
Network Working Group                                          J. Schaad
Internet-Draft                                   Soaring Hawk Consulting
Intended status: Standards Track                       February 14, 2014
Expires: August 18, 2014

Plasma Service Trust Processing
draft-schaad-plasma-service-05

Abstract

   RFC TBD describes a new model and set of requirements to implement a
   labeling system on Cryptographic Message Syntax (CMS) objects where
   the entity in charge of doing the label enforcement is under the
   control of a central authority rather than the recipient of the
   object.

   This document describes a protocol to be used by senders and
   recipients of CMS objects to communicate with a centralized label
   enforcement server.  The document outlines how a client will get the
   set of labels or policies that it can use for sending messages,
   composes a secure CMS object with a label on it and gets the
   necessary keys to decrypt a CMS object from the server.  This
   document is designed to be used with RFC TBD2 which describes the
   extensions used in CMS objects to hold the label information.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on August 18, 2014.

Copyright Notice

   Copyright (c) 2014 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

Schaad                   Expires August 18, 2014                [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/


Internet-Draft                  EPS TRUST                  February 2014

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
1.1.  XML Nomenclature and Name Spaces  . . . . . . . . . . . .   4
1.2.  Requirements Terminology  . . . . . . . . . . . . . . . .   4

2.  Components  . . . . . . . . . . . . . . . . . . . . . . . . .   4
2.1.  XACML 3.0 . . . . . . . . . . . . . . . . . . . . . . . .   5
2.2.  SAML  . . . . . . . . . . . . . . . . . . . . . . . . . .   5
2.3.  WS-Trust 1.4  . . . . . . . . . . . . . . . . . . . . . .   6

3.  Model . . . . . . . . . . . . . . . . . . . . . . . . . . . .   6
3.1.  Sender Processing . . . . . . . . . . . . . . . . . . . .   7
3.2.  Recieving Agent Processing  . . . . . . . . . . . . . . .   8

4.  Protocol Overview . . . . . . . . . . . . . . . . . . . . . .   9
5.  Plasma Request  . . . . . . . . . . . . . . . . . . . . . . .  10
5.1.  Authentication Element  . . . . . . . . . . . . . . . . .  11
5.1.1.  SAML Assertion  . . . . . . . . . . . . . . . . . . .  13
5.1.2.  WS Trust Tokens . . . . . . . . . . . . . . . . . . .  14
5.1.3.  XML Signature Element . . . . . . . . . . . . . . . .  15
5.1.4.  GSS-API Element . . . . . . . . . . . . . . . . . . .  16

5.2.  xacml:Request Element . . . . . . . . . . . . . . . . . .  18
6.  Plasma Response Element . . . . . . . . . . . . . . . . . . .  19
6.1.  xacml:Response Element  . . . . . . . . . . . . . . . . .  20

7.  Role Token and Policy Acquisition . . . . . . . . . . . . . .  22
7.1.  Role Token Request  . . . . . . . . . . . . . . . . . . .  22
7.2.  Request Role Token Response . . . . . . . . . . . . . . .  23
7.2.1.  RoleToken XML element . . . . . . . . . . . . . . . .  25
7.2.2.  Email Address List Options  . . . . . . . . . . . . .  29

8.  Sending An Email  . . . . . . . . . . . . . . . . . . . . . .  29
8.1.  Send Message Request  . . . . . . . . . . . . . . . . . .  29
8.1.1.  CMS Message Token Data Structure  . . . . . . . . . .  30
8.1.2.  XML Label Structure . . . . . . . . . . . . . . . . .  33

8.2.  Send Message Response . . . . . . . . . . . . . . . . . .  35
8.3.  XML Message Send Request  . . . . . . . . . . . . . . . .  36
8.4.  XML Message Send Response . . . . . . . . . . . . . . . .  37

9.  Decoding A Message  . . . . . . . . . . . . . . . . . . . . .  37
9.1.  Requesting Message Key  . . . . . . . . . . . . . . . . .  37
9.2.  Requesting Message Key Response . . . . . . . . . . . . .  39

10. Plasma Attributes . . . . . . . . . . . . . . . . . . . . . .  40

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info


Schaad                   Expires August 18, 2014                [Page 2]



Internet-Draft                  EPS TRUST                  February 2014

10.1.  Data Attributes  . . . . . . . . . . . . . . . . . . . .  41
10.1.1.  Channel Binding Data Attribute . . . . . . . . . . .  41
10.1.2.  CMS Signer Info Data Attribute . . . . . . . . . . .  41
10.1.3.  S/MIME Capabilities Data Attribute . . . . . . . . .  42
10.1.4.  EMAIL Recipient Addreses . . . . . . . . . . . . . .  42
10.1.5.  Return Lockbox Key Information . . . . . . . . . . .  43

