
Network Working Group J. Schaad
Internet-Draft Soaring Hawk Consulting
Intended status: Standards Track February 12, 2014
Expires: August 16, 2014

Plasma Service Cryptographic Message Syntax (CMS) Processing
draft-schaad-plasma-cms-05

Abstract

 Secure MIME (S/MIME) defined a method of placing security labels on a
 Cryptographic Message Syntax (CMS) object. These labels are placed
 as part of the data signed and validated by the parties. This means
 that the message content is visible to the recipient prior to the
 label enforcement. A new model for enforcement of policy using a
 third party is described in RFC TBD
 [I-D.freeman-plasma-requirements]. This is the Policy Augmented S/
 MIME (PLASMA) system. This document provides the details needed to
 implement the new Plasma model in the CMS infrastructure.

 An additional benefit of using the Plasma module is that the server,
 based on policy, manages who has access to the message and how the
 keys are protected.

 The document details how the client encryption and decryption
 processes are performed, defines how to construct the CMS recipient
 info structure, a new content to hold the data required for the
 Plasma server to store the keys and policy information. The document
 does not cover the protocol between the client and the Plasma policy
 enforcement server. One example of the client/server protocol can be
 found in RFC TBD [I-D.schaad-plasma-service].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Schaad Expires August 16, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft PLASMA ASN.1 February 2014

 This Internet-Draft will expire on August 16, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Vocabulary . 4
1.2. Requirements Terminology 4

2. Model . 5
3. Recipient Info Encoding 5
3.1. PLASMA Encrypted Key 7
3.2. PLASMA Content Type 9
3.3. CMS Signed Data signed attributes 14
3.3.1. PLASMA URL Authenticated Attribute 14
3.3.2. PLASMA Encrypted Content Hash Attribute 16

3.4. Plasma Lockbox Attributes 17
3.4.1. Audit Trail Identifier Attribute 17
3.4.2. Signer Info Attribute 18
3.4.3. XACML Generic Attribute 19

4. Sender Processing Rules 20
4.1. Flow . 20

5. Recipient Processing Rules 21
5.1. Flow . 21
5.2. Reply Processing . 23

6. S/MIME Capability . 23
7. Mandatory Algorithms . 24
7.1. Plasma Servers . 24
7.2. Plasma Clients . 24

8. Security Considerations 24
9. IANA Considerations . 25
10. References . 26
10.1. Normative References 26
10.2. Informative References 27

Appendix A. 2009 ASN.1 Module 28

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Schaad Expires August 16, 2014 [Page 2]

Internet-Draft PLASMA ASN.1 February 2014

Appendix B. Policy Encoding Techniques 32
 Author's Address . 33

1. Introduction

 In the traditional S/MIME (Secure MIME) e-mail system, the sender of
 a message is responsible for determining the list of recipients for a
 message, obtaining a valid public or group key for each recipient,
 applying a security label to a message, and sending the message. The
 recipient of a message is responsible for the enforcement of any
 security labels on the message. While this system works in theory,
 in practice it has some difficulties that have led to problems in
 getting S/MIME mail widely deployed. This document is part of an
 effort to provide an alternative method of allocating the
 responsibilities above to different entities in an attempt to make
 the process work better.

 In a Policy Augmented S/MIME (PLASMA) deployment of S/MIME, the
 sender of the message is still responsible for determining the list
 of recipients for the message and determining the security label to
 be applied to the message; however the Plasma server is now
 responsible for obtaining valid keys for recipients and checking the
 policy access for the recipients. The recipient is no longer
 responsible for enforcement of the policy as this is off-loaded to
 the Plasma server component. Doing this allows for the following
 changes in behavior of the system:

 o The sender is no longer responsible for finding and validating the
 set of public keys used for the message. This simplifies the
 complexity of the sender and lowers the resources required by the
 sender. This is especially true when a large number of recipients
 are involved.

 o The set of recipients that can decrypt the message can be change
 dynamically after the message is sent, without resorting to a
 group keying strategy.

 o The enforcement of the policy is done centrally, this means that
 updates to the policy are instantaneous and the enforcement policy
 can be centrally audited.

 o The label enforcement is done before the message is decrypted;
 this means there are no concerns about the message contents being
 leaked by poor client implementations.

 o Many of the same components used in a web-based deployment of
 policy enforcement in a confederation can be used for e-mail based

Schaad Expires August 16, 2014 [Page 3]

Internet-Draft PLASMA ASN.1 February 2014

 deployment of information. This includes using credentials other
 than X.509 certificates.

 While this document describes the processes in terms of dealing with
 email system, a Plasma server can be used with any number of clients
 that need to protected content. Thus the same system could be used
 for protection of documents without having to specify in advance the
 individuals who should be able to open the document; it would just be
 allowed by the server based on the policy applied to the document.

 This document is laid out as follows:

 o In Section 2 a more complete description of the components
 involved in the model are discussed.

 o In Section 3 is description the new ASN.1 structures that are used
 to carry the additional information, and the way that these
 structures are used in a recipient info structure.

 o In Section 4 is a description of the modifications from the sender
 processing rules outlined in [RFC5751].

 o In Section 5 is a description of the modification from the
 recipient processing rules outlined in [RFC5751].

1.1. Vocabulary

 Some of the terms used in this document include:

 Authenticated Encryption with Additional Data (AEAD): Are a set of
 encryption algorithms where an authentication method stronger than
 the PKCS #1 packing method is used for authentication and,
 optionally, a set of unencrypted attribute values are included in
 the authentication step.

 Content Encryption Key (CEK): The symmetric key used to encryption
 the content of a message.

 Key Encryption Key (KEK): A key, usually a symmetric key, which is
 used to encrypt another key, usually a content encryption key.

1.2. Requirements Terminology

 When capitalized, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc5751
https://datatracker.ietf.org/doc/html/rfc5751
https://datatracker.ietf.org/doc/html/rfc2119

Schaad Expires August 16, 2014 [Page 4]

Internet-Draft PLASMA ASN.1 February 2014

2. Model

 Details on the model and the requirements for the Plasma system can
 be found in [I-D.freeman-plasma-requirements].

3. Recipient Info Encoding

 In order for the Plasma system to function in CMS, a method needs to
 be chosen and described for how the CEK is to be protected and
 carried with the message, such that the recipient will be able to
 identified that this is a Plasma enabled message, know which Plasma
 server to contact and be able to get back the CEK needed to decrypt
 the message. Not all recipients of a message that has been encrypted
 using a Plasma server will need to contact the server in order to
 decrypt the message. There is nothing in what we are doing that
 prevents a message sender from building recipient info structures in
 a normal manner, except the possibly that the policy applied to the
 encrypted content could restrict it from happening. Additionally the
 Plasma server could return the standard recipient info structures to
 be added to the message for recipients, if it can pre-authorize them
 for access to the message and it can obtain the appropriate keying
 material.

 There are two distinct methods that were considered for identifying a
 recipient info structure as being a Plasma enabled object. The first
 would be to define a new recipient info structure placed in the Other
 Recipient Info structure. The second option is to force the new
 recipient info structure into one of the existing strucutres.

