
COSE Working Group J. Schaad
Internet-Draft August Cellars
Obsoletes: 8152 (if approved) December 25, 2018
Intended status: Standards Track
Expires: June 28, 2019

CBOR Algoritms for Object Signing and Encryption (COSE)
draft-schaad-cose-rfc8152bis-algs-01

Abstract

 Concise Binary Object Representation (CBOR) is a data format designed
 for small code size and small message size. There is a need for the
 ability to have basic security services defined for this data format.
 This document defines the CBOR Object Signing and Encryption (COSE)
 protocol. This specification describes how to create and process
 signatures, message authentication codes, and encryption using CBOR
 for serialization. COSE additionally describes how to represent
 cryptographic keys using CBOR.

 In this specification the conventions for the use of a number of
 cryptographic algorithms with COSE. The details of the structure of
 COSE are defined in [I-D.schaad-cose-rfc8152bis-struct].

 This document along with [I-D.schaad-cose-rfc8152bis-struct]
 obsoletes RFC8152.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 28, 2019.

Schaad Expires June 28, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft COSE Algorithms December 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. Requirements Terminology 4
1.2. Document Terminology 4

2. Signature Algorithms . 5
2.1. ECDSA . 5
2.1.1. Security Considerations 6

2.2. Edwards-Curve Digital Signature Algorithms (EdDSAs) . . . 7
2.2.1. Security Considerations 8

3. Message Authentication Code (MAC) Algorithms 8
3.1. Hash-Based Message Authentication Codes (HMACs) 8
3.1.1. Security Considerations 10

3.2. AES Message Authentication Code (AES-CBC-MAC) 10
3.2.1. Security Considerations 11

4. Content Encryption Algorithms 11
4.1. AES GCM . 11
4.1.1. Security Considerations 12

4.2. AES CCM . 13
4.2.1. Security Considerations 15

4.3. ChaCha20 and Poly1305 15
4.3.1. Security Considerations 16

5. Key Derivation Functions (KDFs) 16
 5.1. HMAC-Based Extract-and-Expand Key Derivation Function
 (HKDF) . 16

5.2. Context Information Structure 18
6. Content Key Distribution Methods 23
6.1. Direct Key . 23
6.1.1. Security Considerations 24

6.2. Direct Key with KDF 24
6.2.1. Security Considerations 25

6.3. AES Key Wrap . 26
6.3.1. Security Considerations for AES-KW 27

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Schaad Expires June 28, 2019 [Page 2]

Internet-Draft COSE Algorithms December 2018

6.4. Direct ECDH . 27
6.4.1. Security Considerations 29

6.5. ECDH with Key Wrap 30
7. Key Object Parameters . 32
7.1. Elliptic Curve Keys 32
7.1.1. Double Coordinate Curves 33

7.2. Octet Key Pair . 34
7.3. Symmetric Keys . 35

8. IANA Considerations . 35
8.1. COSE Algorithms Registry 35
8.2. COSE Key Type Parameters Registry 37
8.3. COSE Key Types Registry 37
8.4. COSE Elliptic Curves Registry 38
8.5. Expert Review Instructions 39

9. Security Considerations 40
10. References . 42
10.1. Normative References 42
10.2. Informative References 43

Appendix A. Examples . 45
A.1. Examples of Signed Messages 45
A.1.1. Single Signature 45
A.1.2. Multiple Signers 46
A.1.3. Counter Signature 47
A.1.4. Signature with Criticality 48

A.2. Single Signer Examples 49
A.2.1. Single ECDSA Signature 49

A.3. Examples of Enveloped Messages 50
A.3.1. Direct ECDH . 50
A.3.2. Direct Plus Key Derivation 51
A.3.3. Counter Signature on Encrypted Content 52
A.3.4. Encrypted Content with External Data 54

A.4. Examples of Encrypted Messages 54
A.4.1. Simple Encrypted Message 54
A.4.2. Encrypted Message with a Partial IV 55

A.5. Examples of MACed Messages 55
A.5.1. Shared Secret Direct MAC 55
A.5.2. ECDH Direct MAC 56
A.5.3. Wrapped MAC . 57
A.5.4. Multi-Recipient MACed Message 58

A.6. Examples of MAC0 Messages 59
A.6.1. Shared Secret Direct MAC 59

A.7. COSE Keys . 60
A.7.1. Public Keys . 60
A.7.2. Private Keys . 61

 Acknowledgments . 63
 Author's Address . 64

Schaad Expires June 28, 2019 [Page 3]

Internet-Draft COSE Algorithms December 2018

1. Introduction

 There has been an increased focus on small, constrained devices that
 make up the Internet of Things (IoT). One of the standards that has
 come out of this process is "Concise Binary Object Representation
 (CBOR)" [RFC7049]. CBOR extended the data model of the JavaScript
 Object Notation (JSON) [RFC7159] by allowing for binary data, among
 other changes. CBOR is being adopted by several of the IETF working
 groups dealing with the IoT world as their encoding of data
 structures. CBOR was designed specifically to be both small in terms
 of messages transport and implementation size and be a schema-free
 decoder. A need exists to provide message security services for IoT,
 and using CBOR as the message-encoding format makes sense.

 The core COSE specification consists of two documents.
 [I-D.schaad-cose-rfc8152bis-struct] contains the serialization
 structures and the procedures for using the different cryptographic
 algorithms. This document provides for an initial set of algorithms
 that are then use with those structures.

1.1. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Document Terminology

 In this document, we use the following terminology:

 Byte is a synonym for octet.

 Constrained Application Protocol (CoAP) is a specialized web transfer
 protocol for use in constrained systems. It is defined in [RFC7252].

 Authenticated Encryption (AE) [RFC5116] algorithms are those
 encryption algorithms that provide an authentication check of the
 plain text contents as part of the encryption service.

 Authenticated Encryption with Authenticated Data (AEAD) [RFC5116]
 algorithms provide the same content authentication service as AE
 algorithms, but they additionally provide for authentication of non-
 encrypted data as well.

https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc5116

Schaad Expires June 28, 2019 [Page 4]

Internet-Draft COSE Algorithms December 2018

2. Signature Algorithms

 The document defines signature algorithm identifiers for two
 signature algorithms.

2.1. ECDSA

 ECDSA [DSS] defines a signature algorithm using ECC. Implementations
 SHOULD use a deterministic version of ECDSA such as the one defined
 in [RFC6979]. The use of a deterministic signature algorithm allows
 for systems to avoid relying on random number generators in order to
 avoid generating the same value of 'k' (the per-message random
 value). Biased generation of the value 'k' can be attacked, and
 collisions of this value leads to leaked keys. It additionally
 allows for doing deterministic tests for the signature algorithm.
 The use of deterministic ECDSA does not lessen the need to have good
 random number generation when creating the private key.

 The ECDSA signature algorithm is parameterized with a hash function
 (h). In the event that the length of the hash function output is
 greater than the group of the key, the leftmost bytes of the hash
 output are used.

 The algorithms defined in this document can be found in Table 1.

 +-------+-------+---------+------------------+
 | Name | Value | Hash | Description |
 +-------+-------+---------+------------------+
 | ES256 | -7 | SHA-256 | ECDSA w/ SHA-256 |
 | ES384 | -35 | SHA-384 | ECDSA w/ SHA-384 |
 | ES512 | -36 | SHA-512 | ECDSA w/ SHA-512 |
 +-------+-------+---------+------------------+

 Table 1: ECDSA Algorithm Values

 This document defines ECDSA to work only with the curves P-256,
 P-384, and P-521. This document requires that the curves be encoded
 using the 'EC2' (2 coordinate elliptic curve) key type.
 Implementations need to check that the key type and curve are correct
 when creating and verifying a signature. Other documents can define
 it to work with other curves and points in the future.

 In order to promote interoperability, it is suggested that SHA-256 be
 used only with curve P-256, SHA-384 be used only with curve P-384,
 and SHA-512 be used with curve P-521. This is aligned with the
 recommendation in Section 4 of [RFC5480].

https://datatracker.ietf.org/doc/html/rfc6979
https://datatracker.ietf.org/doc/html/rfc5480#section-4

Schaad Expires June 28, 2019 [Page 5]

Internet-Draft COSE Algorithms December 2018

 The signature algorithm results in a pair of integers (R, S). These
 integers will be the same length as the length of the key used for
 the signature process. The signature is encoded by converting the
 integers into byte strings of the same length as the key size. The
 length is rounded up to the nearest byte and is left padded with zero
 bits to get to the correct length. The two integers are then
 concatenated together to form a byte string that is the resulting
 signature.

 Using the function defined in [RFC8017], the signature is:

 Signature = I2OSP(R, n) | I2OSP(S, n)
 where n = ceiling(key_length / 8)

 When using a COSE key for this algorithm, the following checks are
 made:

 o The 'kty' field MUST be present, and it MUST be 'EC2'.

 o If the 'alg' field is present, it MUST match the ECDSA signature
 algorithm being used.

 o If the 'key_ops' field is present, it MUST include 'sign' when
 creating an ECDSA signature.

 o If the 'key_ops' field is present, it MUST include 'verify' when
 verifying an ECDSA signature.

2.1.1. Security Considerations

 The security strength of the signature is no greater than the minimum
 of the security strength associated with the bit length of the key
 and the security strength of the hash function.

 Note: Use of this technique is a good idea even when good random
 number generation exists. Doing so both reduces the possibility of
 having the same value of 'k' in two signature operations and allows
 for reproducible signature values, which helps testing.

 There are two substitution attacks that can theoretically be mounted
 against the ECDSA signature algorithm.

 o Changing the curve used to validate the signature: If one changes
 the curve used to validate the signature, then potentially one
 could have two messages with the same signature, each computed
 under a different curve. The only requirement on the new curve is
 that its order be the same as the old one and it be acceptable to
 the client. An example would be to change from using the curve

https://datatracker.ietf.org/doc/html/rfc8017

Schaad Expires June 28, 2019 [Page 6]

Internet-Draft COSE Algorithms December 2018

 secp256r1 (aka P-256) to using secp256k1. (Both are 256-bit
 curves.) We currently do not have any way to deal with this
 version of the attack except to restrict the overall set of curves
 that can be used.

 o Change the hash function used to validate the signature: If one
 either has two different hash functions of the same length or can
 truncate a hash function down, then one could potentially find
 collisions between the hash functions rather than within a single
 hash function (for example, truncating SHA-512 to 256 bits might
 collide with a SHA-256 bit hash value). As the hash algorithm is
 part of the signature algorithm identifier, this attack is
 mitigated by including a signature algorithm identifier in the
 protected header.

2.2. Edwards-Curve Digital Signature Algorithms (EdDSAs)

 [RFC8032] describes the elliptic curve signature scheme Edwards-curve
 Digital Signature Algorithm (EdDSA). In that document, the signature
 algorithm is instantiated using parameters for edwards25519 and
 edwards448 curves. The document additionally describes two variants
 of the EdDSA algorithm: Pure EdDSA, where no hash function is applied
 to the content before signing, and HashEdDSA, where a hash function
 is applied to the content before signing and the result of that hash
 function is signed. For EdDSA, the content to be signed (either the
 message or the pre-hash value) is processed twice inside of the
 signature algorithm. For use with COSE, only the pure EdDSA version
 is used. This is because it is not expected that extremely large
 contents are going to be needed and, based on the arrangement of the
 message structure, the entire message is going to need to be held in
 memory in order to create or verify a signature. This means that
 there does not appear to be a need to be able to do block updates of
 the hash, followed by eliminating the message from memory.
 Applications can provide the same features by defining the content of
 the message as a hash value and transporting the COSE object (with
 the hash value) and the content as separate items.

 The algorithms defined in this document can be found in Table 2. A
 single signature algorithm is defined, which can be used for multiple
 curves.

 +-------+-------+-------------+
 | Name | Value | Description |
 +-------+-------+-------------+
 | EdDSA | -8 | EdDSA |
 +-------+-------+-------------+

 Table 2: EdDSA Algorithm Values

Schaad Expires June 28, 2019 [Page 7]

Internet-Draft COSE Algorithms December 2018

 [RFC8032] describes the method of encoding the signature value.

 When using a COSE key for this algorithm, the following checks are
 made:

 o The 'kty' field MUST be present, and it MUST be 'OKP' (Octet Key
 Pair).

 o The 'crv' field MUST be present, and it MUST be a curve defined
 for this signature algorithm.

 o If the 'alg' field is present, it MUST match 'EdDSA'.

 o If the 'key_ops' field is present, it MUST include 'sign' when
 creating an EdDSA signature.

 o If the 'key_ops' field is present, it MUST include 'verify' when
 verifying an EdDSA signature.

2.2.1. Security Considerations

 How public values are computed is not the same when looking at EdDSA
 and Elliptic Curve Diffie-Hellman (ECDH); for this reason, they
 should not be used with the other algorithm.

 If batch signature verification is performed, a well-seeded
 cryptographic random number generator is REQUIRED. Signing and non-
 batch signature verification are deterministic operations and do not
 need random numbers of any kind.

3. Message Authentication Code (MAC) Algorithms

 This section defines the usages for two MAC algorithms.

3.1. Hash-Based Message Authentication Codes (HMACs)

 HMAC [RFC2104] [RFC4231] was designed to deal with length extension
 attacks. The algorithm was also designed to allow for new hash
 algorithms to be directly plugged in without changes to the hash
 function. The HMAC design process has been shown as solid since,
 while the security of hash algorithms such as MD5 has decreased over
 time; the security of HMAC combined with MD5 has not yet been shown
 to be compromised [RFC6151].