10.2.  Obligations and Advice . . . . . . . . . . . . . . . . .  44
10.2.1.  Signature Required . . . . . . . . . . . . . . . . .  45
10.2.2.  Content Encryption Algorithm Required  . . . . . . .  45
10.2.3.  Lock Box Required  . . . . . . . . . . . . . . . . .  45

11. Certificate Profiles  . . . . . . . . . . . . . . . . . . . .  46
12. Message Transmission  . . . . . . . . . . . . . . . . . . . .  47
13. Plasma URI Scheme . . . . . . . . . . . . . . . . . . . . . .  47
13.1.  Plasma URI Schema Syntax . . . . . . . . . . . . . . . .  47
13.2.  Definition of Operations . . . . . . . . . . . . . . . .  47

14. Security Considerations . . . . . . . . . . . . . . . . . . .  47
14.1.  Plasma URI Schema Considerations . . . . . . . . . . . .  48

15. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  48
15.1.  Plasma Action Values . . . . . . . . . . . . . . . . . .  48
15.2.  non  . . . . . . . . . . . . . . . . . . . . . . . . . .  49
15.3.  Port Assignment  . . . . . . . . . . . . . . . . . . . .  50

16. Open Issues . . . . . . . . . . . . . . . . . . . . . . . . .  50
17. References  . . . . . . . . . . . . . . . . . . . . . . . . .  51
17.1.  Normative References . . . . . . . . . . . . . . . . . .  51
17.2.  Informative References . . . . . . . . . . . . . . . . .  52

Appendix A.  XML Schema . . . . . . . . . . . . . . . . . . . . .  53
Appendix B.  Example: Get Roles Request . . . . . . . . . . . . .  57
Appendix C.  Example: Get Roles Response  . . . . . . . . . . . .  58
Appendix D.  Example: Get CMS Token Request . . . . . . . . . . .  59
Appendix E.  Example: Get CMS Token Response  . . . . . . . . . .  61
Appendix F.  Example: Get CMS Key Request . . . . . . . . . . . .  61
Appendix G.  Example: Get CMS KeyResponse . . . . . . . . . . . .  62
Appendix H.  Enabling the MultiRequests option  . . . . . . . . .  62

   Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .  63

1.  Introduction

   RFC TBD [I-D.freeman-plasma-requirements] describes a new model and
   set of requirements to implement a labeling system on Cryptographic
   Message Syntax (CMS) objects where the entity in charge of doing the
   label enforcement is under the control of a central authority rather
   than the recipient of the object.

   This document describes a protocol to be used by senders and
   recipients of CMS objects to communicate with a centralized label
   enforcement server.  The document outlines how a client will get the
   set of labels or policies that it can use for sending messages,
   composes a secure CMS object with a label on it and gets the



Schaad                   Expires August 18, 2014                [Page 3]



Internet-Draft                  EPS TRUST                  February 2014

   necessary keys to decrypt a CMS object from the server.  This
   document is designed to be used with RFC TBD [I-D.schaad-plasma-cms]
   which describes the extensions used in CMS objects to hold the label
   information.

1.1.  XML Nomenclature and Name Spaces

   The following name spaces are used in this document:

   +-----+------------------------------------------+------------------+
   | Pre | Namespace                                | Specification(s) |
   | fix |                                          |                  |
   +-----+------------------------------------------+------------------+
   | eps | http://ietf.org/2011/plasma/             | This             |
   |     |                                          | Specification    |
   |     |                                          |                  |
   | wst | http://docs.oasis-open.org/ws-sx/ws-     | [WS-TRUST]       |
   |     | trust/200512                             |                  |
   |     |                                          |                  |
   | xac | http://docs.oasis-                       | [XACML]          |
   | ml  | open.org/xacml/3.0/xacml-3.0-core-spec-  |                  |
   |     | cs-01-en.html                            |                  |
   |     |                                          |                  |
   | ds2 | http://www.w3.org/2000/09/xmldsig#       | [XML-Signature]  |
   |     |                                          |                  |
   | xs  | http://www.w3.org/2001/XMLSchema         | [XML-Schema1     |
   |     |                                          | ][XML-Schema2]   |
   +-----+------------------------------------------+------------------+

1.2.  Requirements Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

   When the words appear in lower case, their natural language meaning
   is used.