 The use of a new recipient info structure would have been the easiest
 to document and implement, if most major CMS implementations had kept
 up with the latest versions. However it is known that several
 implementations stopped with RFC 2630 [RFC2630] and it was not until

RFC 3369 [RFC3369] that the Other Recipient Info choice was
 introduced along with the language stating that implementations need
 to gracefully handle unimplemented alternatives in the recipient info
 choice. This means that if a new recipient info structure was
 defined and adopted, the mail message would fail decoding for many
 recipients, even for those recipients that had a key transfer or key
 agreement recipient info structure.

 Given the current state of implementations, it was determined that
 the second method would be used as it will work with more
 implementations. After implementation it might be found that using
 the first method is the better way to go, in that case the decision
 can be re-visited.

https://datatracker.ietf.org/doc/html/rfc2630
https://datatracker.ietf.org/doc/html/rfc2630
https://datatracker.ietf.org/doc/html/rfc3369
https://datatracker.ietf.org/doc/html/rfc3369

Schaad Expires August 16, 2014 [Page 5]

Internet-Draft PLASMA ASN.1 February 2014

 The use of the KEKRecipientInfo type may seem to be a stretch at
 first, it was defined for those situations where a symmetric key had
 already been distributed and either a specific key or a specific
 transformation on the key was to be applied in order to decrypt the
 KEK value. However, the Plasma recipient info can be thought of as a
 strange way to do the transformation and thus it kind of fits into
 the model. It is in a structure that will be supported by the most
 basic CMS implementiation and it is easy for client implementations
 to make the determination of a Plasma recipient info by looking at
 the OID in the key encryption algorithm identifier.

 A recipient info structure as defined in this document MUST be
 created by a Plasma server and MUST NOT be created by client
 software. A protocol such as the one in RFC TBD1
 [I-D.schaad-plasma-service] is used to transport the recipient info
 structure between the client and the server.

 For the convenience of the reader we include the KEKRecipientInfo
 structure pieces here (copied from [RFC5911]):

 KEKRecipientInfo ::= SEQUENCE {
 version CMSVersion, -- always set to 4
 kekid KEKIdentifier,
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 encryptedKey EncryptedKey }

 KEKIdentifier ::= SEQUENCE {
 keyIdentifier OCTET STRING,
 date GeneralizedTime OPTIONAL,
 other OtherKeyAttribute OPTIONAL }

 OtherKeyAttribute ::= SEQUENCE {
 keyAttrId KEY-ATTRIBUTE.
 &id({SupportedKeyAttributes}),
 keyAttr KEY-ATTRIBUTE.
 &Type({SupportedKeyAttributes}{@keyAttrId})}

 For a Plasma KEKRecipientInfo structure, the fields are filled in as
 follows:

 version is set to the value of 4.

 kekid is a sequence where the fields are:

 keyIdentifier contains the constant string "Plasma".

 date is not used and is omitted.

https://datatracker.ietf.org/doc/html/rfc5911

Schaad Expires August 16, 2014 [Page 6]

Internet-Draft PLASMA ASN.1 February 2014

 other is not used and is omitted.

 keyEncryptionAlgorithm contains the value id-kek-plasma-token. The
 parameter field MUST be omitted.

 encryptedKey contains the Plasma Encrypted Key object. The details
 of this are covered in Section 3.1

3.1. PLASMA Encrypted Key

 We defined a new Key Wrapping algorithm which uses the Plasma server
 to wrap the CEK in an encrypted lock box. In addition to the KEK,
 the lock box also contains the information that is needed by the
 Plasma Server to know the policy(s) applied to the encrypted data and
 possible parameters for the policy and for the client to validate
 that the lock box applies to the encrypted content.

 The relevant section from the ASN.1 module which contains the content
 is:

 --
 -- New key wrap algorithm object for Plasma
 --

 kwa-plasma-lockbox KEY-WRAP ::= {
 IDENTIFIER id-alg-plasma-lockbox
 PARAMS ARE absent
 SMIME-CAPS { IDENTIFIED BY id-alg-plasma-lockbox }
 }

 -- SignedData IDENTIFIED BY id-keyatt-plasma-token

 id-alg-plasma-lockbox OBJECT IDENTIFIER ::= {iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) smime(16) alg(3) TBD2 }

 We define a new KEW-WRAP object called kwa-plasma-lockbox. This key
 wrap algorithm is identified by the id-kwa-plasma-lockbox OID. The
 key wrap algorithm has no parameters and the parameters field MUST be
 absent the algorithm identifier is encoded. The encypted key object
 which is emitted by the algorithm is a CMS SignedData structure. The
 CMS SignedData structure is used directly without a CMS ContentInfo
 structure wrapping it.

 The SignedData structure fields are filled as follows (some less
 significant fields are omitted):

 encapContentInfo is a structure containing the fields:

Schaad Expires August 16, 2014 [Page 7]

Internet-Draft PLASMA ASN.1 February 2014

 eContentType is id-ct-authEnvelopedData.

 eContent is CMS AuthEnvelopedData [RFC5083] structure with the
 following fields:

 recipientInfos contains the lock box(s) for the Plasma
 servers(s) to get access to the encrypted data. There MUST
 NOT be recipient info structures added for any entity not
 trusted to correctly perform the policy decision processing.
 See below for some additional discussion on what lock boxes
 need to be created.

 authEncryptedContentInfo is a structure containing the
 following elements:

 contentType is id-ct-plasma-LockBox.

 contentEncryptionAlgorithm contains the identifier and
 parameters for the content encryption algorithm. This
 algorithm only needs to be understood by the Plasma
 service.

 encryptedContent contains the encrypted PLASMA LockBox
 content. Details on this type are in the next section.

 certificates SHOULD contain the set of certificates (up to but not
 including the trust anchor) needed to validate the set of signer
 info structures.

 signerInfos will contain one or more signer info structures. In
 each signature the signed attributes:

 * MUST contain the signing time, the message digest, the content
 type, the PLASMA hash attribute and the PLASMA url attributes.

 * SHOULD contain the multiple signature attribute [RFC5752] if
 more than one signature exists.

 * MAY contain the ESS security label attribute.

 * other attributes can also be included.

 When creating the recipient info structures for the AuthEnvelopedData
 structure, there will normally only need to be a single entry in the
 sequence as the only entity that needs to decrypt the PLASMA Lockbox
 is the Plasma Service. In the event that the service is distributed
 over multiple servers then multiple lock boxes may need to be
 created. One of the implications of the fact that the originator of

https://datatracker.ietf.org/doc/html/rfc5083
https://datatracker.ietf.org/doc/html/rfc5752

Schaad Expires August 16, 2014 [Page 8]

Internet-Draft PLASMA ASN.1 February 2014

 the message is the only recipient is that, although the signing key
 needs to be contained in a certificate, there is no corresponding
 requirement that the encryption key needs to be in a certificate.
 Instead of using a certificate, a subject key identifier that is
 meaningful only to the Plasma Service can be used.

 There are a number of circumstances that a Plasma server would apply
 multiple signatures to a single lockbox. These circumstances include
 during key rollover while a certificate is approaching expiration,
 esp. if there is going to be a change in the trust anchor being used.
 Another circumstance would be if a new signature algorithm is being
 rolled out, having the old and the new algorithm on the message
 during the rollout period increases the chances that the signature
 can be validated. In these circumstances, the multiple signature
 attribute defined in RFC 5752 [RFC5752] allows for a client to
 determine that a signature has been removed which might be attempted
 as part of an attack to use a more insecure algorithm.