 The HMAC algorithm is parameterized by an inner and outer padding, a
 hash function (h), and an authentication tag value length. For this
 specification, the inner and outer padding are fixed to the values
 set in [RFC2104]. The length of the authentication tag corresponds

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc4231
https://datatracker.ietf.org/doc/html/rfc6151
https://datatracker.ietf.org/doc/html/rfc2104

Schaad Expires June 28, 2019 [Page 8]

Internet-Draft COSE Algorithms December 2018

 to the difficulty of producing a forgery. For use in constrained
 environments, we define a set of HMAC algorithms that are truncated.
 There are currently no known issues with truncation; however, the
 security strength of the message tag is correspondingly reduced in
 strength. When truncating, the leftmost tag length bits are kept and
 transmitted.

 The algorithms defined in this document can be found in Table 3.

 +-----------+-------+---------+----------+--------------------------+
 | Name | Value | Hash | Tag | Description |
 | | | | Length | |
 +-----------+-------+---------+----------+--------------------------+
HMAC	4	SHA-256	64	HMAC w/ SHA-256
256/64				truncated to 64 bits
HMAC	5	SHA-256	256	HMAC w/ SHA-256
256/256				
HMAC	6	SHA-384	384	HMAC w/ SHA-384
384/384				
HMAC	7	SHA-512	512	HMAC w/ SHA-512
512/512				
 +-----------+-------+---------+----------+--------------------------+

 Table 3: HMAC Algorithm Values

 Some recipient algorithms carry the key while others derive a key
 from secret data. For those algorithms that carry the key (such as
 AES Key Wrap), the size of the HMAC key SHOULD be the same size as
 the underlying hash function. For those algorithms that derive the
 key (such as ECDH), the derived key MUST be the same size as the
 underlying hash function.

 When using a COSE key for this algorithm, the following checks are
 made:

 o The 'kty' field MUST be present, and it MUST be 'Symmetric'.

 o If the 'alg' field is present, it MUST match the HMAC algorithm
 being used.

 o If the 'key_ops' field is present, it MUST include 'MAC create'
 when creating an HMAC authentication tag.

 o If the 'key_ops' field is present, it MUST include 'MAC verify'
 when verifying an HMAC authentication tag.

Schaad Expires June 28, 2019 [Page 9]

Internet-Draft COSE Algorithms December 2018

 Implementations creating and validating MAC values MUST validate that
 the key type, key length, and algorithm are correct and appropriate
 for the entities involved.

3.1.1. Security Considerations

 HMAC has proved to be resistant to attack even when used with
 weakened hash algorithms. The current best known attack is to brute
 force the key. This means that key size is going to be directly
 related to the security of an HMAC operation.

3.2. AES Message Authentication Code (AES-CBC-MAC)

 AES-CBC-MAC is defined in [MAC]. (Note that this is not the same
 algorithm as AES Cipher-Based Message Authentication Code (AES-CMAC)
 [RFC4493].)

 AES-CBC-MAC is parameterized by the key length, the authentication
 tag length, and the IV used. For all of these algorithms, the IV is
 fixed to all zeros. We provide an array of algorithms for various
 key lengths and tag lengths. The algorithms defined in this document
 are found in Table 4.

 +-------------+-------+----------+----------+-----------------------+
 | Name | Value | Key | Tag | Description |
 | | | Length | Length | |
 +-------------+-------+----------+----------+-----------------------+
AES-MAC	14	128	64	AES-MAC 128-bit key,
128/64				64-bit tag
AES-MAC	15	256	64	AES-MAC 256-bit key,
256/64				64-bit tag
AES-MAC	25	128	128	AES-MAC 128-bit key,
128/128				128-bit tag
AES-MAC	26	256	128	AES-MAC 256-bit key,
256/128				128-bit tag
 +-------------+-------+----------+----------+-----------------------+

 Table 4: AES-MAC Algorithm Values

 Keys may be obtained either from a key structure or from a recipient
 structure. Implementations creating and validating MAC values MUST
 validate that the key type, key length, and algorithm are correct and
 appropriate for the entities involved.

 When using a COSE key for this algorithm, the following checks are
 made:

 o The 'kty' field MUST be present, and it MUST be 'Symmetric'.

https://datatracker.ietf.org/doc/html/rfc4493

Schaad Expires June 28, 2019 [Page 10]

Internet-Draft COSE Algorithms December 2018

 o If the 'alg' field is present, it MUST match the AES-MAC algorithm
 being used.

 o If the 'key_ops' field is present, it MUST include 'MAC create'
 when creating an AES-MAC authentication tag.

 o If the 'key_ops' field is present, it MUST include 'MAC verify'
 when verifying an AES-MAC authentication tag.

3.2.1. Security Considerations

 A number of attacks exist against Cipher Block Chaining Message
 Authentication Code (CBC-MAC) that need to be considered.

 o A single key must only be used for messages of a fixed and known
 length. If this is not the case, an attacker will be able to
 generate a message with a valid tag given two message and tag
 pairs. This can be addressed by using different keys for messages
 of different lengths. The current structure mitigates this
 problem, as a specific encoding structure that includes lengths is
 built and signed. (CMAC also addresses this issue.)

 o Cipher Block Chaining (CBC) mode, if the same key is used for both
 encryption and authentication operations, an attacker can produce
 messages with a valid authentication code.

 o If the IV can be modified, then messages can be forged. This is
 addressed by fixing the IV to all zeros.

4. Content Encryption Algorithms

 This docuement defines the identifier and usages for three content
 encryption algorithms.

4.1. AES GCM

 The Galois/Counter Mode (GCM) mode is a generic authenticated
 encryption block cipher mode defined in [AES-GCM]. The GCM mode is
 combined with the AES block encryption algorithm to define an AEAD
 cipher.

 The GCM mode is parameterized by the size of the authentication tag
 and the size of the nonce. This document fixes the size of the nonce
 at 96 bits. The size of the authentication tag is limited to a small
 set of values. For this document however, the size of the
 authentication tag is fixed at 128 bits.

 The set of algorithms defined in this document are in Table 5.

Schaad Expires June 28, 2019 [Page 11]

Internet-Draft COSE Algorithms December 2018

 +---------+-------+--+
 | Name | Value | Description |
 +---------+-------+--+
 | A128GCM | 1 | AES-GCM mode w/ 128-bit key, 128-bit tag |
 | A192GCM | 2 | AES-GCM mode w/ 192-bit key, 128-bit tag |
 | A256GCM | 3 | AES-GCM mode w/ 256-bit key, 128-bit tag |
 +---------+-------+--+

 Table 5: Algorithm Value for AES-GCM

 Keys may be obtained either from a key structure or from a recipient
 structure. Implementations encrypting and decrypting MUST validate
 that the key type, key length, and algorithm are correct and
 appropriate for the entities involved.

 When using a COSE key for this algorithm, the following checks are
 made:

 o The 'kty' field MUST be present, and it MUST be 'Symmetric'.

 o If the 'alg' field is present, it MUST match the AES-GCM algorithm
 being used.

 o If the 'key_ops' field is present, it MUST include 'encrypt' or
 'wrap key' when encrypting.

 o If the 'key_ops' field is present, it MUST include 'decrypt' or
 'unwrap key' when decrypting.

4.1.1. Security Considerations

 When using AES-GCM, the following restrictions MUST be enforced:

 o The key and nonce pair MUST be unique for every message encrypted.

 o The total amount of data encrypted for a single key MUST NOT
 exceed 2^39 - 256 bits. An explicit check is required only in
 environments where it is expected that it might be exceeded.

 Consideration was given to supporting smaller tag values; the
 constrained community would desire tag sizes in the 64-bit range.
 Doing so drastically changes both the maximum messages size
 (generally not an issue) and the number of times that a key can be
 used. Given that Counter with CBC-MAC (CCM) is the usual mode for
 constrained environments, restricted modes are not supported.

Schaad Expires June 28, 2019 [Page 12]

Internet-Draft COSE Algorithms December 2018

4.2. AES CCM

 CCM is a generic authentication encryption block cipher mode defined
 in [RFC3610]. The CCM mode is combined with the AES block encryption
 algorithm to define a commonly used content encryption algorithm used
 in constrained devices.

 The CCM mode has two parameter choices. The first choice is M, the
 size of the authentication field. The choice of the value for M
 involves a trade-off between message growth (from the tag) and the
 probability that an attacker can undetectably modify a message. The
 second choice is L, the size of the length field. This value
 requires a trade-off between the maximum message size and the size of
 the Nonce.

 It is unfortunate that the specification for CCM specified L and M as
 a count of bytes rather than a count of bits. This leads to possible
 misunderstandings where AES-CCM-8 is frequently used to refer to a
 version of CCM mode where the size of the authentication is 64 bits
 and not 8 bits. These values have traditionally been specified as
 bit counts rather than byte counts. This document will follow the
 convention of using bit counts so that it is easier to compare the
 different algorithms presented in this document.

 We define a matrix of algorithms in this document over the values of
 L and M. Constrained devices are usually operating in situations
 where they use short messages and want to avoid doing recipient-
 specific cryptographic operations. This favors smaller values of
 both L and M. Less-constrained devices will want to be able to use
 larger messages and are more willing to generate new keys for every
 operation. This favors larger values of L and M.

 The following values are used for L:

 16 bits (2): This limits messages to 2^16 bytes (64 KiB) in length.
 This is sufficiently long for messages in the constrained world.
 The nonce length is 13 bytes allowing for 2^(13*8) possible values
 of the nonce without repeating.

 64 bits (8): This limits messages to 2^64 bytes in length. The
 nonce length is 7 bytes allowing for 2^56 possible values of the
 nonce without repeating.

 The following values are used for M:

 64 bits (8): This produces a 64-bit authentication tag. This
 implies that there is a 1 in 2^64 chance that a modified message
 will authenticate.

https://datatracker.ietf.org/doc/html/rfc3610

Schaad Expires June 28, 2019 [Page 13]

Internet-Draft COSE Algorithms December 2018

 128 bits (16): This produces a 128-bit authentication tag. This
 implies that there is a 1 in 2^128 chance that a modified message
 will authenticate.

 +--------------------+-------+----+-----+-----+---------------------+
 | Name | Value | L | M | k | Description |
 +--------------------+-------+----+-----+-----+---------------------+
AES-CCM-16-64-128	10	16	64	128	AES-CCM mode
					128-bit key, 64-bit
					tag, 13-byte nonce
AES-CCM-16-64-256	11	16	64	256	AES-CCM mode
					256-bit key, 64-bit
					tag, 13-byte nonce
AES-CCM-64-64-128	12	64	64	128	AES-CCM mode
					128-bit key, 64-bit
					tag, 7-byte nonce
AES-CCM-64-64-256	13	64	64	256	AES-CCM mode
					256-bit key, 64-bit
					tag, 7-byte nonce
AES-CCM-16-128-128	30	16	128	128	AES-CCM mode
					128-bit key,
					128-bit tag,
					13-byte nonce
AES-CCM-16-128-256	31	16	128	256	AES-CCM mode
					256-bit key,
					128-bit tag,
					13-byte nonce
AES-CCM-64-128-128	32	64	128	128	AES-CCM mode
					128-bit key,
					128-bit tag, 7-byte
					nonce
AES-CCM-64-128-256	33	64	128	256	AES-CCM mode
					256-bit key,
					128-bit tag, 7-byte
					nonce
 +--------------------+-------+----+-----+-----+---------------------+

 Table 6: Algorithm Values for AES-CCM

 Keys may be obtained either from a key structure or from a recipient
 structure. Implementations encrypting and decrypting MUST validate
 that the key type, key length, and algorithm are correct and
 appropriate for the entities involved.

 When using a COSE key for this algorithm, the following checks are
 made:

 o The 'kty' field MUST be present, and it MUST be 'Symmetric'.

Schaad Expires June 28, 2019 [Page 14]

Internet-Draft COSE Algorithms December 2018

 o If the 'alg' field is present, it MUST match the AES-CCM algorithm
 being used.

 o If the 'key_ops' field is present, it MUST include 'encrypt' or
 'wrap key' when encrypting.

 o If the 'key_ops' field is present, it MUST include 'decrypt' or
 'unwrap key' when decrypting.

4.2.1. Security Considerations

 When using AES-CCM, the following restrictions MUST be enforced:

 o The key and nonce pair MUST be unique for every message encrypted.
 Note that the value of L influences the number of unique nonces.

 o The total number of times the AES block cipher is used MUST NOT
 exceed 2^61 operations. This limitation is the sum of times the
 block cipher is used in computing the MAC value and in performing
 stream encryption operations. An explicit check is required only
 in environments where it is expected that it might be exceeded.

 [RFC3610] additionally calls out one other consideration of note. It
 is possible to do a pre-computation attack against the algorithm in
 cases where portions of the plaintext are highly predictable. This
 reduces the security of the key size by half. Ways to deal with this
 attack include adding a random portion to the nonce value and/or
 increasing the key size used. Using a portion of the nonce for a
 random value will decrease the number of messages that a single key
 can be used for. Increasing the key size may require more resources
 in the constrained device. See Sections 5 and 10 of [RFC3610] for
 more information.

4.3. ChaCha20 and Poly1305

 ChaCha20 and Poly1305 combined together is an AEAD mode that is
 defined in [RFC7539]. This is an algorithm defined to be a cipher
 that is not AES and thus would not suffer from any future weaknesses
 found in AES. These cryptographic functions are designed to be fast
 in software-only implementations.