2.  Components

   In designing this specification we used a number of pre-existing
   specifications as building blocks.  In some cases we use the entirety
   of the specification and in other case we use only select pieces.

http://ietf.org/2011/plasma/
http://docs.oasis-open.org/ws-sx/ws-
http://docs.oasis-
http://www.w3.org/2000/09/xmldsig#
http://www.w3.org/2001/XMLSchema
https://datatracker.ietf.org/doc/html/rfc2119


Schaad                   Expires August 18, 2014                [Page 4]



Internet-Draft                  EPS TRUST                  February 2014

2.1.  XACML 3.0

   The XACML specification (eXtensible Access Control Markup Language)
   [XACML] provides a framework for writing access control policies and
   for creating standardized access control queries and responses.  The
   request and response portion of the specification is used to build
   the request (Section 5.2) and response (Section 6.1) messages in this
   specification.  The structure for writing the access control policies
   is out of scope for this document, but XACML is one of the
   possibilities that can be used for that purpose.

2.2.  SAML

   A number of different methods for carrying both identification and
   attributes of the party requesting access is permitted in this
   specification.  SAML is one of the methods that is permitted for that
   purpose.

   SAML has defined three different types of assertions in it's core
   specification [OASIS-CORE]:

   o  Authentication: The assertion subject was authenticated by a
      particular means at a particular time.

   o  Attribute: The assertion subject is associated with the supplied
      attributes.

   o  Authorization Decision:[[CREF1: I don't see Plasma using this type
      --Trevor]] A request to allow the assertion subject to access the
      specified resource has been granted or denied.

   While a PDP can use an Authorization Decision as input, this is
   unexpected and MAY be supported.  In addition there are three
   different ways that the subject of a SAML statement can be
   identified:

   o  A bearer statement: These statements are belong to anybody who
      presents them.  The owner is required to take the necessary
      precautions to protect them.

   o  A holder of key statement: These statements belong to anybody who
      can use the key associated with the statement.

   o  Subject match:[[CREF2: What about attribute match? --Trevor]]
      These statements can be associated to an identity by matching the
      name of the entity.



Schaad                   Expires August 18, 2014                [Page 5]



Internet-Draft                  EPS TRUST                  February 2014

   We cannot pass a SAML assertion with attributes as a single attribute
   in the XACML request as XACML wants each of the different attributes
   to be individually listed in the request.  This greatly simplifies
   the XACML code, but means that one needs to do a mapping process from
   the SAML attributes to the XACML attributes.  This process has been
   discussed in Section 2 of [SAML-XACML].  This mapping process MUST be
   done by a trusted agent, as there are a number of steps that need to
   be done including the validation of the signature on the SAML
   assertion.  This process cannot be done by the PEP that is residing
   on the Plasma client's system as this is considered to be an
   untrusted entity by the Plasma system as a whole.  One method for
   this to be addressed is to treat the Plasma server as both a PDP (for
   the Plasma client) and a PDP for the true XACML policy evaluator.  In
   this model, the Plasma server becomes the trusted PEP party and has
   the ability to do the necessary signature validation and mapping
   processes.  A new XACML request is then created and either re-
   submitted to itself for complete evaluation or to a third party which
   does the actual XACML processing.[[CREF3: This sounds like we ignore
   the mapping on the wire.  There is no reason to mandate the mapping
   occurs inside the PDP. --Trevor]]

2.3.  WS-Trust 1.4

   The WS-Trust 1.4 [WS-TRUST] standard provides for methods for
   issuing, renewing, and validating security tokens.  This
   specification uses only a small portion of that standard,
   specifically the structure that returns a trust token from the issuer
   to the requester.

   This specification makes no statements on the content and format of
   the token returned from the Plasma server to the Plasma client in the
   wst:RequestSecurityTokenResponse field.  These tokens may be
   parseable by the client, but there is no requirement that the client
   be able to understand the token.  The token can always be treated as
   an opaque blob by the client which is simply reflected back to the
   server at a later time.  The attributes that client needs to
   understand in order to use the token, such as the life time, are
   returned as fields of the token response.

   TODO: need to discuss the content model and say what elements need to
   be supported and what elements can be ignored -- safely.

3.  Model

   To be supplied from the problem statement document.  [[CREF4: Should
   one be able to create a policy on the fly for specific item where a
   set of attributes can be defined by the sender of the message.
   --Brian]]



Schaad                   Expires August 18, 2014                [Page 6]



Internet-Draft                  EPS TRUST                  February 2014

                    (1)(3)     +----------+
                  +----------->|Sending   |<------------+
                  |            |Agent     |             |
             (2)  v            +----------+             v
            +----------+           ^               +---------+
            |Email     |           |               |Mail     |
            |Policy    |<----------+               |Transfer |
            |Service   |                           |Agent    |
            +----------+                           +---------+
             ()   ^            +----------+             ^
                  |            |Receiving |             |
                  +----------->|Agent     |<------------+
                    ()()       +----------+

                  Figure 1: Message Access Control Actors

   List the boxes above and give some info about them.

   Email Policy Service  is the gateway controller for accessing a
      message.  Although it is represented as a single box in the
      diagram, there is no reason for it to be in practice.  Each of the
      three protocols could be talking to different instances of a
      common system.  This would allow for a server to operated by
      Company A, but be placed in Company B's network thus reducing the
      traffic sent between the two networks.