3.2. PLASMA Content Type

 The inner-most content type for a Plasma Key Wrap Algorithm is a
 Plasma Lockbox. This content is contained in an encrypted CMS object
 which is encrypted by and for the Plasma server itself, as such the
 contents and structure is known just to the Plasma server.

 The content type is designed so that the Plasma server does not need
 to keep any state dealing with a message on the server itself. This
 allows for minimal information to be kept on the server, it only
 needs the state of it's current transactions, and the message can be
 processed by any of a number of servers without needing to replicate
 state about the message between them.

 The relevant section from the ASN.1 module which defines this content
 is:

 --
 -- PLASMA Content Type
 --

 ct-plasma-LockBox CONTENT-TYPE ::= {
 TYPE PLASMA-LockBox
 IDENTIFIED BY id-ct-plasma-LockBox
 }

 id-ct-plasma-LockBox OBJECT IDENTIFIER ::= {iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs7(7) TBD1}

 PLASMA-LockBox ::= SEQUENCE {

https://datatracker.ietf.org/doc/html/rfc5752
https://datatracker.ietf.org/doc/html/rfc5752

Schaad Expires August 16, 2014 [Page 9]

Internet-Draft PLASMA ASN.1 February 2014

 policy OCTET STRING,
 keyList KeyList,
 attrList AttributeList OPTIONAL
 }

 KeyList ::= SEQUENCE {
 namedRecipients [0] SEQUENCE SIZE (1..MAX) OF
 NamedRecipient OPTIONAL,
 defaultRecipients [1] SEQUENCE SIZE (1..MAX) OF
 OneCek OPTIONAL,
 ...
 }
 (WITH COMPONENTS {
 ...,
 namedRecipients PRESENT
 } |
 WITH COMPONENTS {
 ...,
 defaultRecipients PRESENT
 })

 NamedRecipient ::= SEQUENCE {
 recipientName UTF8String, -- name of the recipient
 keyPolicy [0] OCTET STRING OPTIONAL,
 keyIdentifier OCTET STRING OPTIONAL,
 keyValue [1] ProtectedKey,
 ...
 }

 ProtectedKey ::= CHOICE {
 cms [0] RecipientInfo,
 xml [1] OCTET STRING,
 ...
 }

 OneCek ::= SEQUENCE {
 keyPolicy [0] OCTET STRING OPTIONAL,
 keyIdentifier [1] OCTET STRING OPTIONAL,
 keyValue OCTET STRING,
 ...
 }

 AttributeList ::= SEQUENCE SIZE (1..MAX) OF
 SingleAttribute{{PlasmaLockboxAttributes}}

 PlasmaLockboxAttributes ATTRIBUTE ::= {
 aa-plasma-AuditTrailIdentifier | aa-plasma-SignerInfo |
 aa-plasma-Xacml-Attribute, ... }

Schaad Expires August 16, 2014 [Page 10]

Internet-Draft PLASMA ASN.1 February 2014

 PlasmaSignedAttributes ATTRIBUTE ::= {
 aa-plasma-url | aa-plasma-econtent-hash
 }

 In the above ASN.1, the following items are defined:

 ct-plasma-LockBox is a new CMS content type object, this object is
 added to the set of content type objects in ContentSet (defined in
 the ASN.1 module in [RFC5911]). The content type associates the
 object identifier id-ct-plasma-LockBox with the data type PLASMA-
 LockBox.

 id-ct-plasma-LockBox is the identifier defined for the new content
 type.

 PLASMA-LockBox is the new type defined for new content type. This
 is a sequence with the following fields:

 policy contains the policy label that is to be applied to the KEK
 values in the keyList field. The exact content of the field
 will be specific to the set of Plasma servers involved.
 Servers MUST be able to deal with an XML encoding of the policy
 in this location. See Appendix B for some alternate encodings.

 keyList contains the key values.

 attrList contains a set of attributes which are considered as
 significant by the Plasma server internally. One example of an
 attribute that goes into this location is the audit trail
 identifier attribute. This attribute allows for an identifier
 to tagged to the message that can be used by all entities that
 are going to create entries in an audit log. Since they all
 have access to a unique identifier for this message, they can
 all use that identifier when creating their respective log
 entries for creation, granting of access and refusing access.
 The identifier can then be used to correlate all of these audit
 trail events back to a single message. This document defines
 three attributes to be placed in this location: Audit Trail
 Identifier Section 3.4.1, Signer Info Section 3.4.2 and XACML
 attribute Section 3.4.3.

 KeyList is a new type that contains CEK values or KeyRecipientInfo
 structures. This allows for messages to be sent with either
 early-binding, where a RecipientInfo structure is filled out for
 the receiving agent, or late-binding, where the CEK value is sent
 from the Plasma Service to the receiving agent. It is required
 that at least one of these fields is populated.

https://datatracker.ietf.org/doc/html/rfc5911

Schaad Expires August 16, 2014 [Page 11]

Internet-Draft PLASMA ASN.1 February 2014

 namedRecipients contains the recipient info structures for
 individually identified recipients.

 defaultRecipients contains the CEK keys for those recipients that
 are not individual identified with their own recipient info
 structures.

 NamedRecipient contains the information identifying a single named
 recipient along with the recipient info structures for that
 recipient.

 recipientName contains the name of the name of the recipient in
 the form of an RFC5321 email address.

 keyPolicy contains a policy string specific to this key. If
 present the policy MUST be evaluated as accept before this
 recipient info structure is released. Servers MUST be able to
 deal with an XML encoding of the policy in this location. See

Appendix B for some alternate encodings.

 keyIdentifier contains the identification value for the CEK.

 keyValue contains the encrypted key for the named recipient. The
 ProtectedKey structure is marked as extensible. If an
 unrecognized choice is made in the ProtectedKey structure, the
 NamedRecipient structure is to fail returning the key as it's
 type will not be recognized. There could be another named key
 with a different return type which can be returned
 successfully.

 This structure is tagged as extensible; this was done because
 there may be a need to add additional fields such as other name
 types in the future.

 ProtectedKey contains the CEK encrypted in some manner. The choice
 has the following fields:

 cms contains a CMS recipient info structure for the named
 recipient.

 xml contains an XML EncryptedKey structure from the XML
 Encryption standard [W3C.WD-xmlenc-core1-20101130].

 The structure is marked as extensible. Servers MUST be able to
 deal with unrecognized encrypted key fields from future versions.

 OneCek contains the information that defines a single CEK to be
 used. The sequence has the fields:

https://datatracker.ietf.org/doc/html/rfc5321

Schaad Expires August 16, 2014 [Page 12]

Internet-Draft PLASMA ASN.1 February 2014

 keyPolicy contains a policy string specific to this key. If
 present the policy MUST be evaluated as accept before this key
 is released. Servers MUST be able to deal with an XML encoding
 of the policy in this location. See Appendix B for some
 alternate encodings.

 keyIdentifier contains the identification value for the CEK.

 keyValue contains the CEK value.

 This structure is tagged as extensible; this was done because
 there may be a need to add additional fields such as other name
 types in the future.

 AttributeList defines a structure where a set of attributes can be
 included.

 PLASMAAttributes defines an Object Set of attributes which can be
 included. The object set is intentionally open ended for later
 expansion. The object set is initialized with the three
 attributes defined in this document.

 PlasmaSignedAttributes defines an Object Set of attributes that are
 intended for use as signed attributes for CMS SignedData objects.
 This item is intended to be added to the SignedAttributesSet in
 the CMS module in [RFC5911].