 The ChaCha20/Poly1305 AEAD construction defined in [RFC7539] has no
 parameterization. It takes a 256-bit key and a 96-bit nonce, as well
 as the plaintext and additional data as inputs and produces the
 ciphertext as an option. We define one algorithm identifier for this
 algorithm in Table 7.

https://datatracker.ietf.org/doc/html/rfc3610
https://datatracker.ietf.org/doc/html/rfc7539
https://datatracker.ietf.org/doc/html/rfc7539

Schaad Expires June 28, 2019 [Page 15]

Internet-Draft COSE Algorithms December 2018

 +-------------------+-------+---------------------------------------+
 | Name | Value | Description |
 +-------------------+-------+---------------------------------------+
 | ChaCha20/Poly1305 | 24 | ChaCha20/Poly1305 w/ 256-bit key, |
 | | | 128-bit tag |
 +-------------------+-------+---------------------------------------+

 Table 7: Algorithm Value for AES-GCM

 Keys may be obtained either from a key structure or from a recipient
 structure. Implementations encrypting and decrypting MUST validate
 that the key type, key length, and algorithm are correct and
 appropriate for the entities involved.

 When using a COSE key for this algorithm, the following checks are
 made:

 o The 'kty' field MUST be present, and it MUST be 'Symmetric'.

 o If the 'alg' field is present, it MUST match the ChaCha20/Poly1305
 algorithm being used.

 o If the 'key_ops' field is present, it MUST include 'encrypt' or
 'wrap key' when encrypting.

 o If the 'key_ops' field is present, it MUST include 'decrypt' or
 'unwrap key' when decrypting.

4.3.1. Security Considerations

 The key and nounce values MUST be a unique pair for every invocation
 of the algorithm. Nonce counters are considered to be an acceptable
 way of ensuring that they are unique.

5. Key Derivation Functions (KDFs)

 This document defines a single context structure and a single KDF.
 These elements are used for all of the recipient algorithms defined
 in this document that require a KDF process. These algorithms are
 defined in Sections 6.2, 6.4, and 6.5.

5.1. HMAC-Based Extract-and-Expand Key Derivation Function (HKDF)

 The HKDF key derivation algorithm is defined in [RFC5869].

 The HKDF algorithm takes these inputs:

https://datatracker.ietf.org/doc/html/rfc5869

Schaad Expires June 28, 2019 [Page 16]

Internet-Draft COSE Algorithms December 2018

 secret -- a shared value that is secret. Secrets may be either
 previously shared or derived from operations like a Diffie-Hellman
 (DH) key agreement.

 salt -- an optional value that is used to change the generation
 process. The salt value can be either public or private. If the
 salt is public and carried in the message, then the 'salt'
 algorithm header parameter defined in Table 9 is used. While
 [RFC5869] suggests that the length of the salt be the same as the
 length of the underlying hash value, any amount of salt will
 improve the security as different key values will be generated.
 This parameter is protected by being included in the key
 computation and does not need to be separately authenticated. The
 salt value does not need to be unique for every message sent.

 length -- the number of bytes of output that need to be generated.

 context information -- Information that describes the context in
 which the resulting value will be used. Making this information
 specific to the context in which the material is going to be used
 ensures that the resulting material will always be tied to that
 usage. The context structure defined in Section 5.2 is used by
 the KDFs in this document.

 PRF -- The underlying pseudorandom function to be used in the HKDF
 algorithm. The PRF is encoded into the HKDF algorithm selection.

 HKDF is defined to use HMAC as the underlying PRF. However, it is
 possible to use other functions in the same construct to provide a
 different KDF that is more appropriate in the constrained world.
 Specifically, one can use AES-CBC-MAC as the PRF for the expand step,
 but not for the extract step. When using a good random shared secret
 of the correct length, the extract step can be skipped. For the AES
 algorithm versions, the extract step is always skipped.

 The extract step cannot be skipped if the secret is not uniformly
 random, for example, if it is the result of an ECDH key agreement
 step. This implies that the AES HKDF version cannot be used with
 ECDH. If the extract step is skipped, the 'salt' value is not used
 as part of the HKDF functionality.

 The algorithms defined in this document are found in Table 8.

https://datatracker.ietf.org/doc/html/rfc5869

Schaad Expires June 28, 2019 [Page 17]

Internet-Draft COSE Algorithms December 2018

 +---------------+-----------------+---------------------------------+
 | Name | PRF | Description |
 +---------------+-----------------+---------------------------------+
HKDF SHA-256	HMAC with	HKDF using HMAC SHA-256 as the
	SHA-256	PRF
HKDF SHA-512	HMAC with	HKDF using HMAC SHA-512 as the
	SHA-512	PRF
HKDF AES-	AES-CBC-MAC-128	HKDF using AES-MAC as the PRF
MAC-128		w/ 128-bit key
HKDF AES-	AES-CBC-MAC-256	HKDF using AES-MAC as the PRF
MAC-256		w/ 256-bit key
 +---------------+-----------------+---------------------------------+

 Table 8: HKDF Algorithms

 +------+-------+------+-------------------------------+-------------+
 | Name | Label | Type | Algorithm | Description |
 +------+-------+------+-------------------------------+-------------+
salt	-20	bstr	direct+HKDF-SHA-256, direct	Random salt
			+HKDF-SHA-512, direct+HKDF-	
			AES-128, direct+HKDF-AES-256,	
			ECDH-ES+HKDF-256, ECDH-	
			ES+HKDF-512, ECDH-	
			SS+HKDF-256, ECDH-	
			SS+HKDF-512, ECDH-ES+A128KW,	
			ECDH-ES+A192KW, ECDH-	
			ES+A256KW, ECDH-SS+A128KW,	
			ECDH-SS+A192KW, ECDH-	
			SS+A256KW	
 +------+-------+------+-------------------------------+-------------+

 Table 9: HKDF Algorithm Parameters

5.2. Context Information Structure

 The context information structure is used to ensure that the derived
 keying material is "bound" to the context of the transaction. The
 context information structure used here is based on that defined in
 [SP800-56A]. By using CBOR for the encoding of the context
 information structure, we automatically get the same type and length
 separation of fields that is obtained by the use of ASN.1. This
 means that there is no need to encode the lengths for the base
 elements, as it is done by the encoding used in JOSE (Section 4.6.2
 of [RFC7518]).

 The context information structure refers to PartyU and PartyV as the
 two parties that are doing the key derivation. Unless the
 application protocol defines differently, we assign PartyU to the

https://datatracker.ietf.org/doc/html/rfc7518#section-4.6.2
https://datatracker.ietf.org/doc/html/rfc7518#section-4.6.2

Schaad Expires June 28, 2019 [Page 18]

Internet-Draft COSE Algorithms December 2018

 entity that is creating the message and PartyV to the entity that is
 receiving the message. By doing this association, different keys
 will be derived for each direction as the context information is
 different in each direction.

 The context structure is built from information that is known to both
 entities. This information can be obtained from a variety of
 sources:

 o Fields can be defined by the application. This is commonly used
 to assign fixed names to parties, but it can be used for other
 items such as nonces.

 o Fields can be defined by usage of the output. Examples of this
 are the algorithm and key size that are being generated.

 o Fields can be defined by parameters from the message. We define a
 set of parameters in Table 10 that can be used to carry the values
 associated with the context structure. Examples of this are
 identities and nonce values. These parameters are designed to be
 placed in the unprotected bucket of the recipient structure; they
 do not need to be in the protected bucket since they already are
 included in the cryptographic computation by virtue of being
 included in the context structure.

 +----------+-------+------+---------------------------+-------------+
 | Name | Label | Type | Algorithm | Description |
 +----------+-------+------+---------------------------+-------------+
PartyU	-21	bstr	direct+HKDF-SHA-256,	Party U
identity			direct+HKDF-SHA-512,	identity
			direct+HKDF-AES-128,	information
			direct+HKDF-AES-256,	
			ECDH-ES+HKDF-256, ECDH-	
			ES+HKDF-512, ECDH-	
			SS+HKDF-256, ECDH-	
			SS+HKDF-512, ECDH-	
			ES+A128KW, ECDH-	
			ES+A192KW, ECDH-	
			ES+A256KW, ECDH-	
			SS+A128KW, ECDH-	
			SS+A192KW, ECDH-SS+A256KW	
PartyU	-22	bstr	direct+HKDF-SHA-256,	Party U
nonce		/	direct+HKDF-SHA-512,	provided
		int	direct+HKDF-AES-128,	nonce
			direct+HKDF-AES-256,	
			ECDH-ES+HKDF-256, ECDH-	
			ES+HKDF-512, ECDH-	
			SS+HKDF-256, ECDH-	

Schaad Expires June 28, 2019 [Page 19]

Internet-Draft COSE Algorithms December 2018

			SS+HKDF-512, ECDH-	
			ES+A128KW, ECDH-	
			ES+A192KW, ECDH-	
			ES+A256KW, ECDH-	
			SS+A128KW, ECDH-	
			SS+A192KW, ECDH-SS+A256KW	
PartyU	-23	bstr	direct+HKDF-SHA-256,	Party U
other			direct+HKDF-SHA-512,	other
			direct+HKDF-AES-128,	provided
			direct+HKDF-AES-256,	information
			ECDH-ES+HKDF-256, ECDH-	
			ES+HKDF-512, ECDH-	
			SS+HKDF-256, ECDH-	
			SS+HKDF-512, ECDH-	
			ES+A128KW, ECDH-	
			ES+A192KW, ECDH-	
			ES+A256KW, ECDH-	
			SS+A128KW, ECDH-	
			SS+A192KW, ECDH-SS+A256KW	
PartyV	-24	bstr	direct+HKDF-SHA-256,	Party V
identity			direct+HKDF-SHA-512,	identity
			direct+HKDF-AES-128,	information
			direct+HKDF-AES-256,	
			ECDH-ES+HKDF-256, ECDH-	
			ES+HKDF-512, ECDH-	
			SS+HKDF-256, ECDH-	
			SS+HKDF-512, ECDH-	
			ES+A128KW, ECDH-	
			ES+A192KW, ECDH-	
			ES+A256KW, ECDH-	
			SS+A128KW, ECDH-	
			SS+A192KW, ECDH-SS+A256KW	
PartyV	-25	bstr	direct+HKDF-SHA-256,	Party V
nonce		/	direct+HKDF-SHA-512,	provided
		int	direct+HKDF-AES-128,	nonce
			direct+HKDF-AES-256,	
			ECDH-ES+HKDF-256, ECDH-	
			ES+HKDF-512, ECDH-	
			SS+HKDF-256, ECDH-	
			SS+HKDF-512, ECDH-	
			ES+A128KW, ECDH-	
			ES+A192KW, ECDH-	
			ES+A256KW, ECDH-	
			SS+A128KW, ECDH-	
			SS+A192KW, ECDH-SS+A256KW	
PartyV	-26	bstr	direct+HKDF-SHA-256,	Party V
other			direct+HKDF-SHA-512,	other
			direct+HKDF-AES-128,	provided

Schaad Expires June 28, 2019 [Page 20]

Internet-Draft COSE Algorithms December 2018

			direct+HKDF-AES-256,	information
			ECDH-ES+HKDF-256, ECDH-	
			ES+HKDF-512, ECDH-	
			SS+HKDF-256, ECDH-	
			SS+HKDF-512, ECDH-	
			ES+A128KW, ECDH-	
			ES+A192KW, ECDH-	
			ES+A256KW, ECDH-	
			SS+A128KW, ECDH-	
			SS+A192KW, ECDH-SS+A256KW	
 +----------+-------+------+---------------------------+-------------+

 Table 10: Context Algorithm Parameters

 We define a CBOR object to hold the context information. This object
 is referred to as COSE_KDF_Context. The object is based on a CBOR
 array type. The fields in the array are:

 AlgorithmID: This field indicates the algorithm for which the key
 material will be used. This normally is either a key wrap
 algorithm identifier or a content encryption algorithm identifier.
 The values are from the "COSE Algorithms" registry. This field is
 required to be present. The field exists in the context
 information so that if the same environment is used for different
 algorithms, then completely different keys will be generated for
 each of those algorithms. This practice means if algorithm A is
 broken and thus is easier to find, the key derived for algorithm B
 will not be the same as the key derived for algorithm A.

 PartyUInfo: This field holds information about party U. The
 PartyUInfo is encoded as a CBOR array. The elements of PartyUInfo
 are encoded in the order presented. The elements of the
 PartyUInfo array are:

 identity: This contains the identity information for party U.
 The identities can be assigned in one of two manners. First, a
 protocol can assign identities based on roles. For example,
 the roles of "client" and "server" may be assigned to different
 entities in the protocol. Each entity would then use the
 correct label for the data they send or receive. The second
 way for a protocol to assign identities is to use a name based
 on a naming system (i.e., DNS, X.509 names).

 We define an algorithm parameter 'PartyU identity' that can be
 used to carry identity information in the message. However,
 identity information is often known as part of the protocol and
 can thus be inferred rather than made explicit. If identity
 information is carried in the message, applications SHOULD have

Schaad Expires June 28, 2019 [Page 21]

Internet-Draft COSE Algorithms December 2018

 a way of validating the supplied identity information. The
 identity information does not need to be specified and is set
 to nil in that case.

 nonce: This contains a nonce value. The nonce can either be
 implicit from the protocol or be carried as a value in the
 unprotected headers.

 We define an algorithm parameter 'PartyU nonce' that can be
 used to carry this value in the message; however, the nonce
 value could be determined by the application and the value
 determined from elsewhere.

 This option does not need to be specified and is set to nil in
 that case.

 other: This contains other information that is defined by the
 protocol. This option does not need to be specified and is set
 to nil in that case.

 PartyVInfo: This field holds information about party V. The content
 of the structure is the same as for the PartyUInfo but for party
 V.