   Mail Transfer Agent  is the entity or set of entities that is used to
      move the message from the sender to the receiver.  Although this
      document describes the process in terms of mail, any method can be
      used to transfer the message.

   Receiving Agent  is the entity that consumes the message.

   Sending Agent  is the entity that originates the message.

3.1.  Sender Processing

   We layout the general steps that need to be taken by the sender of an
   EPS message.  The numbers in the steps below refer to the numbers in
   the upper half of Figure 1.  A more detailed description of the
   processing is found in Section 7 for obtaining the security policies
   that can be applied to a messages and Section 8 for sending a
   message.

   1.  The Sending Agent sends a message to one or more Email Policy
       Services in order to obtain the set of policies that it can apply
       to a message along with a security token to be used in proving



Schaad                   Expires August 18, 2014                [Page 7]



Internet-Draft                  EPS TRUST                  February 2014

       the authorization.  Details of the message send can be found in
Section 7.1.

   2.  The Email Policy Service examines the set of policies that it
       understands and checks to see if the requester is authorized to
       send messages with the policy.

   3.  The Email Policy Service returns the set of policies and an
       security token to the Sending Agent.  Details of the message sent
       can be found in Section 7.2.

   4.  The Sending Agent selects the Email Policy(s) to be applied to
       the message, along with the set of recipients for the message.

   5.  The Sending Agent relays the selected information to the Email
       Policy Service along with the security token.  Details of this
       message can be found in Section 8.1.

   6.  The Email Policy Service creates the recipient info attribute as
       defined in [I-D.schaad-plasma-cms].

   7.  The Email Policy Service returns the created attribute to the
       Sending Agent.  Details of this message can be found in

Section 8.2.

   8.  The Sending Agent composes the CMS EnvelopedData content type
       placing the returned attribute into a KEKRecipientInfo structure
       and then send the message to the Mail Transport Agent.

3.2.  Recieving Agent Processing

   We layout the general steps that need to be taken by the sender of an
   EPS message.  The numbers in the steps below refer to the numbers in
   the lower half of Figure 1.  A more detailed description of the
   processing is found in Section 9.

   1.  The Receiving Agent obtains the message from the Mail Transport
       Agent.

   2.  The Receiving Agent starts to decode the message and in that
       process locates an EvelopedData content type which has a
       KEKRecipientInfo structure with a XXXX attribute.

   3.  The Receiving Agent processes the SignedData content of the XXXX
       attribute to determine that communicating with it falls within
       accepted policy.



Schaad                   Expires August 18, 2014                [Page 8]



Internet-Draft                  EPS TRUST                  February 2014

   4.  The Receiving Agent transmits the content of the XXXX attribute
       to the referenced Email Policy Service.  The details of this
       message can be found in Section 9.1.

   5.  The Email Policy Service decrypts the content of the message and
       applies the policy to the credentials provided by the Receiving
       Agent.

   6.  If the policy passes, the Email Policy Service returns the
       appropriate key or RecipientInfo structure to the Receiving
       Agent.  Details of this message can be found in Section 9.2.

   7.  The Receiving Agent proceeds to decrypt the message and perform
       normal processing.

4.  Protocol Overview

   The protocol defined in this document is designed to take place
   between a Plasma server and a Plasma client.  The protocol takes
   place in terms of a request/response dialog from the client to the
   server.  A single dialog can consist of more than one request/
   response message pair.  Multiple round trips within allow a client to
   provide additional authentication, authorization and attribute
   information to the server.

   Each dialog contains one or more action attributes specifying what
   actions the client wishes the server to take.  Depending on the
   action requested, additional attributes may be present providing data
   for the action to use as input.  Finally, each dialog will contain
   authentication and attributes supplied by one or more authorities
   that the server can use either as input to the action or as input to
   policy decisions about whether to perform the action.

   The protocol MUST be run over a secure transport, the secure
   transport is responsible for providing the confidentiality and
   integrity protection services over the entire message.  The protocol
   allows for signature operations to occur on sub-sections of the
   message structure, howewever this is used for creation of identity
   proofs and not for integrity protection.