 The recipientName field of the NamedRecipient structure is designed
 so that a client can build a CMS recipient info structure targeted to
 a specific recipient. In order for the Plasma server to know which
 of these named recipient structure to return it requires that the
 sender identify the recipient for the CMS recipient info structure
 and that the recipient identify itself so that the Plasma server can
 find the correct structure. We are using Email names in the form of
 internationalized RFC 5321 [RFC5321] address names. There are a
 number of issues that are associated with the use of this name form
 for comparison purposes. As stated in Section 2.3.11 of RFC 5321,

 the local-part MUST be interpreted and assigned semantics only by
 the host specified in the domain part of the address.

 While many platforms do case-insensitive comparisons of mailbox
 names, there is not a way for an independent server to know if this
 is appropriate behavior. A similar issue exists with Unicode
 normalization as pointed out in Section 10.1 of RFC 6530 [RFC6530].
 The server that holds the mailbox can have a consistent rule for
 normalization, but a Plasma server in separate domain may not know
 the appropriate rules to use.

https://datatracker.ietf.org/doc/html/rfc5911
https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc5321#section-2.3.11
https://datatracker.ietf.org/doc/html/rfc6530#section-10.1
https://datatracker.ietf.org/doc/html/rfc6530

Schaad Expires August 16, 2014 [Page 13]

Internet-Draft PLASMA ASN.1 February 2014

 Plasma servers SHOULD do the following when comparing the Email
 addresses found in the recipientName field:

 1. The domain name portion is compared using procedure in
Section 2.3.2.4 of [RFC5890]. The rules are:

 * Exact (bit-string identity) matches between pairs of U-labels.

 * Matches between a pair of A-labels, using normal DNS case-
 insensitive matching rules.

 * Equivalence between a U-label and an A-label determined by
 translating the U-label form into an A-label form and then
 testing for a match between the A-labels using normal DNS
 case-insensitive rules.

 2. The local name portion of the name is compared using bit-string
 identity. Plasma servers MAY apply appropriate transformations
 for local domain names, Plasma servers MAY provide for
 administration configuration to allow for appropriate
 transformations to non-local domains, but SHOULD NOT apply any
 transformations in the absence of administrative configureation.

3.3. CMS Signed Data signed attributes

3.3.1. PLASMA URL Authenticated Attribute

 It is required that the name of the Plasma Server be securely
 communicated to the message recipient. For this purpose a URL is
 used as this can communicate both a server name as well as additional
 parameters that can be used to identify a specific service on the
 server.

 The relevant section from the ASN.1 module for this attribute is:

https://datatracker.ietf.org/doc/html/rfc5890#section-2.3.2.4

Schaad Expires August 16, 2014 [Page 14]

Internet-Draft PLASMA ASN.1 February 2014

 --
 -- Define the Signed Attribute to carry the
 -- Email Policy Server URL
 --
 -- This attribute is added to the SignedAttributSet set of
 -- attributes in [CMS-ASN]
 --

 aa-plasma-url ATTRIBUTE ::= {
 TYPE UTF8String IDENTIFIED BY id-aa-plasma-url
 }

 id-aa-plasma-url OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) TBD3}

 From this we can see the following:

 A new attribute aa-plasma-url has been defined.

 The OID value of id-aa-plasma-url has been created to identify the
 new attribute.

 The type of the value associated with the attribute is a
 UTF8String which contains the URL for the Plasma Server. The URL
 defines both the destination server and the protocol to be used.
 When the schema for the URL is "plasma", then the protocol used is
 [I-D.schaad-plasma-service].

 The new attribute is to appear only as a Signed Attribute in a
 SignedData structure. It is therefore to be added to the
 attribute set SignedAttributeSet in the update ASN.1 module
 contained in [RFC5911].

 The attribute structure defined for signed attributes allows for
 multiple values to be carried in a single attribute. For this
 attribute there MUST be at least one value. If there is more than
 one value, each value MUST be unique. Multiple values are allowed as
 there can be multiple Plasma servers that can be used to evaluate the
 policy. Since the URLs will be sorted during encoding, the order of
 URLs does not indicate any order of priority, any of the values may
 be used.

 This attribute is only included in a SignedData object by a Plasma
 Server. There are no processing rules for the sender of a message.
 The processing rules for a recipient can be found in Section 5.

https://datatracker.ietf.org/doc/html/rfc5911

Schaad Expires August 16, 2014 [Page 15]

Internet-Draft PLASMA ASN.1 February 2014

3.3.2. PLASMA Encrypted Content Hash Attribute

 For privacy reasons, it is highly desirable that the recipient of a
 message can validate that the Plasma lock box embedded in a message
 is associated with encrypted data it is attached to. For this
 reason, in addition to the requirement that a recipient validate the
 signature of the Plasma server over the lock box, a new attribute is
 defined which contains the hash of the encrypted content.

 --
 -- Define the Signed Attribute to carry the
 -- hash of encrypted data
 --
 -- This attribute is added to the SignedAttributeSet set of
 -- attributes in [CMS-ASN]
 --

 aa-plasma-econtent-hash ATTRIBUTE ::= {
 TYPE HashValue IDENTIFIED BY id-aa-plasma-econtent-hash
 }

 id-aa-plasma-econtent-hash OBJECT IDENTIFIER ::= {iso(1)
 member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9) TBD4}

 HashValue ::= SEQUENCE {
 hashAlgorithm DigestAlgorithmIdentifier,
 hashValue OCTET STRING
 }

 The above ASN.1 fragment defines the following items:

 aa-plasma-econtent-hash defines a new ATTRIBUTE object describing
 the encrypted content hash attribute. This attribute is always a
 signed object and is to be added to the SignedAttributeSet in the
 CMS ASN.1 mdoule contained in [RFC5911].

 id-aa-plasma-econtent-hash defines the unique identifier of the
 attribute.

 HashValue defines the data value to be associated with the
 attribute. The fields of this type are:

 hashAlgorithm contains the identifier and parameters of the hash
 function used.

 hashValue contains the value of the hash operation.

https://datatracker.ietf.org/doc/html/rfc5911

Schaad Expires August 16, 2014 [Page 16]

Internet-Draft PLASMA ASN.1 February 2014

 The hash is computed over the encrypted content, without including
 any of the ASN.1 wrapping around the content. Thus this value does
 not cover the content type identifier, the encryption algorithm and
 parameters or any authenticated attributes for AEAD algorithms.

3.4. Plasma Lockbox Attributes

3.4.1. Audit Trail Identifier Attribute

 The Audit Trail Identifier attribute allows for a unique and
 persistent identifier to be carried as part of a Plasma Lockbox
 message. This identifier can then be used by Plasma servers when
 creating log entries in the audit trail to designate a single Plasma
 message. This use of a single identifier allows for better
 correlation to occur by auditors, however as the identifier is hidden
 from all viewers except the Plasma server, the message itself is not
 locatable from the log entries.

 The relevant section from the ASN.1 module which defines this
 attribute is:

 --
 -- Attribute to hold an Audit Trail Identifier
 --

 aa-plasma-AuditTrailIdentifier ATTRIBUTE ::= {
 TYPE OCTET STRING
 IDENTIFIED BY id-aa-plasma-Audit-Trail-Identifier
 }

 id-aa-plasma-Audit-Trail-Identifier OBJECT IDENTIFIER ::= {
 iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) TBD6}

 In this ASN.1, the following items are defined:

 aa-plasma-AuditTrailIdentifier
 This is an object of type ATTRIBUTE that associates the identifier
 id-aa-plasma-Audit-Trail-Identifier with the type OCTET STRING.
 When used in attrList field of a PLASMA-LockBox, the values set
 MUST contain a single value. The value is the audit trail
 identifier value.

 id-aa-plasma-Audit-Trail-Identifier
 This is the OID used to identifier this attribute.