 SuppPubInfo: This field contains public information that is mutually
 known to both parties.

 keyDataLength: This is set to the number of bits of the desired
 output value. This practice means if algorithm A can use two
 different key lengths, the key derived for longer key size will
 not contain the key for shorter key size as a prefix.

 protected: This field contains the protected parameter field. If
 there are no elements in the protected field, then use a zero-
 length bstr.

 other: This field is for free form data defined by the
 application. An example is that an application could define
 two different strings to be placed here to generate different
 keys for a data stream versus a control stream. This field is
 optional and will only be present if the application defines a
 structure for this information. Applications that define this
 SHOULD use CBOR to encode the data so that types and lengths
 are correctly included.

 SuppPrivInfo: This field contains private information that is
 mutually known private information. An example of this
 information would be a preexisting shared secret. (This could,

Schaad Expires June 28, 2019 [Page 22]

Internet-Draft COSE Algorithms December 2018

 for example, be used in combination with an ECDH key agreement to
 provide a secondary proof of identity.) The field is optional and
 will only be present if the application defines a structure for
 this information. Applications that define this SHOULD use CBOR
 to encode the data so that types and lengths are correctly
 included.

 The following CDDL fragment corresponds to the text above.

 PartyInfo = (
 identity : bstr / nil,
 nonce : bstr / int / nil,
 other : bstr / nil
)

 COSE_KDF_Context = [
 AlgorithmID : int / tstr,
 PartyUInfo : [PartyInfo],
 PartyVInfo : [PartyInfo],
 SuppPubInfo : [
 keyDataLength : uint,
 protected : empty_or_serialized_map,
 ? other : bstr
],
 ? SuppPrivInfo : bstr
]

6. Content Key Distribution Methods

 This document defines the identifiers and usage for a number of
 content key distribution methods.

6.1. Direct Key

 This recipient algorithm is the simplest; the identified key is
 directly used as the key for the next layer down in the message.
 There are no algorithm parameters defined for this algorithm. The
 algorithm identifier value is assigned in Table 11.

 When this algorithm is used, the protected field MUST be zero length.
 The key type MUST be 'Symmetric'.

Schaad Expires June 28, 2019 [Page 23]

Internet-Draft COSE Algorithms December 2018

 +--------+-------+-------------------+
 | Name | Value | Description |
 +--------+-------+-------------------+
 | direct | -6 | Direct use of CEK |
 +--------+-------+-------------------+

 Table 11: Direct Key

6.1.1. Security Considerations

 This recipient algorithm has several potential problems that need to
 be considered:

 o These keys need to have some method to be regularly updated over
 time. All of the content encryption algorithms specified in this
 document have limits on how many times a key can be used without
 significant loss of security.

 o These keys need to be dedicated to a single algorithm. There have
 been a number of attacks developed over time when a single key is
 used for multiple different algorithms. One example of this is
 the use of a single key for both the CBC encryption mode and the
 CBC-MAC authentication mode.

 o Breaking one message means all messages are broken. If an
 adversary succeeds in determining the key for a single message,
 then the key for all messages is also determined.

6.2. Direct Key with KDF

 These recipient algorithms take a common shared secret between the
 two parties and applies the HKDF function (Section 5.1), using the
 context structure defined in Section 5.2 to transform the shared
 secret into the CEK. The 'protected' field can be of non-zero
 length. Either the 'salt' parameter of HKDF or the 'PartyU nonce'
 parameter of the context structure MUST be present. The salt/nonce
 parameter can be generated either randomly or deterministically. The
 requirement is that it be a unique value for the shared secret in
 question.

 If the salt/nonce value is generated randomly, then it is suggested
 that the length of the random value be the same length as the hash
 function underlying HKDF. While there is no way to guarantee that it
 will be unique, there is a high probability that it will be unique.
 If the salt/nonce value is generated deterministically, it can be
 guaranteed to be unique, and thus there is no length requirement.

Schaad Expires June 28, 2019 [Page 24]

Internet-Draft COSE Algorithms December 2018

 A new IV must be used for each message if the same key is used. The
 IV can be modified in a predictable manner, a random manner, or an
 unpredictable manner (i.e., encrypting a counter).

 The IV used for a key can also be generated from the same HKDF
 functionality as the key is generated. If HKDF is used for
 generating the IV, the algorithm identifier is set to "IV-
 GENERATION".

 When these algorithms are used, the key type MUST be 'symmetric'.

 The set of algorithms defined in this document can be found in
 Table 12.

 +---------------------+-------+-------------+-----------------------+
 | Name | Value | KDF | Description |
 +---------------------+-------+-------------+-----------------------+
direct+HKDF-SHA-256	-10	HKDF	Shared secret w/ HKDF
		SHA-256	and SHA-256
direct+HKDF-SHA-512	-11	HKDF	Shared secret w/ HKDF
		SHA-512	and SHA-512
direct+HKDF-AES-128	-12	HKDF AES-	Shared secret w/ AES-
		MAC-128	MAC 128-bit key
direct+HKDF-AES-256	-13	HKDF AES-	Shared secret w/ AES-
		MAC-256	MAC 256-bit key
 +---------------------+-------+-------------+-----------------------+

 Table 12: Direct Key with KDF

 When using a COSE key for this algorithm, the following checks are
 made:

 o The 'kty' field MUST be present, and it MUST be 'Symmetric'.

 o If the 'alg' field is present, it MUST match the algorithm being
 used.

 o If the 'key_ops' field is present, it MUST include 'deriveKey' or
 'deriveBits'.

6.2.1. Security Considerations

 The shared secret needs to have some method to be regularly updated
 over time. The shared secret forms the basis of trust. Although not
 used directly, it should still be subject to scheduled rotation.

 While these methods do not provide for perfect forward secrecy, as
 the same shared secret is used for all of the keys generated, if the

Schaad Expires June 28, 2019 [Page 25]

Internet-Draft COSE Algorithms December 2018

 key for any single message is discovered, only the message (or series
 of messages) using that derived key are compromised. A new key
 derivation step will generate a new key that requires the same amount
 of work to get the key.

6.3. AES Key Wrap

 The AES Key Wrap algorithm is defined in [RFC3394]. This algorithm
 uses an AES key to wrap a value that is a multiple of 64 bits. As
 such, it can be used to wrap a key for any of the content encryption
 algorithms defined in this document. The algorithm requires a single
 fixed parameter, the initial value. This is fixed to the value
 specified in Section 2.2.3.1 of [RFC3394]. There are no public
 parameters that vary on a per-invocation basis. The protected header
 field MUST be empty.

 Keys may be obtained either from a key structure or from a recipient
 structure. Implementations encrypting and decrypting MUST validate
 that the key type, key length, and algorithm are correct and
 appropriate for the entities involved.

 When using a COSE key for this algorithm, the following checks are
 made:

 o The 'kty' field MUST be present, and it MUST be 'Symmetric'.

 o If the 'alg' field is present, it MUST match the AES Key Wrap
 algorithm being used.

 o If the 'key_ops' field is present, it MUST include 'encrypt' or
 'wrap key' when encrypting.

 o If the 'key_ops' field is present, it MUST include 'decrypt' or
 'unwrap key' when decrypting.

 +--------+-------+----------+-----------------------------+
 | Name | Value | Key Size | Description |
 +--------+-------+----------+-----------------------------+
 | A128KW | -3 | 128 | AES Key Wrap w/ 128-bit key |
 | A192KW | -4 | 192 | AES Key Wrap w/ 192-bit key |
 | A256KW | -5 | 256 | AES Key Wrap w/ 256-bit key |
 +--------+-------+----------+-----------------------------+

 Table 13: AES Key Wrap Algorithm Values

https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc3394#section-2.2.3.1

Schaad Expires June 28, 2019 [Page 26]

Internet-Draft COSE Algorithms December 2018

6.3.1. Security Considerations for AES-KW

 The shared secret needs to have some method to be regularly updated
 over time. The shared secret is the basis of trust.

6.4. Direct ECDH

 The mathematics for ECDH can be found in [RFC6090]. In this
 document, the algorithm is extended to be used with the two curves
 defined in [RFC7748].

 ECDH is parameterized by the following:

 o Curve Type/Curve: The curve selected controls not only the size of
 the shared secret, but the mathematics for computing the shared
 secret. The curve selected also controls how a point in the curve
 is represented and what happens for the identity points on the
 curve. In this specification, we allow for a number of different
 curves to be used. A set of curves are defined in Table 18.
 The math used to obtain the computed secret is based on the curve
 selected and not on the ECDH algorithm. For this reason, a new
 algorithm does not need to be defined for each of the curves.

 o Computed Secret to Shared Secret: Once the computed secret is
 known, the resulting value needs to be converted to a byte string
 to run the KDF. The x-coordinate is used for all of the curves
 defined in this document. For curves X25519 and X448, the
 resulting value is used directly as it is a byte string of a known
 length. For the P-256, P-384, and P-521 curves, the x-coordinate
 is run through the I2OSP function defined in [RFC8017], using the
 same computation for n as is defined in Section 2.1.

 o Ephemeral-Static or Static-Static: The key agreement process may
 be done using either a static or an ephemeral key for the sender's
 side. When using ephemeral keys, the sender MUST generate a new
 ephemeral key for every key agreement operation. The ephemeral
 key is placed in the 'ephemeral key' parameter and MUST be present
 for all algorithm identifiers that use ephemeral keys. When using
 static keys, the sender MUST either generate a new random value or
 create a unique value. For the KDFs used, this means either the
 'salt' parameter for HKDF (Table 9) or the 'PartyU nonce'
 parameter for the context structure (Table 10) MUST be present
 (both can be present if desired). The value in the parameter MUST
 be unique for the pair of keys being used. It is acceptable to
 use a global counter that is incremented for every static-static
 operation and use the resulting value. When using static keys,
 the static key should be identified to the recipient. The static
 key can be identified either by providing the key ('static key')

https://datatracker.ietf.org/doc/html/rfc6090
https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc8017

Schaad Expires June 28, 2019 [Page 27]

Internet-Draft COSE Algorithms December 2018

 or by providing a key identifier for the static key ('static key
 id'). Both of these parameters are defined in Table 15.

 o Key Derivation Algorithm: The result of an ECDH key agreement
 process does not provide a uniformly random secret. As such, it
 needs to be run through a KDF in order to produce a usable key.
 Processing the secret through a KDF also allows for the
 introduction of context material: how the key is going to be used
 and one-time material for static-static key agreement. All of the
 algorithms defined in this document use one of the HKDF algorithms
 defined in Section 5.1 with the context structure defined in

Section 5.2.

 o Key Wrap Algorithm: No key wrap algorithm is used. This is
 represented in Table 14 as 'none'. The key size for the context
 structure is the content layer encryption algorithm size.

 The set of direct ECDH algorithms defined in this document are found
 in Table 14.

 +-----------+-------+---------+------------+--------+---------------+
 | Name | Value | KDF | Ephemeral- | Key | Description |
 | | | | Static | Wrap | |
 +-----------+-------+---------+------------+--------+---------------+
ECDH-ES +	-25	HKDF -	yes	none	ECDH ES w/
HKDF-256		SHA-256			HKDF -
					generate key
					directly
ECDH-ES +	-26	HKDF -	yes	none	ECDH ES w/
HKDF-512		SHA-512			HKDF -
					generate key
					directly
ECDH-SS +	-27	HKDF -	no	none	ECDH SS w/
HKDF-256		SHA-256			HKDF -
					generate key
					directly
ECDH-SS +	-28	HKDF -	no	none	ECDH SS w/
HKDF-512		SHA-512			HKDF -
					generate key
					directly
 +-----------+-------+---------+------------+--------+---------------+

 Table 14: ECDH Algorithm Values

Schaad Expires June 28, 2019 [Page 28]

Internet-Draft COSE Algorithms December 2018

 +-----------+-------+----------+---------------------+--------------+
 | Name | Label | Type | Algorithm | Description |
 +-----------+-------+----------+---------------------+--------------+
ephemeral	-1	COSE_Key	ECDH-ES+HKDF-256,	Ephemeral
key			ECDH-ES+HKDF-512,	public key
			ECDH-ES+A128KW,	for the
			ECDH-ES+A192KW,	sender
			ECDH-ES+A256KW	
static	-2	COSE_Key	ECDH-SS+HKDF-256,	Static
key			ECDH-SS+HKDF-512,	public key
			ECDH-SS+A128KW,	for the
			ECDH-SS+A192KW,	sender
			ECDH-SS+A256KW	
static	-3	bstr	ECDH-SS+HKDF-256,	Static
key id			ECDH-SS+HKDF-512,	public key
			ECDH-SS+A128KW,	identifier
			ECDH-SS+A192KW,	for the
			ECDH-SS+A256KW	sender
 +-----------+-------+----------+---------------------+--------------+

 Table 15: ECDH Algorithm Parameters

 This document defines these algorithms to be used with the curves
 P-256, P-384, P-521, X25519, and X448. Implementations MUST verify
 that the key type and curve are correct. Different curves are
 restricted to different key types. Implementations MUST verify that
 the curve and algorithm are appropriate for the entities involved.

 When using a COSE key for this algorithm, the following checks are
 made:

 o The 'kty' field MUST be present, and it MUST be 'EC2' or 'OKP'.

 o If the 'alg' field is present, it MUST match the key agreement
 algorithm being used.

 o If the 'key_ops' field is present, it MUST include 'derive key' or
 'derive bits' for the private key.

 o If the 'key_ops' field is present, it MUST be empty for the public
 key.

6.4.1. Security Considerations

 There is a method of checking that points provided from external
 entities are valid. For the 'EC2' key format, this can be done by
 checking that the x and y values form a point on the curve. For the
 'OKP' format, there is no simple way to do point validation.