   Multiple dialogs may be run over a single secure transport session.
   Before a new dialog may be started, the previous dialog MUST have
   completed to a state of success, failure or not applicable.  A new
   dialog MUST NOT be started after receiving a response with an
   indeterminate status.  If a new dialog is desired in these
   circumstances, then the transport session MUST to be closed and re-
   opened.  [[CREF5: --- I want to say that TLS reconnect using caching
   is OK here.  Is that a reasonable statement?  I don't think we want



Schaad                   Expires August 18, 2014                [Page 9]



Internet-Draft                  EPS TRUST                  February 2014

   to say that the server will keep Plasma session data across TLS
   sessions. --JLS]]

5.  Plasma Request

   The specification is written using XACML as the basic structure to
   frame a request for an operation.  The request for operations to
   occur are written using XACML action items.  This specification
   defines actions specific to Plasma in a CMS environment.  Other
   specifications can define additional action items for other
   environments (for example the XML encryption environment) or other
   purposes.  (Future work could use this basic structure to standardize
   the dialogs between PDPs and PAPs or to facilitate legal signatures
   on emails.)

   In addition to the XACML action request there is a set of structures
   to allow for a variety of authentication mechanisms to be used.  By
   allowing for the use of SAML and GSS-API as base authentication
   mechanisms, the mechanism used is contained in a sub-system and thus
   does not directly impact the protocol.

   The request message uses a single XML structure.  This structure is
   the eps:PlasmaRequest object.  The XML Schema used to describe this
   structure is:

     <xs:element name="PlasmaRequest" type="eps:RequestType"/>
     <xs:complexType name="RequestType">
       <xs:sequence>
         <xs:element ref="eps:Authentication" minOccurs="0"/>
         <xs:element ref="xacml:Request"/>
       </xs:sequence>
       <xs:attribute name="Version" type="xs:string" default="1.0"/>
     </xs:complexType>

   The RequestType has two elements in it:

   Authentication  is an optional element that holds the structures used
      for doing authentication and authorization.  Unless no
      authentication is required by the Plasma server, the element is
      going to exist for one or more requests in the dialog.

   xacml:Request  is a required element that contains the control
      information for the action requested.  The control information
      takes the form of an action request plus additional data to be
      used as part of the action request.  The data and actions are to
      be treated as self-asserted, that is they are deemed not to come
      from a reliable source even in the event that an authentication is
      successfully completed.  As self-asserted values, Plasma servers



Schaad                   Expires August 18, 2014               [Page 10]



Internet-Draft                  EPS TRUST                  February 2014

      need to exercise extreme care about which are included in the
      policy enforcement decisions.  As an example, it makes sense to
      allow for the action identifier to be included in the policy
      enforcement, but assertions about the identity of the subject
      should be omitted.  This element is taken from the XACML
      specification.

   For some operations, display string values are returned as part of
   the response from the server.  The xml:lang attribute SHOULD be
   included in the RequestType element to inform the server as to what
   language client wishes to have the strings in.  The server SHOULD
   attempt to return strings in the language requested or a related
   language if at all possible.

5.1.  Authentication Element

   One of the major goals in the Plasma work is to detach the process of
   authentication specifics from the Plasma protocol.  In order to
   accomplish this we are specifying the use of two general mechanisms
   (SAML and GSS-API) which can be configured and expanded without
   changing the core Plasma protocol itself.  The authentication element
   has two main purposes: 1) to process the authentication being used by
   the client and 2) to carry authenticated attributes for use in the
   policy evaluation.

   When transporting the authentication information, one needs to
   recognize that there may be a single or multiple messages in the
   dialog in order to complete the authentication process.  In
   performing the process of authenticating, any or all of the elements
   in this structure can be used.  If there are multiple elements filled
   out, the server can choose to process the elements in any order.
   This means that the Plasma protocol itself does not favor any
   specific mechanism.  The current set of mechanisms that are built
   into the Plasma specification are:

   o  SAML Assertions - many different types of SAML assertions are
      supported.  The specification uses both bearer and holder of key
      assertions.

   o  X.509 Certificates can be used for the purpose of authentication
      by creating a signature with the XML Digital Signature standard.

   o  GSS-API - the specification allows for the use of GSS-API in
      performing the authentication process.  The ABFAB mechanism in
      GSS-API is specifically designed for use in a federated community
      and allows for both authentication and attribute information to be
      queried from the identity server.



Schaad                   Expires August 18, 2014               [Page 11]



Internet-Draft                  EPS TRUST                  February 2014

   o  WS-Trust tokens allow for much of the same type of information to
      be passed as SAML assertions.  The Plasma specification has been
      designed mainly for the use of WS-Trust tokens to be used for
      caching prior authentication sessions.

   More than one authentication element can be present in any single
   message.  This is because a client may need to provide more than one
   piece of data to a server in order to authenticate, for example a
   holder of key SAML Assertion along with a signature created with that
   key.  Additionally a client may want to provide the server an option
   of different ways of doing the authentication.  In a federated
   scenario, an X.509 certificate with a signature can be presented and
   the server may not be able to build a trust path to it's set of trust
   anchors.  In this case the client may need to use the GSS-API/EAP
   protocol for doing the authentication.  The client may want to
   provide the server with one or more SAML Assertion that binds a
   number of attributes to it's identities so that the server does not
   need to ask for those attributes at a later time.  Finally, multiple
   entities may need to be validated (for example the user and the
   user's machine).