Schaad Expires August 16, 2014 [Page 17]

Internet-Draft PLASMA ASN.1 February 2014

 The use of OCTET STRING for the content allows for the greatest
 flexibility for Plasma Servers in devising the value to use. The
 content of the Audit Tail Identifier is intended to be an opaque
 value to all entities, all Plasma servers MUST be able to ignore how
 the value is structured.

3.4.2. Signer Info Attribute

 Some policies require that the inner content of an encrypted message
 be signed as well. However the encrypted data stream of the message
 is not provided to the Plasma server for it to verify that it was
 done successfully. The only places to check is in the audit trail
 for the message and/or to allow the client to do the check that the
 signature is present. This attribute provides a location for the
 Plasma server to place the provided CMS SignerInfo structure(s)
 provided by the client to be carried with the message. The server
 can then push the structure(s) to the client and the client can
 validate that the actual signatures on the message match the
 signatures provided by the server. All servers MUST be able to parse
 this attribute and convert it to an appropriate XACML attribute to
 return to clients.

 The relevant section from the ASN.1 module which defines this
 attribute is:

 --
 -- Attribute to hold a SignerInfo structure
 --

 aa-plasma-SignerInfo ATTRIBUTE ::= {
 TYPE SignerInfo IDENTIFIED BY id-aa-plasma-signerInfo
 }

 id-aa-plasma-signerInfo OBJECT IDENTIFIER ::= {iso(1)
 member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9) TBD7}

 In this ASN.1, the following items are defined:

 aa-plasma-SignerInfo
 This is an object of type ATTRIBUTE that associates the identifier
 id-aa-plasma-SignerInfo with the type SignerInfo.

 id-aa-plasma-SignerInfo
 This OID is used to identify the attribute, it's associated type
 and it's semantics.

Schaad Expires August 16, 2014 [Page 18]

Internet-Draft PLASMA ASN.1 February 2014

 There can be one or more attribute values in the attribute set. Each
 of the values is to be treated independently and returned to the
 client. The values may be returned in a single Attributes XML
 element.

3.4.3. XACML Generic Attribute

 Many times Plasma servers be in situation where they will need to
 return various values to the clients. These decisions will
 frequently be taken by the originating Plasma server, since it may be
 the only one that has the data to be returned. This attribute allows
 for any data to be carried in the form of an XACML [XACML] attribute
 XML structure. Since the content is an XACML attribute, it can be
 pushed to the client without the client needing to understand or
 evaluate the content being presented. The Signer Info attribute
 presented in the previous section could have been implemented using
 this attribute rather than defining it's own attribute, however the
 space savings was deemed sufficient to justify the creation of the
 new attribute.

 The relevant section from the ASN.1 module which defines this
 attribute is:

 --
 -- Attribute to hold an arbitrary XACML XML attribute
 -- structure
 --

 aa-plasma-Xacml-Attribute ATTRIBUTE ::= {
 TYPE OCTET STRING IDENTIFIED BY id-aa-plasma-Xacml-Attribute
 }

 id-aa-plasma-Xacml-Attribute OBJECT IDENTIFIER ::= {iso(1)
 member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9) TBD8}

 In this ASN.1, the following items are defined:

 aa-plasma-Xacml-Attribute
 This is an object of type ATTRIBUTE that associates the identifier
 of id-aa-plasma-Xacml-Attribute with the type OCTET STRING.

 id-aa-plasma-Xacml-Attribute
 This OID is used to identify the attribute, its associated type
 and it's semantics.

Schaad Expires August 16, 2014 [Page 19]

Internet-Draft PLASMA ASN.1 February 2014

 There can be one or more attributes values associated with the
 attribute set. Each of the values is to be treated independently and
 returned as separate items to the client.

 The data type is an OCTET STRING to allow for alternate XML encodings
 to be used. All servers MUST be able to deal with a UTF8 string XML
 encoding of the policy in this location. See Appendix B for
 alternate encoding methods. If a server cannot understand the
 encoding presented, the server MUST fail processing of the lockbox.
 If the server cannot understand the attribute, and the attribute is
 required for processing the access control statement, the server MUST
 fail that portion of the access control evaluation.

4. Sender Processing Rules

4.1. Flow

 This is the set of processing steps that a sender needs to do (the
 order of the steps is not normative):

 1. Sender Agent obtains the set of policies under which it can send
 a message.

 2. Sender Agent composes the message content.

 3. Sender Agent determines the policy label to be applied to the
 message.

 4. Sender Agent determines the set of recipients for the message.

 5. Sender Agent selects the content encryption algorithm (with
 input from the policies chosen) and randomly creates the CEK.

 6. Sender Agent encrypts the content with the CEK and computes the
 encrypted hash value.

 7. Sender Agent may optionally create lock boxes for one or more
 message recipients. (These are for the early-bind recipients
 that are protected by the policy server.)

 8. Sender Agent transmits the CEK, the list of recipients, the set
 of policy protected recipient lock boxes, the encrypted hash
 value and the policy label to the PLASMA server.

 9. Sender Agent receives a set of recipient info structures from
 the policy server. If the policy validation fails then the
 sender agent cannot send the message under the current policy
 label.

Schaad Expires August 16, 2014 [Page 20]

Internet-Draft PLASMA ASN.1 February 2014

 10. Sender Agent verifies the signature on the signed data structure
 inside of the PLASMA-KEK attribute.

 A. Signature is current and passes cryptographic processing.

 B. Signed attributes contains the PLASMA URL attribute and the
 PLASMA Encrypted Hash attribute.

 C. The certificate used to validate the signature MUST have the
 Plasma XXXX EKU (defined in Section X.Y of RFC XXXX).

 D. Other standard signature checks.

 The Sender Agent SHOULD validate all of the signatures if more
 than one signature exists.

 11. Sender Agent adds the recipient info structures returned from
 the Plasma server to those it creates for early bind recipients
 which are not protected by policy.

 12. Sender Agent finishes encoding the message and transmits it to
 the MTA.

5. Recipient Processing Rules

5.1. Flow

 When looking at the validation steps that are given here, the results
 need to be the same but the order that the steps are taken can be
 different. As an example, it can make sense to do the policy check
 in step Paragraph 5 before doing the signature validation as this
 would not require any network access.

 This is the set of processing that the recipient needs to do:

 1. The Receiving Agent obtains the message from a Mail Transfer
 Agent using IMAP, POP or a similar protocol.

 2. The Receiving Agent recognizes that a KEK recipient info exists
 with a PLASMA-KEK attribute. It is recommended that the entire
 list of recipient info structures be checked for one that can be
 processed directly before processing a Plasma receipient
 structure.

 3. The Receiving Agent validates the PLASMA-KEK attribute. The
 following steps need to be taken for validation.

Schaad Expires August 16, 2014 [Page 21]

Internet-Draft PLASMA ASN.1 February 2014

 A. The signature on the SignedData structure is validated. If
 the validation fails then processing ends. If more than one
 SignerInfo element exists on the structure, then the
 validation needs to succeed only on one SignerInfo element,
 the signed attributes from that SignerInfo structure are
 used. The order of performing the validation of the
 SignerInfo structures may be influenced by the content of
 PLASMA URL attribute.