Schaad Expires June 28, 2019 [Page 29]

Internet-Draft COSE Algorithms December 2018

 Consideration was given to requiring that the public keys of both
 entities be provided as part of the key derivation process (as
 recommended in Section 6.1 of [RFC7748]). This was not done as COSE
 is used in a store and forward format rather than in online key
 exchange. In order for this to be a problem, either the receiver
 public key has to be chosen maliciously or the sender has to be
 malicious. In either case, all security evaporates anyway.

 A proof of possession of the private key associated with the public
 key is recommended when a key is moved from untrusted to trusted
 (either by the end user or by the entity that is responsible for
 making trust statements on keys).

6.5. ECDH with Key Wrap

 These algorithms are defined in Table 16.

 ECDH with Key Agreement is parameterized by the same parameters as
 for ECDH; see Section 6.4, with the following modifications:

 o Key Wrap Algorithm: Any of the key wrap algorithms defined in
Section 6.3 are supported. The size of the key used for the key

 wrap algorithm is fed into the KDF. The set of identifiers are
 found in Table 16.

https://datatracker.ietf.org/doc/html/rfc7748#section-6.1

Schaad Expires June 28, 2019 [Page 30]

Internet-Draft COSE Algorithms December 2018

 +-----------+-------+---------+------------+--------+---------------+
 | Name | Value | KDF | Ephemeral- | Key | Description |
 | | | | Static | Wrap | |
 +-----------+-------+---------+------------+--------+---------------+
ECDH-ES +	-29	HKDF -	yes	A128KW	ECDH ES w/
A128KW		SHA-256			Concat KDF
					and AES Key
					Wrap w/
					128-bit key
ECDH-ES +	-30	HKDF -	yes	A192KW	ECDH ES w/
A192KW		SHA-256			Concat KDF
					and AES Key
					Wrap w/
					192-bit key
ECDH-ES +	-31	HKDF -	yes	A256KW	ECDH ES w/
A256KW		SHA-256			Concat KDF
					and AES Key
					Wrap w/
					256-bit key
ECDH-SS +	-32	HKDF -	no	A128KW	ECDH SS w/
A128KW		SHA-256			Concat KDF
					and AES Key
					Wrap w/
					128-bit key
ECDH-SS +	-33	HKDF -	no	A192KW	ECDH SS w/
A192KW		SHA-256			Concat KDF
					and AES Key
					Wrap w/
					192-bit key
ECDH-SS +	-34	HKDF -	no	A256KW	ECDH SS w/
A256KW		SHA-256			Concat KDF
					and AES Key
					Wrap w/
					256-bit key
 +-----------+-------+---------+------------+--------+---------------+

 Table 16: ECDH Algorithm Values with Key Wrap

 When using a COSE key for this algorithm, the following checks are
 made:

 o The 'kty' field MUST be present, and it MUST be 'EC2' or 'OKP'.

Schaad Expires June 28, 2019 [Page 31]

Internet-Draft COSE Algorithms December 2018

 o If the 'alg' field is present, it MUST match the key agreement
 algorithm being used.

 o If the 'key_ops' field is present, it MUST include 'derive key' or
 'derive bits' for the private key.

 o If the 'key_ops' field is present, it MUST be empty for the public
 key.

7. Key Object Parameters

 The COSE_Key object defines a way to hold a single key object. It is
 still required that the members of individual key types be defined.
 This section of the document is where we define an initial set of
 members for specific key types.

 For each of the key types, we define both public and private members.
 The public members are what is transmitted to others for their usage.
 Private members allow for the archival of keys by individuals.
 However, there are some circumstances in which private keys may be
 distributed to entities in a protocol. Examples include: entities
 that have poor random number generation, centralized key creation for
 multi-cast type operations, and protocols in which a shared secret is
 used as a bearer token for authorization purposes.

 Key types are identified by the 'kty' member of the COSE_Key object.
 In this document, we define four values for the member:

 +-----------+-------+---+
 | Name | Value | Description |
 +-----------+-------+---+
OKP	1	Octet Key Pair
EC2	2	Elliptic Curve Keys w/ x- and y-coordinate
		pair
Symmetric	4	Symmetric Keys
Reserved	0	This value is reserved
 +-----------+-------+---+

 Table 17: Key Type Values

7.1. Elliptic Curve Keys

 Two different key structures are defined for elliptic curve keys.
 One version uses both an x-coordinate and a y-coordinate, potentially
 with point compression ('EC2'). This is the traditional EC point
 representation that is used in [RFC5480]. The other version uses
 only the x-coordinate as the y-coordinate is either to be recomputed
 or not needed for the key agreement operation ('OKP').

https://datatracker.ietf.org/doc/html/rfc5480

Schaad Expires June 28, 2019 [Page 32]

Internet-Draft COSE Algorithms December 2018

 Applications MUST check that the curve and the key type are
 consistent and reject a key if they are not.

 +---------+-------+----------+------------------------------------+
 | Name | Value | Key Type | Description |
 +---------+-------+----------+------------------------------------+
 | P-256 | 1 | EC2 | NIST P-256 also known as secp256r1 |
 | P-384 | 2 | EC2 | NIST P-384 also known as secp384r1 |
 | P-521 | 3 | EC2 | NIST P-521 also known as secp521r1 |
 | X25519 | 4 | OKP | X25519 for use w/ ECDH only |
 | X448 | 5 | OKP | X448 for use w/ ECDH only |
 | Ed25519 | 6 | OKP | Ed25519 for use w/ EdDSA only |
 | Ed448 | 7 | OKP | Ed448 for use w/ EdDSA only |
 +---------+-------+----------+------------------------------------+

 Table 18: Elliptic Curves

7.1.1. Double Coordinate Curves

 The traditional way of sending ECs has been to send either both the
 x-coordinate and y-coordinate or the x-coordinate and a sign bit for
 the y-coordinate. The latter encoding has not been recommended in
 the IETF due to potential IPR issues. However, for operations in
 constrained environments, the ability to shrink a message by not
 sending the y-coordinate is potentially useful.

 For EC keys with both coordinates, the 'kty' member is set to 2
 (EC2). The key parameters defined in this section are summarized in
 Table 19. The members that are defined for this key type are:

 crv: This contains an identifier of the curve to be used with the
 key. The curves defined in this document for this key type can
 be found in Table 18. Other curves may be registered in the
 future, and private curves can be used as well.

 x: This contains the x-coordinate for the EC point. The integer is
 converted to an octet string as defined in [SEC1]. Leading zero
 octets MUST be preserved.

 y: This contains either the sign bit or the value of the
 y-coordinate for the EC point. When encoding the value y, the
 integer is converted to an octet string (as defined in [SEC1])
 and encoded as a CBOR bstr. Leading zero octets MUST be
 preserved. The compressed point encoding is also supported.
 Compute the sign bit as laid out in the Elliptic-Curve-Point-to-
 Octet-String Conversion function of [SEC1]. If the sign bit is
 zero, then encode y as a CBOR false value; otherwise, encode y

Schaad Expires June 28, 2019 [Page 33]

Internet-Draft COSE Algorithms December 2018

 as a CBOR true value. The encoding of the infinity point is not
 supported.

 d: This contains the private key.

 For public keys, it is REQUIRED that 'crv', 'x', and 'y' be present
 in the structure. For private keys, it is REQUIRED that 'crv' and
 'd' be present in the structure. For private keys, it is RECOMMENDED
 that 'x' and 'y' also be present, but they can be recomputed from the
 required elements and omitting them saves on space.

 +-------+------+-------+--------+-----------------------------------+
 | Key | Name | Label | CBOR | Description |
 | Type | | | Type | |
 +-------+------+-------+--------+-----------------------------------+
2	crv	-1	int /	EC identifier - Taken from the
			tstr	"COSE Elliptic Curves" registry
2	x	-2	bstr	x-coordinate
2	y	-3	bstr /	y-coordinate
			bool	
2	d	-4	bstr	Private key
 +-------+------+-------+--------+-----------------------------------+

 Table 19: EC Key Parameters

7.2. Octet Key Pair

 A new key type is defined for Octet Key Pairs (OKP). Do not assume
 that keys using this type are elliptic curves. This key type could
 be used for other curve types (for example, mathematics based on
 hyper-elliptic surfaces).

 The key parameters defined in this section are summarized in
 Table 20. The members that are defined for this key type are:

 crv: This contains an identifier of the curve to be used with the
 key. The curves defined in this document for this key type can
 be found in Table 18. Other curves may be registered in the
 future and private curves can be used as well.

 x: This contains the x-coordinate for the EC point. The octet
 string represents a little-endian encoding of x.

 d: This contains the private key.

 For public keys, it is REQUIRED that 'crv' and 'x' be present in the
 structure. For private keys, it is REQUIRED that 'crv' and 'd' be
 present in the structure. For private keys, it is RECOMMENDED that

Schaad Expires June 28, 2019 [Page 34]

Internet-Draft COSE Algorithms December 2018

 'x' also be present, but it can be recomputed from the required
 elements and omitting it saves on space.

 +------+-------+-------+--------+-----------------------------------+
 | Name | Key | Label | Type | Description |
 | | Type | | | |
 +------+-------+-------+--------+-----------------------------------+
crv	1	-1	int /	EC identifier - Taken from the
			tstr	"COSE Key Common Parameters"
				registry
x	1	-2	bstr	x-coordinate
d	1	-4	bstr	Private key
 +------+-------+-------+--------+-----------------------------------+

 Table 20: Octet Key Pair Parameters

7.3. Symmetric Keys

 Occasionally it is required that a symmetric key be transported
 between entities. This key structure allows for that to happen.

 For symmetric keys, the 'kty' member is set to 4 ('Symmetric'). The
 member that is defined for this key type is:

 k: This contains the value of the key.

 This key structure does not have a form that contains only public
 members. As it is expected that this key structure is going to be
 transmitted, care must be taken that it is never transmitted
 accidentally or insecurely. For symmetric keys, it is REQUIRED that
 'k' be present in the structure.

 +------+----------+-------+------+-------------+
 | Name | Key Type | Label | Type | Description |
 +------+----------+-------+------+-------------+
 | k | 4 | -1 | bstr | Key Value |
 +------+----------+-------+------+-------------+

 Table 21: Symmetric Key Parameters

8. IANA Considerations

8.1. COSE Algorithms Registry

 IANA has created a new registry titled "COSE Algorithms". The
 registry has been created to use the "Expert Review Required"
 registration procedure. Guidelines for the experts are provided in

Section 8.5. It should be noted that, in addition to the expert

Schaad Expires June 28, 2019 [Page 35]

Internet-Draft COSE Algorithms December 2018

 review, some portions of the registry require a specification,
 potentially a Standards Track RFC, be supplied as well.

 The columns of the registry are:

 Name: A value that can be used to identify an algorithm in documents
 for easier comprehension. The name SHOULD be unique. However,
 the 'Value' field is what is used to identify the algorithm, not
 the 'name' field.

 Value: The value to be used to identify this algorithm. Algorithm
 values MUST be unique. The value can be a positive integer, a
 negative integer, or a string. Integer values between -256 and
 255 and strings of length 1 are designated as "Standards Action".
 Integer values from -65536 to 65535 and strings of length 2 are
 designated as "Specification Required". Integer values greater
 than 65535 and strings of length greater than 2 are designated as
 "Expert Review". Integer values less than -65536 are marked as
 private use.

 Description: A short description of the algorithm.

 Reference: A document where the algorithm is defined (if publicly
 available).

 Recommended: Does the IETF have a consensus recommendation to use
 the algorithm? The legal values are 'Yes', 'No', and
 'Deprecated'.

 The initial contents of the registry can be found in Tables 1, 2, 3,
 4, 5, 6, 7, 11, 12, 13, 14, and 16. All of the entries in the
 "References" column of this registry point to this document. All of
 the entries in the "Recommended" column are set to "Yes".

 Additionally, the label of 0 is to be marked as 'Reserved'.

 NOTE: The assignment of algorithm identifiers in this document was
 done so that positive numbers were used for the first layer objects
 (COSE_Sign, COSE_Sign1, COSE_Encrypt, COSE_Encrypt0, COSE_Mac, and
 COSE_Mac0). Negative numbers were used for second layer objects
 (COSE_Signature and COSE_recipient). Expert reviewers should
 consider this practice, but are not expected to be restricted by this
 precedent.

Schaad Expires June 28, 2019 [Page 36]

Internet-Draft COSE Algorithms December 2018

8.2. COSE Key Type Parameters Registry

 IANA has created a new registry titled "COSE Key Type Parameters".
 The registry has been created to use the "Expert Review Required"
 registration procedure. Expert review guidelines are provided in

Section 8.5.

 The columns of the table are:

 Key Type: This field contains a descriptive string of a key type.
 This should be a value that is in the "COSE Key Common Parameters"
 registry and is placed in the 'kty' field of a COSE Key structure.

 Name: This is a descriptive name that enables easier reference to
 the item. It is not used in the encoding.

 Label: The label is to be unique for every value of key type. The
 range of values is from -65536 to -1. Labels are expected to be
 reused for different keys.

 CBOR Type: This field contains the CBOR type for the field.

 Description: This field contains a brief description for the field.

 Reference: This contains a pointer to the public specification for
 the field if one exists.

 This registry has been initially populated by the values in Tables
 19, 20, and 21. All of the entries in the "References" column of
 this registry point to this document.

8.3. COSE Key Types Registry

 IANA has created a new registry titled "COSE Key Types". The
 registry has been created to use the "Expert Review Required"
 registration procedure. Expert review guidelines are provided in

Section 8.5.