   When transporting the attribute information, one needs to recognize
   that there may be single or multiple messages in the dialog in order
   to complete the authorization process.  The server will return a
   status code of urn:oasis:names:xacml:1.0:status:missing-attribute in
   the event that one or more attributes are needed in order to complete
   the authorization process.  The details on how XACML returns missing
   attribute information is found in Section 7.17.3 of [XACML].  When
   the list of attributes is returned, the client has two choices: 1) It
   can close the dialog, look for a source of the missing attributes and
   then start a new dialog, 2) it can just get an assertion for the
   missing attributes and send the new assertion as in a new request
   message within the same dialog.  The decision of which process to use
   will depend in part on how long it is expected to take to get the new
   attribute assertion to be returned.

   The same authentication data does not need to be re-transmitted to
   the server in a subsequent message within a single dialog.  The
   server MUST retain all authenticated assertion information during a
   single dialog.

   The schema for the Authentication element directly maps to the
   ability to hold the above elements.  The schema for the
   Authentication element is:



Schaad                   Expires August 18, 2014               [Page 12]



Internet-Draft                  EPS TRUST                  February 2014

     <xs:element name="Authentication" type="eps:AuthenticationType"/>
     <xs:complexType name="AuthenticationType">
       <xs:choice maxOccurs="unbounded">
         <xs:element ref="saml:Assertion"/>
         <xs:element name="GSSAPI" type="xs:hexBinary"/>
         <xs:element name="RoleToken">
           <xs:complexType>
             <xs:sequence>
               <xs:any namespace="##any" processContents="lax"/>
             </xs:sequence>
           </xs:complexType>
         </xs:element>
         <xs:element ref="ds2:Signature"/>
         <xs:element name="Other">
           <xs:complexType>
             <xs:sequence>
               <xs:any namespace="##other"/>
             </xs:sequence>
           </xs:complexType>
         </xs:element>
       </xs:choice>
     </xs:complexType>

   The schema allows for multiple authentication elements to occur in
   any order.  It is suggested, but not required, that the ds2:Signature
   element occur after the authentication element that has an assoicated
   key.  This makes it easier for servers to make a one pass validate of
   all authentication elements.

   The Other element is provided to allow for additional authentication
   elements, include SAML version 1.1, to be used.

5.1.1.  SAML Assertion

   SAML Assertions can provide authentication or attribute information
   to the server.  A SAML statement only needs to be provided once
   during a single dialog, the server MUST remember all attributes
   during the dialog.

   When a SAML Assertion contains a SubjectConformation element using
   the KeyInfoConfirmationDataType as a subject conformation element,
   the confirmation shall be performed by the creation of an XML
   Signature authentication element.  The signature element shall be
   created using an appropriate algorithm for the key referenced in the
   SAML statement.



Schaad                   Expires August 18, 2014               [Page 13]



Internet-Draft                  EPS TRUST                  February 2014

   Identify a SAML statement in the delegation/subject/environment space
   - need text for this [[CREF6: I don't remember what this is supposed
   to be anymore. --JLS]]

5.1.2.  WS Trust Tokens

   WS Trust tokens are used in two different ways by this specification.
   They can be used as the primary introduction method of a client to
   the server, or they can be used by the server to allow the client to
   be re-introduced to the server in such a way that the server can use
   cached information.

   WS Trust tokens come in two basic flavors: Bearer tokens and Holder
   of Key tokens.  With the first flavor, presentation of the token is
   considered to be sufficient to allow the server to validate the
   identity of the presenter and know the appropriate attributes to make
   a policy decision.  In the second flavor some type of cryptographic
   operation (usually a signature or MAC computation) is needed in
   addition to just presenting the token.  The Signature element
   (Section 5.1.3) provides necessary infrastructure to permit the
   cryptographic result to be passed to the server.

   This document does not define the content or structure of any tokens
   to be used.  This is strictly an implementation issue for the servers
   in question.  This is because the client can treat the WS Token value
   presented to it as an opaque blob.[[CREF7: Is this totally true?
   Don't we need some kind of identifier so the server can indicate when
   the token can be replayed in a subsequence request?  E.g. give me
   these attributes or a foo token. --trevor]]  Only the servers need to
   understand how to process the blob.  However there are some
   additional fields which can be returned in addition to the token that
   need to be discussed:

   wst:TokenType  SHOULD be returned if more than one type of token is
      used by the set of servers.  If a token type is returned to the
      client, the client MUST include the element when the token is
      returned to the server.

   wst:BinarySecret  SHOULD be returned for moderate duration tokens.
      If a binary secret is returned then the client MUST provide
      protection for the secret value.  When a binary secret has been
      returned, then the client MUST create either a signature or MAC
      value and place it into the Signature element Section 5.1.3.
      [[CREF8: I don't know of any way to say use the asymmetric key
      that you authenticated with originally - can this be done?
      --JLS]].