 B. The certificate used to validate the signature MUST contain
 the XXXX value in the EKU extension. The certificate MUST
 NOT contain the anyPolicy value in the EKU extension. Local
 policy can dictate that content of the Plasma URL attribute
 be used in selecting trust anchors for the signing
 certificate.

 C. If an ESS security label attribute ([RFC2634]) is present,
 then it must be evaluated and processing ends if the security
 label processing fails or is denied.

 D. If the PLASMA URL attribute is absent, then processing fails.

 E. The URL value in the PLASMA URL attribute is checked against
 local policy. If the check fails then processing fails.
 This check is performed so that information about the user is
 not given to a random Plasma server. The schema of the URL
 MUST be one that the client implements. (For example the
 "plasma" schema associated with RFC XXX
 [I-D.schaad-plasma-service].) As discussed in Section 4.5 of
 [I-D.freeman-plasma-requirements], policy can be enforced on
 the edge of an enterprise, this means that if multiple URLs
 are present in the Plasma URL attribute they all need to be
 checked for policy and ability to use before this step fails.

 F. The PLASMA Encrypted Hash attribute value is checked against
 the encrypted content. If this attribute is absent then
 processing fails. If the value does not matched the computed
 value on the encrypted content then processing fails.

 4. The recipient gathers the necessary identity and attribute
 statements, usual certificates or SASL statements.

 5. The recipient establishing a secure connection to the Plasma
 server and passes in the identity and attribute statements and
 receives back the CEK or a lock box to allow it to obtain the CEK
 value.

https://datatracker.ietf.org/doc/html/rfc2634

Schaad Expires August 16, 2014 [Page 22]

Internet-Draft PLASMA ASN.1 February 2014

5.2. Reply Processing

 In some circumstances a message recipient may be permitted to read a
 message sent under a certan policy, but it not permitted to send a
 message for that policy. In the event that a complex policy is used
 the recipient may be permitted to read under one policy, but not have
 any rights under a second policy. In both of these case a recipient
 of a message would be unable to either reply or forward a message
 using the same policy as they received it under. For this reason,
 the protocol used to communicate with the Plasma server will
 frequently return a single purpose policy that permits a recipient to
 reply to a message using the same policy as the original message.

6. S/MIME Capability

 The SMIMECapabilities attribute was defined by S/MIME in [RFC5751] so
 that the abilities of a client can be advertised to the recipients of
 an S/MIME message. This information can be advertised either
 directly in an S/MIME message sent from a client to a recipient, or
 more indirectly by publishing the information in an LDAP directory
 [RFC4262].

 A new S/MIME capability is defined by this document so that a client
 can advertise to others that it understands how to deal with Plasma
 recipient information. The ASN.1 for this attribute is:

 --
 -- Create an S/MIME capability for advertising that
 -- a client can understand the PLASMA recipient info
 -- structure information
 --

 cap-Plasma-RecipientInfo SMIME-CAPS ::= {
 IDENTIFIED BY id-cap-plasma-recipientInfo
 }

 id-cap-plasma-recipientInfo OBJECT IDENTIFIER ::= {
 id-cap TBD5
 }

 We define a new SMIME-CAPS object called cap-Plasma-RecipentInfo.
 This attribute is identified by the the OID id-cap-plasma-
 recipientInfo and has no data structure associated with it. When
 encoded as an S/MIME capability the parameters MUST to be absent and
 not NULL.

https://datatracker.ietf.org/doc/html/rfc5751
https://datatracker.ietf.org/doc/html/rfc4262

Schaad Expires August 16, 2014 [Page 23]

Internet-Draft PLASMA ASN.1 February 2014

7. Mandatory Algorithms

7.1. Plasma Servers

 Servers MUST implement AES-GCC-128 [RFC5084] for the content
 encryption algorithm in section 3.1. Other authenticated encryption
 algorithms MAY be implemented.

 Servers MUST implement RSA v1.5 as a key transport algorithm for
 lockboxes created in section 3.1 and for pre-authenticated lock boxes
 returned in step 8 of section 4.1. Servers SHOULD implement RSA OAEP
 as a key transport algorithm in the same locations. Other key
 transport algorithms MAY be implemented.

 Servers MUST implement EC-DH as a key agreement algorithm for
 lockboxes created in section 3.1 and for pre-authenticated lock boxes
 returned in step 8 of section 4.1. Servers MAY implement other key
 agreement algorithms.

 Servers MUST implement the RSA v1.5 signature algorithm with SHA-256
 and SHA-512. Servers MUST implement the EC-DSA signature algorithm
 with SHA-256 and SHA-512 for producing signature on the Plasma lock
 box. Other signature algorithms MAY be implemented as well.

7.2. Plasma Clients

 Clients MUST implement the mandatory algorithms defined for S/MIME
 [RFC5751] for the lock boxes created in step 7 and transmitted to the
 server in step 8 of Section 4. Other algorithms MAY be implemented.

 Clients MUST implement SHA-256 and SHA-512 for computation of the
 Plasma Encrypted Content Hash in section 3.4. Other algorithms MAY
 be implemented, but doing so can cause clients that do not implement
 this algorithm to not attempt to read the message.

 When verifying signatures on the Plasma lock boxes, clients MUST be
 able to verify the RSA v1.5 signature algorithm with SHA-256 and
 SHA-512. Clients MUST also be able to verify the EC-DSA signature
 algorithm with SHA-256 and SHA-512 signature algorithm. Clients MAY
 be able to verify other signature algorithms.

8. Security Considerations

 Man in the middle attack on the protocol from the sending agent to
 the email policy server.

 Man in the middle attack on the protocol from the receiving agent to
 the email policy server.

https://datatracker.ietf.org/doc/html/rfc5084
https://datatracker.ietf.org/doc/html/rfc5751

Schaad Expires August 16, 2014 [Page 24]

Internet-Draft PLASMA ASN.1 February 2014

 Still more expansion....

 The hash computed for the Plasma Encrypted Content Hash attribute has
 different security concerns that a hash used for signature
 computation. This hash value is used to get a degree of assurance
 that the encrypted content is associated with Plasma lock box. In
 the event that a collision exists, then the client will go and talk
 to the server to get a content encryption key when that key will not
 successfully decrypt the content. However this does not affect the
 privacy of the client as the client's decision to talk to the server
 is based on the URL(s) of the server and the validation of the
 server's signature. This means that an attacker that substitutes an
 encrypted content needs not only to have the hash of the encrypted
 content be correct, but the decrypted content needs to make sense.
 In order for an attacker to have the client talk to it, it needs to
 attack the certificates or signature produced on the lock box and not
 the encrypted content itself.

9. IANA Considerations

 This document requires that a number of Object Identifiers be
 assigned. These are now under the control of IANA following
 [I-D.housley-smime-oids].