 The columns of this table are:

 Name: This is a descriptive name that enables easier reference to
 the item. The name MUST be unique. It is not used in the
 encoding.

 Value: This is the value used to identify the curve. These values
 MUST be unique. The value can be a positive integer, a negative
 integer, or a string.

Schaad Expires June 28, 2019 [Page 37]

Internet-Draft COSE Algorithms December 2018

 Description: This field contains a brief description of the curve.

 References: This contains a pointer to the public specification for
 the curve if one exists.

 This registry has been initially populated by the values in Table 17.
 The specification column for all of these entries will be this
 document.

8.4. COSE Elliptic Curves Registry

 IANA has created a new registry titled "COSE Elliptic Curves". The
 registry has been created to use the "Expert Review Required"
 registration procedure. Guidelines for the experts are provided in

Section 8.5. It should be noted that, in addition to the expert
 review, some portions of the registry require a specification,
 potentially a Standards Track RFC, be supplied as well.

 The columns of the table are:

 Name: This is a descriptive name that enables easier reference to
 the item. It is not used in the encoding.

 Value: This is the value used to identify the curve. These values
 MUST be unique. The integer values from -256 to 255 are
 designated as "Standards Action". The integer values from 256 to
 65535 and -65536 to -257 are designated as "Specification
 Required". Integer values over 65535 are designated as "Expert
 Review". Integer values less than -65536 are marked as private
 use.

 Key Type: This designates the key type(s) that can be used with this
 curve.

 Description: This field contains a brief description of the curve.

 Reference: This contains a pointer to the public specification for
 the curve if one exists.

 Recommended: Does the IETF have a consensus recommendation to use
 the algorithm? The legal values are 'Yes', 'No', and
 'Deprecated'.

 This registry has been initially populated by the values in Table 18.
 All of the entries in the "References" column of this registry point
 to this document. All of the entries in the "Recommended" column are
 set to "Yes".

Schaad Expires June 28, 2019 [Page 38]

Internet-Draft COSE Algorithms December 2018

8.5. Expert Review Instructions

 All of the IANA registries established in this document are defined
 as expert review. This section gives some general guidelines for
 what the experts should be looking for, but they are being designated
 as experts for a reason, so they should be given substantial
 latitude.

 Expert reviewers should take into consideration the following points:

 o Point squatting should be discouraged. Reviewers are encouraged
 to get sufficient information for registration requests to ensure
 that the usage is not going to duplicate one that is already
 registered, and that the point is likely to be used in
 deployments. The zones tagged as private use are intended for
 testing purposes and closed environments; code points in other
 ranges should not be assigned for testing.

 o Specifications are required for the standards track range of point
 assignment. Specifications should exist for specification
 required ranges, but early assignment before a specification is
 available is considered to be permissible. Specifications are
 needed for the first-come, first-serve range if they are expected
 to be used outside of closed environments in an interoperable way.
 When specifications are not provided, the description provided
 needs to have sufficient information to identify what the point is
 being used for.

 o Experts should take into account the expected usage of fields when
 approving point assignment. The fact that there is a range for
 standards track documents does not mean that a standards track
 document cannot have points assigned outside of that range. The
 length of the encoded value should be weighed against how many
 code points of that length are left, the size of device it will be
 used on, and the number of code points left that encode to that
 size.

 o When algorithms are registered, vanity registrations should be
 discouraged. One way to do this is to require registrations to
 provide additional documentation on security analysis of the
 algorithm. Another thing that should be considered is requesting
 an opinion on the algorithm from the Crypto Forum Research Group
 (CFRG). Algorithms that do not meet the security requirements of
 the community and the messages structures should not be
 registered.

Schaad Expires June 28, 2019 [Page 39]

Internet-Draft COSE Algorithms December 2018

9. Security Considerations

 There are a number of security considerations that need to be taken
 into account by implementers of this specification. The security
 considerations that are specific to an individual algorithm are
 placed next to the description of the algorithm. While some
 considerations have been highlighted here, additional considerations
 may be found in the documents listed in the references.

 Implementations need to protect the private key material for any
 individuals. There are some cases in this document that need to be
 highlighted on this issue.

 o Using the same key for two different algorithms can leak
 information about the key. It is therefore recommended that keys
 be restricted to a single algorithm.

 o Use of 'direct' as a recipient algorithm combined with a second
 recipient algorithm exposes the direct key to the second
 recipient.

 o Several of the algorithms in this document have limits on the
 number of times that a key can be used without leaking information
 about the key.

 The use of ECDH and direct plus KDF (with no key wrap) will not
 directly lead to the private key being leaked; the one way function
 of the KDF will prevent that. There is, however, a different issue
 that needs to be addressed. Having two recipients requires that the
 CEK be shared between two recipients. The second recipient therefore
 has a CEK that was derived from material that can be used for the
 weak proof of origin. The second recipient could create a message
 using the same CEK and send it to the first recipient; the first
 recipient would, for either static-static ECDH or direct plus KDF,
 make an assumption that the CEK could be used for proof of origin
 even though it is from the wrong entity. If the key wrap step is
 added, then no proof of origin is implied and this is not an issue.

 Although it has been mentioned before, the use of a single key for
 multiple algorithms has been demonstrated in some cases to leak
 information about a key, provide the opportunity for attackers to
 forge integrity tags, or gain information about encrypted content.
 Binding a key to a single algorithm prevents these problems. Key
 creators and key consumers are strongly encouraged not only to create
 new keys for each different algorithm, but to include that selection
 of algorithm in any distribution of key material and strictly enforce
 the matching of algorithms in the key structure to algorithms in the
 message structure. In addition to checking that algorithms are

Schaad Expires June 28, 2019 [Page 40]

Internet-Draft COSE Algorithms December 2018

 correct, the key form needs to be checked as well. Do not use an
 'EC2' key where an 'OKP' key is expected.

 Before using a key for transmission, or before acting on information
 received, a trust decision on a key needs to be made. Is the data or
 action something that the entity associated with the key has a right
 to see or a right to request? A number of factors are associated
 with this trust decision. Some of the ones that are highlighted here
 are:

 o What are the permissions associated with the key owner?

 o Is the cryptographic algorithm acceptable in the current context?

 o Have the restrictions associated with the key, such as algorithm
 or freshness, been checked and are they correct?

 o Is the request something that is reasonable, given the current
 state of the application?

 o Have any security considerations that are part of the message been
 enforced (as specified by the application or 'crit' parameter)?

 There are a large number of algorithms presented in this document
 that use nonce values. For all of the nonces defined in this
 document, there is some type of restriction on the nonce being a
 unique value either for a key or for some other conditions. In all
 of these cases, there is no known requirement on the nonce being both
 unique and unpredictable; under these circumstances, it's reasonable
 to use a counter for creation of the nonce. In cases where one wants
 the pattern of the nonce to be unpredictable as well as unique, one
 can use a key created for that purpose and encrypt the counter to
 produce the nonce value.

 One area that has been starting to get exposure is doing traffic
 analysis of encrypted messages based on the length of the message.
 This specification does not provide for a uniform method of providing
 padding as part of the message structure. An observer can
 distinguish between two different strings (for example, 'YES' and
 'NO') based on the length for all of the content encryption
 algorithms that are defined in this document. This means that it is
 up to the applications to document how content padding is to be done
 in order to prevent or discourage such analysis. (For example, the
 strings could be defined as 'YES' and 'NO '.)

Schaad Expires June 28, 2019 [Page 41]

Internet-Draft COSE Algorithms December 2018

10. References

10.1. Normative References

 [AES-GCM] National Institute of Standards and Technology,
 "Recommendation for Block Cipher Modes of Operation:
 Galois/Counter Mode (GCM) and GMAC", NIST Special
 Publication 800-38D, DOI 10.6028/NIST.SP.800-38D, November
 2007, <https://csrc.nist.gov/publications/nistpubs/800-

38D/SP-800-38D.pdf>.

 [DSS] National Institute of Standards and Technology, "Digital
 Signature Standard (DSS)", FIPS PUB 186-4,
 DOI 10.6028/NIST.FIPS.186-4, July 2013,
 <http://nvlpubs.nist.gov/nistpubs/FIPS/

NIST.FIPS.186-4.pdf>.

 [I-D.schaad-cose-rfc8152bis-struct]
 Schaad, J., "COSE Struct", November 2019,
 <http://www.rfc-editor.org/info/rfc8032>.

 [MAC] National Institute of Standards and Technology, "Computer
 Data Authentication", FIPS PUB 113, May 1985,
 <http://csrc.nist.gov/publications/fips/fips113/

fips113.html>.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <https://www.rfc-editor.org/info/rfc2104>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3394] Schaad, J. and R. Housley, "Advanced Encryption Standard
 (AES) Key Wrap Algorithm", RFC 3394, DOI 10.17487/RFC3394,
 September 2002, <https://www.rfc-editor.org/info/rfc3394>.

 [RFC3610] Whiting, D., Housley, R., and N. Ferguson, "Counter with
 CBC-MAC (CCM)", RFC 3610, DOI 10.17487/RFC3610, September
 2003, <https://www.rfc-editor.org/info/rfc3610>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://www.rfc-editor.org/info/rfc8032
http://csrc.nist.gov/publications/fips/fips113/fips113.html
http://csrc.nist.gov/publications/fips/fips113/fips113.html
https://datatracker.ietf.org/doc/html/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3394
https://www.rfc-editor.org/info/rfc3394
https://datatracker.ietf.org/doc/html/rfc3610
https://www.rfc-editor.org/info/rfc3610
https://datatracker.ietf.org/doc/html/rfc5869
https://www.rfc-editor.org/info/rfc5869

Schaad Expires June 28, 2019 [Page 42]

Internet-Draft COSE Algorithms December 2018

 [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
 Curve Cryptography Algorithms", RFC 6090,
 DOI 10.17487/RFC6090, February 2011,
 <https://www.rfc-editor.org/info/rfc6090>.

 [RFC6979] Pornin, T., "Deterministic Usage of the Digital Signature
 Algorithm (DSA) and Elliptic Curve Digital Signature
 Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, August
 2013, <https://www.rfc-editor.org/info/rfc6979>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7539] Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
 Protocols", RFC 7539, DOI 10.17487/RFC7539, May 2015,
 <https://www.rfc-editor.org/info/rfc7539>.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <https://www.rfc-editor.org/info/rfc7748>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <http://www.rfc-editor.org/info/rfc8032>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [SEC1] Certicom Research, "SEC 1: Elliptic Curve Cryptography",
 Standards for Efficient Cryptography, Version 2.0, May
 2009, <http://www.secg.org/sec1-v2.pdf>.

10.2. Informative References

 [CDDL] Vigano, C. and H. Birkholz, "CBOR data definition language
 (CDDL): a notational convention to express CBOR data
 structures", Work in Progress, draft-greevenbosch-appsawg-

cbor-cddl-09, March 2017.

 [RFC4231] Nystrom, M., "Identifiers and Test Vectors for HMAC-SHA-
 224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512",

RFC 4231, DOI 10.17487/RFC4231, December 2005,
 <https://www.rfc-editor.org/info/rfc4231>.

https://datatracker.ietf.org/doc/html/rfc6090
https://www.rfc-editor.org/info/rfc6090
https://datatracker.ietf.org/doc/html/rfc6979
https://www.rfc-editor.org/info/rfc6979
https://datatracker.ietf.org/doc/html/rfc7049
https://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc7539
https://www.rfc-editor.org/info/rfc7539
https://datatracker.ietf.org/doc/html/rfc7748
https://www.rfc-editor.org/info/rfc7748
https://datatracker.ietf.org/doc/html/rfc8032
http://www.rfc-editor.org/info/rfc8032
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
http://www.secg.org/sec1-v2.pdf
https://datatracker.ietf.org/doc/html/draft-greevenbosch-appsawg-cbor-cddl-09
https://datatracker.ietf.org/doc/html/draft-greevenbosch-appsawg-cbor-cddl-09
https://datatracker.ietf.org/doc/html/rfc4231
https://www.rfc-editor.org/info/rfc4231

Schaad Expires June 28, 2019 [Page 43]

Internet-Draft COSE Algorithms December 2018

 [RFC4493] Song, JH., Poovendran, R., Lee, J., and T. Iwata, "The
 AES-CMAC Algorithm", RFC 4493, DOI 10.17487/RFC4493, June
 2006, <https://www.rfc-editor.org/info/rfc4493>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/info/rfc5116>.

 [RFC5480] Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
 "Elliptic Curve Cryptography Subject Public Key
 Information", RFC 5480, DOI 10.17487/RFC5480, March 2009,
 <https://www.rfc-editor.org/info/rfc5480>.

 [RFC6151] Turner, S. and L. Chen, "Updated Security Considerations
 for the MD5 Message-Digest and the HMAC-MD5 Algorithms",

RFC 6151, DOI 10.17487/RFC6151, March 2011,
 <https://www.rfc-editor.org/info/rfc6151>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
 DOI 10.17487/RFC7518, May 2015,
 <https://www.rfc-editor.org/info/rfc7518>.

 [RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
 "PKCS #1: RSA Cryptography Specifications Version 2.2",

RFC 8017, DOI 10.17487/RFC8017, November 2016,
 <https://www.rfc-editor.org/info/rfc8017>.

