F852A5ACE79A5812C6EE1CD3CC7CC88
 F2C9D30FF89D3BD0DE2D0C9355E9712B1BA8AB2F2B065BE0A0D93BFFA27DA0
 2221865A2B16093D92F71F9864D92C87057AE591334DB4CF881ECBEC2AC727
 77D9C88871C10733D65566B35FBFA6BAB54078C1C73AE8758196221FB2814E
 C283A95D191FB80D616'},
 {3: {1: -9, 5: "bilbo.baggins@hobbiton.example"},
 6: h'32247A4FD1CA2B69EEEB48CE65D07F2089D79271BB94847F8628DADB7AF
 FC1A34C24D10DB3C5E0D00BD9CB3BFB9666BAD6E9752564D35C5CCE375B
 A44E2FF33336008D8E07484041DBEFB179EBFFA5455E05D6B24E22DAECF
 0D76AD041A13A9DD7E3DAED7F6B09F1831092FFC5CB8BFE7DBF5E047858
 02A4CB741395F81E76A3A8AD61'}]}

Appendix D. Top Level Parameter Table

 This table contains the list of all key values that can ocur in the
 COSE_Sign, COSE_signature, COSE_Encrypt, and COSE_MAC structures.

Schaad Expires December 12, 2015 [Page 27]

Internet-Draft CBOR Encoded Message Syntax June 2015

 +-------------+--------+--+
 | name | number | comments |
 +-------------+--------+--+
msg_type	1	Occurs only in top level messages
protected	2	Occurs in all structures
unprotected	3	Occurs in all structures
payload	4	Contains the content of the structure
signatures	5	For COSE_Sign - array of signatures
signature	6	For COSE_signature only
iv	7	For COSE_encrypt only
aad	8	For COSE_encrypt only
ciphertext	4	TODO: Should we re-use the same as payload
		or not?
recipients	9	For COSE_encrypt and COSE_mac
tag	10	For COSE_mac only
 +-------------+--------+--+

 ; message_keys
 msg_type=1
 protected=2
 unprotected=3
 payload=4
 signatures=5
 signature=6
 iv=7
 aad=8
 ciphertext=4
 recipients=9
 tag=10

 M00TODO: 1. There is no equivalent to this table in JOSE so we need
 to get a name for the table and registration rules. 2. Initial
 registration rules: Number may be a positive or a negative value.
 Values in the range of -24 to 24 are Standards action required.
 Values in the range of -256 to -25 and 25 to 255 are specification
 required with expert review. Values from 256 to 512 are designated
 for private use. All other values are reserved.

Schaad Expires December 12, 2015 [Page 28]

Internet-Draft CBOR Encoded Message Syntax June 2015

Appendix E. COSE Header Key Registry

 This table contains a list of all of the parameters for use in
 signature and encryption message types defined by the JOSE document
 set. In the table is the data value type to be used for CBOR as well
 as the integer value that can be used as a replacement for the name
 in order to further decrease the size of the sent item.

Schaad Expires December 12, 2015 [Page 29]

Internet-Draft CBOR Encoded Message Syntax June 2015

 +----------+-----+-------------+-----------+------------------------+
 | name | key | value | registry | description |
 +----------+-----+-------------+-----------+------------------------+
alg	1	int / tstr	COSE	Integers are taken
			Algorithm	from table Appendix G
			Registry	
crit	2	[+	COSE	integer values are
		(tstr/int)]	Header	from this table.
			Key	
			Registry	
cty	3	tstr / int		Value is either a
				mime-content type or
				an integer from the
				mime-content type
				table
epk	4	COSE_Key		contains a COSE key
				not a JWK key
jku	*	tstr		URL to COSE key object
jwk	*	COSE_Key		contains a COSE key
				not a JWK key
kid	*	bstr		key identifier
x5c	*	bstr*		X.509 Certificate
				Chain
x5t	*	bstr		SHA-1 thumbprint of
				key
x5t#S256	*	bstr		SHA-256 thumbprint of
				key
x5u	*	tstr		URL for X.509
				certificate
zip	*	int / tstr		Integers are taken
				from the table
				Appendix G
 +----------+-----+-------------+-----------+------------------------+

Schaad Expires December 12, 2015 [Page 30]

Internet-Draft CBOR Encoded Message Syntax June 2015

Appendix F. COSE Header Algorithm Key Table

 +------+-----------------------------+-----+----------+-------------+
 | name | algorithm | key | CBOR | description |
 | | | | type | |
 +------+-----------------------------+-----+----------+-------------+
apu	ECDH	-1	bstr	
apv	ECDH	-2	bstr	
iv	A128GCMKW, A192GCMKW,	-1	bstr	
	A256GCMKW			
iv	A128GCM, A192GCM, A256GCM	-1	bstr	
p2c	PBE	-1	int	
p2s	PBE	-2	bstr	
 +------+-----------------------------+-----+----------+-------------+

Appendix G. COSE Algorithm Name Values

 This table contains all of the defined algorithms for COSE.