Schaad                   Expires August 18, 2014               [Page 14]



Internet-Draft                  EPS TRUST                  February 2014

   wst:Lifetime  MUST be returned with the wsu:Expires element set.  The
      wsu:Created element MAY be included.  The element provides the
      client a way to know when a token is going to expire and obtain a
      new one as needed.

5.1.3.  XML Signature Element

   When a holder of key credential is used to determine the attributes
   associated with an entity, there is a requirement that the key be
   used in a proof of possession step so that the Plasma server can
   validate that the entity does hold the key.  The credentials can hold
   either asymmetric keys (X.509 certificates and SAML Assertions) or
   symmetric keys (WS Trust Tokens and SAML Assertions) which use
   Digital Signatures or Message Authentication Codes (MACs)
   respectively to create and validate a key usage statement.  The XML
   signature standard [XML-Signature] provides an infrastructure to for
   conveying the proof of possession information.

   The signature is computed over the XACML request element as a
   detached signature.  When a signature element exists in the message,
   the ChannelBinding attribute (Section 10.1.1) MUST be included in the
   request.  By the use of a value which is derived from the
   cryptographic keys used in for protecting the tunnel, it is possible
   for the server to verify that the authentication values computed were
   done specifically for this specific dialog and are not replayed.

   When creating either a signature or a MAC, the following statements
   hold:

   o  The canonicalization algorithm Canonical XML 1.1 [XML-C14N11]
      without comments MUST be supported and SHOULD be used in preparing
      the XML node set for hashing.  Other canonicalization algorithms
      MAY be used.

   o  The signature algorithms RSAwithSHA256 and ECDSAwithSHA256 MUST be
      supported by servers.  At least one of the algorithms MUST be
      supported by clients.  The MAC algorithm HMAC-SHA256 MUST be
      supported by both clients and servers.  Other signature and MAC
      algorithms MAY be supported.

   o  Set the additional attributes that must be included in a signature
      - what should they be?

   o  If an xacml:Request element is referenced by an XML Signature
      element, the xacml:Request element MUST include the ChannelBinding
      token (Section 10.1.1) as one of the attributes.



Schaad                   Expires August 18, 2014               [Page 15]



Internet-Draft                  EPS TRUST                  February 2014

   o  The keys used in computing the authentication value need to be
      identified for the recipient.  For X509 certificates, the full raw
      certificate will normally be included as part of the signature,
      but MAY be referenced instead.  For SAML assertions, the specific
      assertion carrying the asymmetric key can be identified by TBD
      HERE.  In the event that symmetric keys are used by holder of key
      assertions, the specific assertion will be identified by TBD HERE.
      In these cases the server is expected to be able to associated the
      key with the assertion by some means (either locally or perhaps
      encrypted into the assertion).

5.1.4.  GSS-API Element

   GSS-API [RFC2743] provides a security services to callers in a
   generic fasion, supportable with a range of underlying mechanisms and
   technologies.  GSS-API has been extended by providing a mechanism for
   EAP [RFC7055] which is designed to work in a federated environment.
   This effort was done by the Application Bridging for Federated Access
   Beyond web (ABFAB) working group.  In this document the mechanism is
   referred to as ABFAB.  This is the same type of environment that the
   Plasma protocol is expected to operate as well.

   GSS-API offers a number of security services that are not currently
   used by the Plasma system.  At this point in time we are only looking
   at the initial authentiction methods and not using the message
   encryption or encryption services.

   TBD - rules for using GSS-API in general and the EAP version from
   ABFAB particularly.

   o  How to build the name.

   o  Must use a secure tunnel for the outer EAP method and an
      appropriate inner EAP method(s) to accomplish the required level
      of authentication.

   o  Server query of attributes and specification of LOA to the EAP
      IdP.

   o  Any additional Trust model items.

   o  How round trips are accomplished - the only case that a server
      will send back an Authentication element is on return processing
      of GSS-API messages.

https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc7055


Schaad                   Expires August 18, 2014               [Page 16]



Internet-Draft                  EPS TRUST                  February 2014

5.1.4.1.  Generic Requirements

   Not all GSS-API mechanisms have the required features to support the
   necessary security that is needed by Plasma.  GSS-API mechanisms need
   to support the following features:

   o  The mechanism MUST support the binding of the TLS tunnel to the
      authentication via channel binding.

   o  Either the mechanism MUST support mutual authentication or the TLS
      tunnel MUST be usable to authenticate the server being talked to.
      Anonymous TLS sessions can be use when mutual authentication is
      provided by the GSS-API mechanism.