 [SP800-56A]
 Barker, E., Chen, L., Roginsky, A., and M. Smid,
 "Recommendation for Pair-Wise Key Establishment Schemes
 Using Discrete Logarithm Cryptography", NIST Special
 Publication 800-56A, Revision 2,
 DOI 10.6028/NIST.SP.800-56Ar2, May 2013,
 <http://nvlpubs.nist.gov/nistpubs/SpecialPublications/

NIST.SP.800-56Ar2.pdf>.

https://datatracker.ietf.org/doc/html/rfc4493
https://www.rfc-editor.org/info/rfc4493
https://datatracker.ietf.org/doc/html/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://datatracker.ietf.org/doc/html/rfc5480
https://www.rfc-editor.org/info/rfc5480
https://datatracker.ietf.org/doc/html/rfc6151
https://www.rfc-editor.org/info/rfc6151
https://datatracker.ietf.org/doc/html/rfc7159
https://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7518
https://www.rfc-editor.org/info/rfc7518
https://datatracker.ietf.org/doc/html/rfc8017
https://www.rfc-editor.org/info/rfc8017
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf

Schaad Expires June 28, 2019 [Page 44]

Internet-Draft COSE Algorithms December 2018

Appendix A. Examples

 This appendix includes a set of examples that show the different
 features and message types that have been defined in this document.
 To make the examples easier to read, they are presented using the
 extended CBOR diagnostic notation (defined in [CDDL]) rather than as
 a binary dump.

 A GitHub project has been created at <https://github.com/cose-wg/
Examples> that contains not only the examples presented in this

 document, but a more complete set of testing examples as well. Each
 example is found in a JSON file that contains the inputs used to
 create the example, some of the intermediate values that can be used
 in debugging the example and the output of the example presented in
 both a hex and a CBOR diagnostic notation format. Some of the
 examples at the site are designed failure testing cases; these are
 clearly marked as such in the JSON file. If errors in the examples
 in this document are found, the examples on GitHub will be updated,
 and a note to that effect will be placed in the JSON file.

 As noted, the examples are presented using the CBOR's diagnostic
 notation. A Ruby-based tool exists that can convert between the
 diagnostic notation and binary. This tool can be installed with the
 command line:

 gem install cbor-diag

 The diagnostic notation can be converted into binary files using the
 following command line:

 diag2cbor.rb < inputfile > outputfile

 The examples can be extracted from the XML version of this document
 via an XPath expression as all of the artwork is tagged with the
 attribute type='CBORdiag'. (Depending on the XPath evaluator one is
 using, it may be necessary to deal with > as an entity.)

 //artwork[@type='CDDL']/text()

A.1. Examples of Signed Messages

A.1.1. Single Signature

 This example uses the following:

 o Signature Algorithm: ECDSA w/ SHA-256, Curve P-256

 Size of binary file is 103 bytes

https://github.com/cose-wg/Examples
https://github.com/cose-wg/Examples

Schaad Expires June 28, 2019 [Page 45]

Internet-Draft COSE Algorithms December 2018

 98(
 [
 / protected / h'',
 / unprotected / {},
 / payload / 'This is the content.',
 / signatures / [
 [
 / protected / h'a10126' / {
 \ alg \ 1:-7 \ ECDSA 256 \
 } / ,
 / unprotected / {
 / kid / 4:'11'
 },
 / signature / h'e2aeafd40d69d19dfe6e52077c5d7ff4e408282cbefb
 5d06cbf414af2e19d982ac45ac98b8544c908b4507de1e90b717c3d34816fe926a2b
 98f53afd2fa0f30a'
]
]
]
)

A.1.2. Multiple Signers

 This example uses the following:

 o Signature Algorithm: ECDSA w/ SHA-256, Curve P-256

 o Signature Algorithm: ECDSA w/ SHA-512, Curve P-521

 Size of binary file is 277 bytes

Schaad Expires June 28, 2019 [Page 46]

Internet-Draft COSE Algorithms December 2018

 98(
 [
 / protected / h'',
 / unprotected / {},
 / payload / 'This is the content.',
 / signatures / [
 [
 / protected / h'a10126' / {
 \ alg \ 1:-7 \ ECDSA 256 \
 } / ,
 / unprotected / {
 / kid / 4:'11'
 },
 / signature / h'e2aeafd40d69d19dfe6e52077c5d7ff4e408282cbefb
 5d06cbf414af2e19d982ac45ac98b8544c908b4507de1e90b717c3d34816fe926a2b
 98f53afd2fa0f30a'
],
 [
 / protected / h'a1013823' / {
 \ alg \ 1:-36
 } / ,
 / unprotected / {
 / kid / 4:'bilbo.baggins@hobbiton.example'
 },
 / signature / h'00a2d28a7c2bdb1587877420f65adf7d0b9a06635dd1
 de64bb62974c863f0b160dd2163734034e6ac003b01e8705524c5c4ca479a952f024
 7ee8cb0b4fb7397ba08d009e0c8bf482270cc5771aa143966e5a469a09f613488030
 c5b07ec6d722e3835adb5b2d8c44e95ffb13877dd2582866883535de3bb03d01753f
 83ab87bb4f7a0297'
]
]
]
)

A.1.3. Counter Signature

 This example uses the following:

 o Signature Algorithm: ECDSA w/ SHA-256, Curve P-256

 o The same parameters are used for both the signature and the
 counter signature.

 Size of binary file is 180 bytes

Schaad Expires June 28, 2019 [Page 47]

Internet-Draft COSE Algorithms December 2018

 98(
 [
 / protected / h'',
 / unprotected / {
 / countersign / 7:[
 / protected / h'a10126' / {
 \ alg \ 1:-7 \ ECDSA 256 \
 } / ,
 / unprotected / {
 / kid / 4:'11'
 },
 / signature / h'5ac05e289d5d0e1b0a7f048a5d2b643813ded50bc9e4
 9220f4f7278f85f19d4a77d655c9d3b51e805a74b099e1e085aacd97fc29d72f887e
 8802bb6650cceb2c'
]
 },
 / payload / 'This is the content.',
 / signatures / [
 [
 / protected / h'a10126' / {
 \ alg \ 1:-7 \ ECDSA 256 \
 } / ,
 / unprotected / {
 / kid / 4:'11'
 },
 / signature / h'e2aeafd40d69d19dfe6e52077c5d7ff4e408282cbefb
 5d06cbf414af2e19d982ac45ac98b8544c908b4507de1e90b717c3d34816fe926a2b
 98f53afd2fa0f30a'
]
]
]
)

A.1.4. Signature with Criticality

 This example uses the following:

 o Signature Algorithm: ECDSA w/ SHA-256, Curve P-256

 o There is a criticality marker on the "reserved" header parameter

 Size of binary file is 125 bytes

Schaad Expires June 28, 2019 [Page 48]

Internet-Draft COSE Algorithms December 2018

 98(
 [
 / protected / h'a2687265736572766564f40281687265736572766564' /
 {
 "reserved":false,
 \ crit \ 2:[
 "reserved"
]
 } / ,
 / unprotected / {},
 / payload / 'This is the content.',
 / signatures / [
 [
 / protected / h'a10126' / {
 \ alg \ 1:-7 \ ECDSA 256 \
 } / ,
 / unprotected / {
 / kid / 4:'11'
 },
 / signature / h'3fc54702aa56e1b2cb20284294c9106a63f91bac658d
 69351210a031d8fc7c5ff3e4be39445b1a3e83e1510d1aca2f2e8a7c081c7645042b
 18aba9d1fad1bd9c'
]
]
]
)

A.2. Single Signer Examples

A.2.1. Single ECDSA Signature

 This example uses the following:

 o Signature Algorithm: ECDSA w/ SHA-256, Curve P-256

 Size of binary file is 98 bytes

Schaad Expires June 28, 2019 [Page 49]

Internet-Draft COSE Algorithms December 2018

 18(
 [
 / protected / h'a10126' / {
 \ alg \ 1:-7 \ ECDSA 256 \
 } / ,
 / unprotected / {
 / kid / 4:'11'
 },
 / payload / 'This is the content.',
 / signature / h'8eb33e4ca31d1c465ab05aac34cc6b23d58fef5c083106c4
 d25a91aef0b0117e2af9a291aa32e14ab834dc56ed2a223444547e01f11d3b0916e5
 a4c345cacb36'
]
)

A.3. Examples of Enveloped Messages

A.3.1. Direct ECDH

 This example uses the following:

 o CEK: AES-GCM w/ 128-bit key

 o Recipient class: ECDH Ephemeral-Static, Curve P-256

 Size of binary file is 151 bytes

Schaad Expires June 28, 2019 [Page 50]

Internet-Draft COSE Algorithms December 2018

 96(
 [
 / protected / h'a10101' / {
 \ alg \ 1:1 \ AES-GCM 128 \
 } / ,
 / unprotected / {
 / iv / 5:h'c9cf4df2fe6c632bf7886413'
 },
 / ciphertext / h'7adbe2709ca818fb415f1e5df66f4e1a51053ba6d65a1a0
 c52a357da7a644b8070a151b0',
 / recipients / [
 [
 / protected / h'a1013818' / {
 \ alg \ 1:-25 \ ECDH-ES + HKDF-256 \
 } / ,
 / unprotected / {
 / ephemeral / -1:{
 / kty / 1:2,
 / crv / -1:1,
 / x / -2:h'98f50a4ff6c05861c8860d13a638ea56c3f5ad7590bbf
 bf054e1c7b4d91d6280',
 / y / -3:true
 },
 / kid / 4:'meriadoc.brandybuck@buckland.example'
 },
 / ciphertext / h''
]
]
]
)

A.3.2. Direct Plus Key Derivation

 This example uses the following:

 o CEK: AES-CCM w/ 128-bit key, truncate the tag to 64 bits

 o Recipient class: Use HKDF on a shared secret with the following
 implicit fields as part of the context.

 * salt: "aabbccddeeffgghh"

 * PartyU identity: "lighting-client"

 * PartyV identity: "lighting-server"

 * Supplementary Public Other: "Encryption Example 02"

Schaad Expires June 28, 2019 [Page 51]

Internet-Draft COSE Algorithms December 2018

 Size of binary file is 91 bytes

 96(
 [
 / protected / h'a1010a' / {
 \ alg \ 1:10 \ AES-CCM-16-64-128 \
 } / ,
 / unprotected / {
 / iv / 5:h'89f52f65a1c580933b5261a76c'
 },
 / ciphertext / h'753548a19b1307084ca7b2056924ed95f2e3b17006dfe93
 1b687b847',
 / recipients / [
 [
 / protected / h'a10129' / {
 \ alg \ 1:-10
 } / ,
 / unprotected / {
 / salt / -20:'aabbccddeeffgghh',
 / kid / 4:'our-secret'
 },
 / ciphertext / h''
]
]
]
)

A.3.3. Counter Signature on Encrypted Content

 This example uses the following:

 o CEK: AES-GCM w/ 128-bit key

 o Recipient class: ECDH Ephemeral-Static, Curve P-256

 Size of binary file is 326 bytes

Schaad Expires June 28, 2019 [Page 52]

Internet-Draft COSE Algorithms December 2018

 96(
 [
 / protected / h'a10101' / {
 \ alg \ 1:1 \ AES-GCM 128 \
 } / ,
 / unprotected / {
 / iv / 5:h'c9cf4df2fe6c632bf7886413',
 / countersign / 7:[
 / protected / h'a1013823' / {
 \ alg \ 1:-36
 } / ,
 / unprotected / {
 / kid / 4:'bilbo.baggins@hobbiton.example'
 },
 / signature / h'00929663c8789bb28177ae28467e66377da12302d7f9
 594d2999afa5dfa531294f8896f2b6cdf1740014f4c7f1a358e3a6cf57f4ed6fb02f
 cf8f7aa989f5dfd07f0700a3a7d8f3c604ba70fa9411bd10c2591b483e1d2c31de00
 3183e434d8fba18f17a4c7e3dfa003ac1cf3d30d44d2533c4989d3ac38c38b71481c
 c3430c9d65e7ddff'
]
 },
 / ciphertext / h'7adbe2709ca818fb415f1e5df66f4e1a51053ba6d65a1a0
 c52a357da7a644b8070a151b0',
 / recipients / [
 [
 / protected / h'a1013818' / {
 \ alg \ 1:-25 \ ECDH-ES + HKDF-256 \
 } / ,
 / unprotected / {
 / ephemeral / -1:{
 / kty / 1:2,
 / crv / -1:1,
 / x / -2:h'98f50a4ff6c05861c8860d13a638ea56c3f5ad7590bbf
 bf054e1c7b4d91d6280',
 / y / -3:true
 },
 / kid / 4:'meriadoc.brandybuck@buckland.example'
 },
 / ciphertext / h''
]
]
]
)

Schaad Expires June 28, 2019 [Page 53]

Internet-Draft COSE Algorithms December 2018

A.3.4. Encrypted Content with External Data

 This example uses the following:

 o CEK: AES-GCM w/ 128-bit key

 o Recipient class: ECDH static-Static, Curve P-256 with AES Key Wrap

 o Externally Supplied AAD: h'0011bbcc22dd44ee55ff660077'

 Size of binary file is 173 bytes

 96(
 [
 / protected / h'a10101' / {
 \ alg \ 1:1 \ AES-GCM 128 \
 } / ,
 / unprotected / {
 / iv / 5:h'02d1f7e6f26c43d4868d87ce'
 },
 / ciphertext / h'64f84d913ba60a76070a9a48f26e97e863e28529d8f5335
 e5f0165eee976b4a5f6c6f09d',
 / recipients / [
 [
 / protected / h'a101381f' / {
 \ alg \ 1:-32 \ ECHD-SS+A128KW \
 } / ,
 / unprotected / {
 / static kid / -3:'peregrin.took@tuckborough.example',
 / kid / 4:'meriadoc.brandybuck@buckland.example',
 / U nonce / -22:h'0101'
 },
 / ciphertext / h'41e0d76f579dbd0d936a662d54d8582037de2e366fd
 e1c62'
]
]
]
)