 +--------------------+-----+--+
 | name | key | description |
 +--------------------+-----+--+
HS256	4	HMAC w/ SHA-256
HS384	5	HMAC w/ SHA-384
HS512	6	HMAC w/ SHA-512
RS256	*	RSASSA-v1.5 w/ SHA-256
RS384	*	RSASSA-v1.5 w/ SHA-384
RSA512	*	RSASSA-v1.5 w/ SHA-256
ES256	-7	ECDSA w/ SHA-256
ES384	-8	ECDSA w/ SHA-384
ES512	-9	ECDSA w/ SHA-512
PS256	-10	RSASSA-PSS w/ SHA-256
PS384	*	RSASSA-PSS w/ SHA-384

Schaad Expires December 12, 2015 [Page 31]

Internet-Draft CBOR Encoded Message Syntax June 2015

PS512	-11	RSASSA-PSS w/ SHA-512
RSA1_5	*	RSAES v1.5 Key Encryption
RSA-OAEP	-2	RSAES OAEP w/ SHA-256
A128KW	-3	AES Key Wrap w/ 128-bit key
A192KW	-4	AES Key Wrap w/ 192-bit key
A256KW	-5	AES Key Wrap w/ 256-bit key
dir	-6	Direct use of CEK
ECDH-ES	*	ECDH ES w/ Concat KDF as CEK
ECDH-ES+A128KW	*	ECDH ES w/ Concat KDF and AES Key wrap
		w/ 128 bit key
ECDH-ES+A192KW	*	ECDH ES w/ Concat KDF and AES Key wrap
		w/ 192 bit key
ECDH-ES+A256KW	*	ECDH ES w/ Concat KDF and AES Key wrap
		w/ 256 bit key
A128GCMKW	*	AES GCM Key Wrap w/ 128 bit key
A192GCMKW	*	AES GCM Key Wrap w/ 192 bit key
A256GCMKW	*	AES GCM Key Wrap w/ 256 bit key
PBES2-HS256+A128KW	*	PBES2 w/ HMAC SHA-256 and AES Key wrap
		w/ 128 bit key
PBES2-HS384+A192KW	*	PBES2 w/ HMAC SHA-384 and AES Key wrap
		w/ 192 bit key
PBES2-HS512+A256KW	*	PBES2 w/ HMAC SHA-512 and AES Key wrap
		w/ 256 bit key
A128GCM	1	AES-GCM mode w/ 128-bit key
A192GCM	2	AES-GCM mode w/ 192-bit key
A256GCM	3	AES-GCM mode w/ 256-bit key
 +--------------------+-----+--+

Schaad Expires December 12, 2015 [Page 32]

Internet-Draft CBOR Encoded Message Syntax June 2015

Appendix H. COSE General Values

 +------+--------+-------------------------+
 | name | number | description |
 +------+--------+-------------------------+
 | EC | 1 | Elliptic Curve key Type |
 | | | |
 | RSA | 2 | RSA Key type |
 | | | |
 | oct | 3 | Octet Key type |
 | | | |
 | P256 | 4 | EC Curve P256 (NIST) |
 | | | |
 | P521 | 5 | EC Curve P521 (NIST) |
 +------+--------+-------------------------+

Appendix I. COSE Key Map Keys

 This table contains a list of all of the parameters defined for keys
 that were defined by the JOSE document set. In the table is the data
 value type to be used for CBOR as well as the integer value that can
 be used as a replacement for the name in order to further decrease
 the size of the sent item.

Schaad Expires December 12, 2015 [Page 33]

Internet-Draft CBOR Encoded Message Syntax June 2015

 +----------+-----+--------+-------------+---------------------------+
 | name | key | CBOR | registry | description |
 | | | type | | |
 +----------+-----+--------+-------------+---------------------------+
kty	1	tstr /	COSE	Identification of the key
		int	General	type
			Values	
use	*	tstr		deprecated - don't use
key_ops	*	[*		
		tstr]		
alg	3	tstr /	COSE	Key usage restriction to
		int	Algorithm	this algorithm
			Values	
kid	2	bstr		Key Identification value
				- match to kid in message
x5u	*	tstr		
x5c	*	bstr*		
x5t	*	bstr		
x5t#S256	*	bstr		
 +----------+-----+--------+-------------+---------------------------+

 ;key_keys
 kty=1
 key_kid=2
 key_alg=3

Appendix J. COSE Key Parameter Keys

 This table contains a list of all of the parameters that were defined
 by the JOSE document set for a specific key type. In the table is
 the data value type to be used for CBOR as well as the integer value
 that can be used as a replacement for the name in order to further
 decrease the size of the sent item. Parameters dealing with keys

Schaad Expires December 12, 2015 [Page 34]

Internet-Draft CBOR Encoded Message Syntax June 2015

 +--------+------+-----+---------+---------------------+-------------+
 | key | name | key | CBOR | registry | description |
 | type | | | type | | |
 +--------+------+-----+---------+---------------------+-------------+
EC	crv	-1	int /	Pull from general	
			tstr	value registry	
EC	x	-2	bstr		
EC	y	-3	bstr		
EC	d	-4	bstr		
RSA	e	-1	bstr		
RSA	n	-2	bstr		
RSA	d	-3	bstr		
RSA	p	-4	bstr		
RSA	q	-5	bstr		
RSA	dp	-6	bstr		
RSA	dq	-7	bstr		
RSA	qi	-8	bstr		
RSA	oth	-9	bstr		
RSA	r	-10	bstr		
RSA	t	-11	bstr		
oct	k	-1	bstr		
 +--------+------+-----+---------+---------------------+-------------+

Author's Address

 Jim Schaad
 August Cellars

 Email: ietf@augustcellars.com

Schaad Expires December 12, 2015 [Page 35]