 IANA is requested to assign the following identifiers:

 o TBD9 is to be assigned from the "SMI Security for S/MIME Module
 Identifer" registry. The description for the entry is suggested
 as id-mod-plasma-2013.

 o TBD1 is to be assigned from the "SMI Security for S/MIME CMS
 Content Type" registry. The description for the entry is
 suggested as id-ct-plasma-LockBox.

 o TBD2 is to be assigned from the "SMI Security for S/MIME
 Algorithms" registry. The description for the entry is suggested
 as id-alg-plasma-lockbox.

 o TBD3 is to be assigned from the "SMI Security for S/MIME
 Attributes" registry. The description for the entry is suggested
 as id-aa-plasma-url.

 o TBD4 is to be assigned from the "SMI Security for S/MIME
 Attributes" registry. The description for the entry is suggested
 as id-aa-plasma-econtent-hash.

Schaad Expires August 16, 2014 [Page 25]

Internet-Draft PLASMA ASN.1 February 2014

 o TBD5 is to be assigned from the "SMI Security for S/MIME
 Capabilities" registry. The description for the entry is
 suggested as id-cap-plasma-recipientInfo.

 o TBD6 is to be assigned from the "SMI Security for S/MIME
 Attributes" registry. The description for the entyr is suggested
 as id-aa-plasma-Audit-Trail-Identifier.

 o TBD7 is to be assigned from the "SMI Security for S/MIME
 Attributes" registry. The description for the entry is suggested
 as id-aa-plasma-signerInfo.

 o TBD8 is to be assigned from the "SMI Security for S/MIME
 Attributes" registry. THe description for the entry is suggested
 as id-aa-plasma-Xacml-Attribute.

10. References

10.1. Normative References

 [RFC5911] Hoffman, P. and J. Schaad, "New ASN.1 Modules for
 Cryptographic Message Syntax (CMS) and S/MIME", RFC 5911,
 June 2010.

 [RFC5083] Housley, R., "Cryptographic Message Syntax (CMS)
 Authenticated-Enveloped-Data Content Type", RFC 5083,
 November 2007.

 [RFC2634] Hoffman, P., "Enhanced Security Services for S/MIME", RFC
2634, June 1999.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5751] Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
 Mail Extensions (S/MIME) Version 3.2 Message
 Specification", RFC 5751, January 2010.

 [RFC5752] Turner, S. and J. Schaad, "Multiple Signatures in
 Cryptographic Message Syntax (CMS)", RFC 5752, January
 2010.

 [RFC5321] Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
 October 2008.

 [RFC5890] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework",

RFC 5890, August 2010.

https://datatracker.ietf.org/doc/html/rfc5911
https://datatracker.ietf.org/doc/html/rfc5083
https://datatracker.ietf.org/doc/html/rfc2634
https://datatracker.ietf.org/doc/html/rfc2634
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5751
https://datatracker.ietf.org/doc/html/rfc5752
https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc5890

Schaad Expires August 16, 2014 [Page 26]

Internet-Draft PLASMA ASN.1 February 2014

 [RFC6530] Klensin, J. and Y. Ko, "Overview and Framework for
 Internationalized Email", RFC 6530, February 2012.

 [I-D.freeman-plasma-requirements]
 Freeman, T., Schaad, J., and P. Patterson, "Requirements
 for Message Access Control", draft-freeman-plasma-

requirements-08 (work in progress), October 2013.

 [W3C.WD-xmlenc-core1-20101130]
 Roessler, T., Reagle, J., Hirsch, F., and D. Eastlake,
 "XML Encryption Syntax and Processing Version 1.1", World
 Wide Web Consortium LastCall WD-xmlenc-core1-20101130,
 November 2010,
 <http://www.w3.org/TR/2010/WD-xmlenc-core1-20101130>.

10.2. Informative References

 [RFC3369] Housley, R., "Cryptographic Message Syntax (CMS)", RFC
3369, August 2002.

 [RFC2630] Housley, R., "Cryptographic Message Syntax", RFC 2630,
 June 1999.

 [RFC4262] Santesson, S., "X.509 Certificate Extension for Secure/
 Multipurpose Internet Mail Extensions (S/MIME)
 Capabilities", RFC 4262, December 2005.

 [RFC5084] Housley, R., "Using AES-CCM and AES-GCM Authenticated
 Encryption in the Cryptographic Message Syntax (CMS)", RFC

5084, November 2007.

 [I-D.schaad-plasma-service]
 Schaad, J., "Plasma Service Trust Processing", draft-

schaad-plasma-service-04 (work in progress), January 2013.

 [XACML] Rissanen, E., Ed., "eXtensible Access Control Markup
 Language (XACML) Version 3.0", OASIS Standard
 xacml-201008, August 2010, <http://docs.oasis-open.org/

xacml/3.0/xacml-3.0-core-spec-cs-01.en.doc>.

 [EXI] Kamiya, T. and J. Schneider, "Efficient XML Interchange
 (EXI) Format 1.0", World Wide Web Consortium CR CR-
 exi-20091208, December 2009,
 <http://www.w3.org/TR/2009/CR-exi-20091208>.

https://datatracker.ietf.org/doc/html/rfc6530
https://datatracker.ietf.org/doc/html/draft-freeman-plasma-requirements-08
https://datatracker.ietf.org/doc/html/draft-freeman-plasma-requirements-08
http://www.w3.org/TR/2010/WD-xmlenc-core1-20101130
https://datatracker.ietf.org/doc/html/rfc3369
https://datatracker.ietf.org/doc/html/rfc3369
https://datatracker.ietf.org/doc/html/rfc2630
https://datatracker.ietf.org/doc/html/rfc4262
https://datatracker.ietf.org/doc/html/rfc5084
https://datatracker.ietf.org/doc/html/rfc5084
https://datatracker.ietf.org/doc/html/draft-schaad-plasma-service-04
https://datatracker.ietf.org/doc/html/draft-schaad-plasma-service-04
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01.en.doc
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01.en.doc
http://www.w3.org/TR/2009/CR-exi-20091208

Schaad Expires August 16, 2014 [Page 27]

Internet-Draft PLASMA ASN.1 February 2014

 [I-D.housley-smime-oids]
 Housley, R., "Object Identifier Registry for the S/MIME
 Mail Security Working Group", draft-housley-smime-oids-00
 (work in progress), October 2013.

Appendix A. 2009 ASN.1 Module

 PolicySMime-2008 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-9(9) smime(16) modules(0)
 id-mod-plasma-2013(TBD9) }
 DEFINITIONS IMPLICIT TAGS ::=
 BEGIN
 IMPORTS
 -- Cryptographic Message Syntax (CMS) [RFC5652]

 CONTENT-TYPE, RecipientInfo, SignedData,
 DigestAlgorithmIdentifier, SignerInfo, KEY-WRAP
 FROM CryptographicMessageSyntax-2010
 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-9(9) smime(16) modules(0) id-mod-cms-2009(58) }

 -- Common PKIX structures [RFC5912]

 SMIME-CAPS
 FROM AlgorithmInformation-2009
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-algorithmInformation-02(58)}

 ATTRIBUTE, SingleAttribute{}
 FROM PKIX-CommonTypes-2009
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkixCommon-02(57) }

 ESSSecurityLabel
 FROM ExtendedSecurityServices-2009
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) id-mod-ess-2006-02(42) }

 id-cap
 FROM SecureMimeMessage
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) id-mod-msg-v3dot1-02(39) }
 ;

 --

https://datatracker.ietf.org/doc/html/draft-housley-smime-oids-00
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc5912

Schaad Expires August 16, 2014 [Page 28]