A.4. Examples of Encrypted Messages

A.4.1. Simple Encrypted Message

 This example uses the following:

 o CEK: AES-CCM w/ 128-bit key and a 64-bit tag

 Size of binary file is 52 bytes

Schaad Expires June 28, 2019 [Page 54]

Internet-Draft COSE Algorithms December 2018

 16(
 [
 / protected / h'a1010a' / {
 \ alg \ 1:10 \ AES-CCM-16-64-128 \
 } / ,
 / unprotected / {
 / iv / 5:h'89f52f65a1c580933b5261a78c'
 },
 / ciphertext / h'5974e1b99a3a4cc09a659aa2e9e7fff161d38ce71cb45ce
 460ffb569'
]
)

A.4.2. Encrypted Message with a Partial IV

 This example uses the following:

 o CEK: AES-CCM w/ 128-bit key and a 64-bit tag

 o Prefix for IV is 89F52F65A1C580933B52

 Size of binary file is 41 bytes

 16(
 [
 / protected / h'a1010a' / {
 \ alg \ 1:10 \ AES-CCM-16-64-128 \
 } / ,
 / unprotected / {
 / partial iv / 6:h'61a7'
 },
 / ciphertext / h'252a8911d465c125b6764739700f0141ed09192de139e05
 3bd09abca'
]
)

A.5. Examples of MACed Messages

A.5.1. Shared Secret Direct MAC

 This example uses the following:

 o MAC: AES-CMAC, 256-bit key, truncated to 64 bits

 o Recipient class: direct shared secret

 Size of binary file is 57 bytes

Schaad Expires June 28, 2019 [Page 55]

Internet-Draft COSE Algorithms December 2018

 97(
 [
 / protected / h'a1010f' / {
 \ alg \ 1:15 \ AES-CBC-MAC-256//64 \
 } / ,
 / unprotected / {},
 / payload / 'This is the content.',
 / tag / h'9e1226ba1f81b848',
 / recipients / [
 [
 / protected / h'',
 / unprotected / {
 / alg / 1:-6 / direct /,
 / kid / 4:'our-secret'
 },
 / ciphertext / h''
]
]
]
)

A.5.2. ECDH Direct MAC

 This example uses the following:

 o MAC: HMAC w/SHA-256, 256-bit key

 o Recipient class: ECDH key agreement, two static keys, HKDF w/
 context structure

 Size of binary file is 214 bytes

Schaad Expires June 28, 2019 [Page 56]

Internet-Draft COSE Algorithms December 2018

 97(
 [
 / protected / h'a10105' / {
 \ alg \ 1:5 \ HMAC 256//256 \
 } / ,
 / unprotected / {},
 / payload / 'This is the content.',
 / tag / h'81a03448acd3d305376eaa11fb3fe416a955be2cbe7ec96f012c99
 4bc3f16a41',
 / recipients / [
 [
 / protected / h'a101381a' / {
 \ alg \ 1:-27 \ ECDH-SS + HKDF-256 \
 } / ,
 / unprotected / {
 / static kid / -3:'peregrin.took@tuckborough.example',
 / kid / 4:'meriadoc.brandybuck@buckland.example',
 / U nonce / -22:h'4d8553e7e74f3c6a3a9dd3ef286a8195cbf8a23d
 19558ccfec7d34b824f42d92bd06bd2c7f0271f0214e141fb779ae2856abf585a583
 68b017e7f2a9e5ce4db5'
 },
 / ciphertext / h''
]
]
]
)

A.5.3. Wrapped MAC

 This example uses the following:

 o MAC: AES-MAC, 128-bit key, truncated to 64 bits

 o Recipient class: AES Key Wrap w/ a pre-shared 256-bit key

 Size of binary file is 109 bytes

Schaad Expires June 28, 2019 [Page 57]

Internet-Draft COSE Algorithms December 2018

 97(
 [
 / protected / h'a1010e' / {
 \ alg \ 1:14 \ AES-CBC-MAC-128//64 \
 } / ,
 / unprotected / {},
 / payload / 'This is the content.',
 / tag / h'36f5afaf0bab5d43',
 / recipients / [
 [
 / protected / h'',
 / unprotected / {
 / alg / 1:-5 / A256KW /,
 / kid / 4:'018c0ae5-4d9b-471b-bfd6-eef314bc7037'
 },
 / ciphertext / h'711ab0dc2fc4585dce27effa6781c8093eba906f227
 b6eb0'
]
]
]
)

A.5.4. Multi-Recipient MACed Message

 This example uses the following:

 o MAC: HMAC w/ SHA-256, 128-bit key

 o Recipient class: Uses three different methods

 1. ECDH Ephemeral-Static, Curve P-521, AES Key Wrap w/ 128-bit
 key

 2. AES Key Wrap w/ 256-bit key

 Size of binary file is 309 bytes

Schaad Expires June 28, 2019 [Page 58]

Internet-Draft COSE Algorithms December 2018

 97(
 [
 / protected / h'a10105' / {
 \ alg \ 1:5 \ HMAC 256//256 \
 } / ,
 / unprotected / {},
 / payload / 'This is the content.',
 / tag / h'bf48235e809b5c42e995f2b7d5fa13620e7ed834e337f6aa43df16
 1e49e9323e',
 / recipients / [
 [
 / protected / h'a101381c' / {
 \ alg \ 1:-29 \ ECHD-ES+A128KW \
 } / ,
 / unprotected / {
 / ephemeral / -1:{
 / kty / 1:2,
 / crv / -1:3,
 / x / -2:h'0043b12669acac3fd27898ffba0bcd2e6c366d53bc4db
 71f909a759304acfb5e18cdc7ba0b13ff8c7636271a6924b1ac63c02688075b55ef2
 d613574e7dc242f79c3',
 / y / -3:true
 },
 / kid / 4:'bilbo.baggins@hobbiton.example'
 },
 / ciphertext / h'339bc4f79984cdc6b3e6ce5f315a4c7d2b0ac466fce
 a69e8c07dfbca5bb1f661bc5f8e0df9e3eff5'
],
 [
 / protected / h'',
 / unprotected / {
 / alg / 1:-5 / A256KW /,
 / kid / 4:'018c0ae5-4d9b-471b-bfd6-eef314bc7037'
 },
 / ciphertext / h'0b2c7cfce04e98276342d6476a7723c090dfdd15f9a
 518e7736549e998370695e6d6a83b4ae507bb'
]
]
]
)

A.6. Examples of MAC0 Messages

A.6.1. Shared Secret Direct MAC

 This example uses the following:

 o MAC: AES-CMAC, 256-bit key, truncated to 64 bits

Schaad Expires June 28, 2019 [Page 59]

Internet-Draft COSE Algorithms December 2018

 o Recipient class: direct shared secret

 Size of binary file is 37 bytes

 17(
 [
 / protected / h'a1010f' / {
 \ alg \ 1:15 \ AES-CBC-MAC-256//64 \
 } / ,
 / unprotected / {},
 / payload / 'This is the content.',
 / tag / h'726043745027214f'
]
)

 Note that this example uses the same inputs as Appendix A.5.1.

A.7. COSE Keys

A.7.1. Public Keys

 This is an example of a COSE Key Set. This example includes the
 public keys for all of the previous examples.

 In order the keys are:

 o An EC key with a kid of "meriadoc.brandybuck@buckland.example"

 o An EC key with a kid of "peregrin.took@tuckborough.example"

 o An EC key with a kid of "bilbo.baggins@hobbiton.example"

 o An EC key with a kid of "11"

 Size of binary file is 481 bytes

Schaad Expires June 28, 2019 [Page 60]

Internet-Draft COSE Algorithms December 2018

 [
 {
 -1:1,
 -2:h'65eda5a12577c2bae829437fe338701a10aaa375e1bb5b5de108de439c0
 8551d',
 -3:h'1e52ed75701163f7f9e40ddf9f341b3dc9ba860af7e0ca7ca7e9eecd008
 4d19c',
 1:2,
 2:'meriadoc.brandybuck@buckland.example'
 },
 {
 -1:1,
 -2:h'bac5b11cad8f99f9c72b05cf4b9e26d244dc189f745228255a219a86d6a
 09eff',
 -3:h'20138bf82dc1b6d562be0fa54ab7804a3a64b6d72ccfed6b6fb6ed28bbf
 c117e',
 1:2,
 2:'11'
 },
 {
 -1:3,
 -2:h'0072992cb3ac08ecf3e5c63dedec0d51a8c1f79ef2f82f94f3c737bf5de
 7986671eac625fe8257bbd0394644caaa3aaf8f27a4585fbbcad0f2457620085e5c8
 f42ad',
 -3:h'01dca6947bce88bc5790485ac97427342bc35f887d86d65a089377e247e
 60baa55e4e8501e2ada5724ac51d6909008033ebc10ac999b9d7f5cc2519f3fe1ea1
 d9475',
 1:2,
 2:'bilbo.baggins@hobbiton.example'
 },
 {
 -1:1,
 -2:h'98f50a4ff6c05861c8860d13a638ea56c3f5ad7590bbfbf054e1c7b4d91
 d6280',
 -3:h'f01400b089867804b8e9fc96c3932161f1934f4223069170d924b7e03bf
 822bb',
 1:2,
 2:'peregrin.took@tuckborough.example'
 }
]

A.7.2. Private Keys

 This is an example of a COSE Key Set. This example includes the
 private keys for all of the previous examples.

 In order the keys are:

Schaad Expires June 28, 2019 [Page 61]

Internet-Draft COSE Algorithms December 2018

 o An EC key with a kid of "meriadoc.brandybuck@buckland.example"

 o A shared-secret key with a kid of "our-secret"

 o An EC key with a kid of "peregrin.took@tuckborough.example"

 o A shared-secret key with a kid of "018c0ae5-4d9b-471b-
 bfd6-eef314bc7037"

 o An EC key with a kid of "bilbo.baggins@hobbiton.example"

 o An EC key with a kid of "11"

 Size of binary file is 816 bytes

 [
 {
 1:2,
 2:'meriadoc.brandybuck@buckland.example',
 -1:1,
 -2:h'65eda5a12577c2bae829437fe338701a10aaa375e1bb5b5de108de439c0
 8551d',
 -3:h'1e52ed75701163f7f9e40ddf9f341b3dc9ba860af7e0ca7ca7e9eecd008
 4d19c',
 -4:h'aff907c99f9ad3aae6c4cdf21122bce2bd68b5283e6907154ad911840fa
 208cf'
 },
 {
 1:2,
 2:'11',
 -1:1,
 -2:h'bac5b11cad8f99f9c72b05cf4b9e26d244dc189f745228255a219a86d6a
 09eff',
 -3:h'20138bf82dc1b6d562be0fa54ab7804a3a64b6d72ccfed6b6fb6ed28bbf
 c117e',
 -4:h'57c92077664146e876760c9520d054aa93c3afb04e306705db609030850
 7b4d3'
 },
 {
 1:2,
 2:'bilbo.baggins@hobbiton.example',
 -1:3,
 -2:h'0072992cb3ac08ecf3e5c63dedec0d51a8c1f79ef2f82f94f3c737bf5de
 7986671eac625fe8257bbd0394644caaa3aaf8f27a4585fbbcad0f2457620085e5c8
 f42ad',
 -3:h'01dca6947bce88bc5790485ac97427342bc35f887d86d65a089377e247e
 60baa55e4e8501e2ada5724ac51d6909008033ebc10ac999b9d7f5cc2519f3fe1ea1
 d9475',

Schaad Expires June 28, 2019 [Page 62]

Internet-Draft COSE Algorithms December 2018

 -4:h'00085138ddabf5ca975f5860f91a08e91d6d5f9a76ad4018766a476680b
 55cd339e8ab6c72b5facdb2a2a50ac25bd086647dd3e2e6e99e84ca2c3609fdf177f
 eb26d'
 },
 {
 1:4,
 2:'our-secret',
 -1:h'849b57219dae48de646d07dbb533566e976686457c1491be3a76dcea6c4
 27188'
 },
 {
 1:2,
 -1:1,
 2:'peregrin.took@tuckborough.example',
 -2:h'98f50a4ff6c05861c8860d13a638ea56c3f5ad7590bbfbf054e1c7b4d91
 d6280',
 -3:h'f01400b089867804b8e9fc96c3932161f1934f4223069170d924b7e03bf
 822bb',
 -4:h'02d1f7e6f26c43d4868d87ceb2353161740aacf1f7163647984b522a848
 df1c3'
 },
 {
 1:4,
 2:'our-secret2',
 -1:h'849b5786457c1491be3a76dcea6c4271'
 },
 {
 1:4,
 2:'018c0ae5-4d9b-471b-bfd6-eef314bc7037',
 -1:h'849b57219dae48de646d07dbb533566e976686457c1491be3a76dcea6c4
 27188'
 }
]

Acknowledgments

 This document is a product of the COSE working group of the IETF.

 The following individuals are to blame for getting me started on this
 project in the first place: Richard Barnes, Matt Miller, and Martin
 Thomson.

 The initial version of the specification was based to some degree on
 the outputs of the JOSE and S/MIME working groups.

 The following individuals provided input into the final form of the
 document: Carsten Bormann, John Bradley, Brain Campbell, Michael B.

Schaad Expires June 28, 2019 [Page 63]

Internet-Draft COSE Algorithms December 2018

 Jones, Ilari Liusvaara, Francesca Palombini, Ludwig Seitz, and Goran
 Selander.

Author's Address

 Jim Schaad
 August Cellars

 Email: ietf@augustcellars.com

Schaad Expires June 28, 2019 [Page 64]