Internet-Draft PLASMA ASN.1 February 2014

 -- PLASMA Content Type
 --

 ct-plasma-LockBox CONTENT-TYPE ::= {
 TYPE PLASMA-LockBox
 IDENTIFIED BY id-ct-plasma-LockBox
 }

 id-ct-plasma-LockBox OBJECT IDENTIFIER ::= {iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs7(7) TBD1}

 PLASMA-LockBox ::= SEQUENCE {
 policy OCTET STRING,
 keyList KeyList,
 attrList AttributeList OPTIONAL
 }

 KeyList ::= SEQUENCE {
 namedRecipients [0] SEQUENCE SIZE (1..MAX) OF
 NamedRecipient OPTIONAL,
 defaultRecipients [1] SEQUENCE SIZE (1..MAX) OF
 OneCek OPTIONAL,
 ...
 }
 (WITH COMPONENTS {
 ...,
 namedRecipients PRESENT
 } |
 WITH COMPONENTS {
 ...,
 defaultRecipients PRESENT
 })

 NamedRecipient ::= SEQUENCE {
 recipientName UTF8String, -- name of the recipient
 keyPolicy [0] OCTET STRING OPTIONAL,
 keyIdentifier OCTET STRING OPTIONAL,
 keyValue [1] ProtectedKey,
 ...
 }

 ProtectedKey ::= CHOICE {
 cms [0] RecipientInfo,
 xml [1] OCTET STRING,
 ...
 }

 OneCek ::= SEQUENCE {

Schaad Expires August 16, 2014 [Page 29]

Internet-Draft PLASMA ASN.1 February 2014

 keyPolicy [0] OCTET STRING OPTIONAL,
 keyIdentifier [1] OCTET STRING OPTIONAL,
 keyValue OCTET STRING,
 ...
 }

 AttributeList ::= SEQUENCE SIZE (1..MAX) OF
 SingleAttribute{{PlasmaLockboxAttributes}}

 PlasmaLockboxAttributes ATTRIBUTE ::= {
 aa-plasma-AuditTrailIdentifier | aa-plasma-SignerInfo |
 aa-plasma-Xacml-Attribute, ... }

 PlasmaSignedAttributes ATTRIBUTE ::= {
 aa-plasma-url | aa-plasma-econtent-hash
 }

 --
 -- New key wrap algorithm object for Plasma
 --

 kwa-plasma-lockbox KEY-WRAP ::= {
 IDENTIFIER id-alg-plasma-lockbox
 PARAMS ARE absent
 SMIME-CAPS { IDENTIFIED BY id-alg-plasma-lockbox }
 }

 -- SignedData IDENTIFIED BY id-keyatt-plasma-token

 id-alg-plasma-lockbox OBJECT IDENTIFIER ::= {iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) smime(16) alg(3) TBD2 }

 --
 -- Define the Signed Attribute to carry the
 -- Email Policy Server URL
 --
 -- This attribute is added to the SignedAttributSet set of
 -- attributes in [CMS-ASN]
 --

 aa-plasma-url ATTRIBUTE ::= {
 TYPE UTF8String IDENTIFIED BY id-aa-plasma-url
 }

 id-aa-plasma-url OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) TBD3}

Schaad Expires August 16, 2014 [Page 30]

Internet-Draft PLASMA ASN.1 February 2014

 --
 -- Define the Signed Attribute to carry the
 -- hash of encrypted data
 --
 -- This attribute is added to the SignedAttributeSet set of
 -- attributes in [CMS-ASN]
 --

 aa-plasma-econtent-hash ATTRIBUTE ::= {
 TYPE HashValue IDENTIFIED BY id-aa-plasma-econtent-hash
 }

 id-aa-plasma-econtent-hash OBJECT IDENTIFIER ::= {iso(1)
 member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9) TBD4}

 HashValue ::= SEQUENCE {
 hashAlgorithm DigestAlgorithmIdentifier,
 hashValue OCTET STRING
 }

 --
 -- Create an S/MIME capability for advertising that
 -- a client can understand the PLASMA recipient info
 -- structure information
 --

 cap-Plasma-RecipientInfo SMIME-CAPS ::= {
 IDENTIFIED BY id-cap-plasma-recipientInfo
 }

 id-cap-plasma-recipientInfo OBJECT IDENTIFIER ::= {
 id-cap TBD5
 }

 --
 -- Attribute to hold an Audit Trail Identifier
 --

 aa-plasma-AuditTrailIdentifier ATTRIBUTE ::= {
 TYPE OCTET STRING
 IDENTIFIED BY id-aa-plasma-Audit-Trail-Identifier
 }

 id-aa-plasma-Audit-Trail-Identifier OBJECT IDENTIFIER ::= {
 iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) TBD6}

Schaad Expires August 16, 2014 [Page 31]

Internet-Draft PLASMA ASN.1 February 2014

 --
 -- Attribute to hold a SignerInfo structure
 --

 aa-plasma-SignerInfo ATTRIBUTE ::= {
 TYPE SignerInfo IDENTIFIED BY id-aa-plasma-signerInfo
 }

 id-aa-plasma-signerInfo OBJECT IDENTIFIER ::= {iso(1)
 member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9) TBD7}

 --
 -- Attribute to hold an arbitrary XACML XML attribute
 -- structure
 --

 aa-plasma-Xacml-Attribute ATTRIBUTE ::= {
 TYPE OCTET STRING IDENTIFIED BY id-aa-plasma-Xacml-Attribute
 }

 id-aa-plasma-Xacml-Attribute OBJECT IDENTIFIER ::= {iso(1)
 member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9) TBD8}

 END

Appendix B. Policy Encoding Techniques

 This appendix is informative.

 The fields for encoding a policy expression is an ASN.1 OCTET STRING.
 This field type was chosen so that servers would have the widest
 choice of methods to encode the policy expressions. For stand alone
 servers, the only issue is that the server will be able to correctly
 extract and use the policy expression, as such it can be kept in XML
 or converted into a format that is more natural to the policy
 evaluation engine used by the server. When one wants to use multiple
 servers, then all of the servers involved need to be able to use the
 encoded format(s) and re-map them into the internal versions that are
 used locally. This is far more complicated when the servers are
 hosted by different organizations that might be using different local
 policy evaluation engines.

 It is RECOMMENDED that what ever encoding method is used normally, a
 provision exist for the XML version of the policy string as presented
 in RFC XXX [I-D.schaad-plasma-service] exist without change. Doing
 so allows for a single common format to be shared among all Plasma

Schaad Expires August 16, 2014 [Page 32]

Internet-Draft PLASMA ASN.1 February 2014

 servers independent of the organization providing the server and the
 one operating the server. The server will be able to determine the
 set of other servers that will be able to process the content, as the
 server must be configured with that information in order to create
 the appropriate lock boxes for the other servers to access the
 encrypted content.

 There are two different methods that exist where the XML encoding can
 be compressed before placing it into the OCTET STRING. The first
 would be to use the Efficient XML Interchange (EXI) Format documented
 in [EXI]. A second method would be to use the standard DEFLATE
 algorithm either with or without a pre-defined library.

 A possible method of encoding would to be use the first byte to
 identify the encoding technique, reserving 0x3C for vanilla XML
 strings. Following bytes could be used to determine which pre-
 defined table was used and then the compressed encoding.

Author's Address

 Jim Schaad
 Soaring Hawk Consulting

 Email: ietf@augustcellars.com

Schaad Expires August 16, 2014 [Page 33]