5.1.4.2.  GSS-EAP Requirements

   When forming a mechnism name for GSS-API the following guidelines
   SHOULD be followed:

   o  The user-or-service string is "plasma" (all in lower case).

   o  The host name is to be provided.  When obtained from the URL, the
      host name is to be the entire host name in the URL.

   o  There are currently no service-specific options defined.

   o  The realm name is OPTIONAL.  When obtained from the URL, the realm
      name is omitted.

   o  Realm and host names should be prepared according to [RFC5891]
      prior to passing them into GSS-API.

   Clients MUST use a tunneling EAP method that supports channel binding
   between the tunnel and the inner EAP methods.  At this point in time
   only the TEAP method [I-D.ietf-emu-eap-tunnel-method] provides the
   necessary support.  While any inner EAP method can be used, it is
   strongly recommended that only those methods that support generation
   of EMSK (extended master session keys) be used, however methods tht
   only support generation of a MSK (master session key) can be used.
   (A discussion of why EMSKs should be generated can be found in
   [RFC7029].)

   IdPs MUST support the EAP channel binding that is part of TEAP.  At a
   minimum the service name, host name and real names MUST be checked
   for matches between the information provided by the TEAP channel
   binding and the RADIUS attributes.

https://datatracker.ietf.org/doc/html/rfc5891
https://datatracker.ietf.org/doc/html/rfc7029


Schaad                   Expires August 18, 2014               [Page 17]



Internet-Draft                  EPS TRUST                  February 2014

5.1.4.3.  GSS-API Channel Bindings

   The calls to GSS_Init_sec_content and GSS_Accept_sec_context take a
   chan_bindings parameter.  The value is a GSS_CHANNEL_BINDINGS
   structure [RFC5554].

   The initiator-address-type and acceptor-address-type fields of the
   GSS-CHANNEL-BINDINGS structure MUST be set to 0.  The initiator-
   address and acceptor-address fields MUST be the empty string.

   The application-data field MUST be set to the channel binding value
   defined in Section 10.1.1.

5.2.  xacml:Request Element

   The request for an action to be performed by the Plasma server along
   with the data that needs to be supplied by the client in order for
   the server to complete the action are placed into the xacml:Request
   element of the request.  This document defines a set of actions that
   are to be understood by the Plasma server.  One (or more) action is
   to be placed in the request message.

   In addition to the request for a specific action to occur, the client
   can place additional attributes in the request as well.  These
   attributes are provided in order to assist the server either in
   identifying who the various agents on the client side are or to
   provide suggestions of attributes for using in making control
   decisions.  Any data provided by the client in this manner is to be
   considered as a self-asserted value and to be treated as if it comes
   from the client as oppose to a trusted attribute agent.

   For convenience the schema for the xacml:Request element is
   reproduced here:

<xs:element name="Request" type="xacml:RequestType"/>
<xs:complexType name="RequestType">
  <xs:sequence>
    <xs:element ref="xacml:RequestDefaults" minOccurs="0"/>
    <xs:element ref="xacml:Attributes" maxOccurs="unbounded"/>
    <xs:element ref="xacml:MultiRequests" minOccurs="0"/>
  </xs:sequence>
  <xs:attribute name="ReturnPolicyIdList" type="xs:boolean" use="required"/>
  <xs:attribute name="CombinedDecision" type="xs:boolean" use="required"/>
</xs:complexType>

   The RequestDefaults element of the XACML Request MUST be omitted by
   the clients.  If present servers MUST ignore the RequestDefaults

https://datatracker.ietf.org/doc/html/rfc5554


Schaad                   Expires August 18, 2014               [Page 18]



Internet-Draft                  EPS TRUST                  February 2014

   element.  The use of the MultiRequest element is current not defined
   for a Plasma server and SHOULD be omitted by clients.

   Clients MAY set ReturnPolicyIdList to true in order to find out which
   policies where used by the server in making the decision.  Server MAY
   ignore this field and not return the policy list even if requested.

   A number of different entities may need to be identified to Plasma
   server as part of a request.  These entities include:

   1.  The subject making the request to the server.

   2.  The machine on the subject is using.

   3.  The entity the subject is acting for.  Converse about Delegation.

6.  Plasma Response Element

   There is a single top level structure that is used by the server to
   respond to a client request.

   The XML Schema used to describe the top level response is as follows:

  <xs:element name="PlasmaResponse" type="eps:ResponseType"/>
  <xs:complexType name="ResponseType">
    <xs:sequence>
      <xs:element ref="xacml:Response"/>
      <xs:element ref="eps:PlasmaReturnToken" minOccurs="0" 
maxOccurs="unbounded"/>
    </xs:sequence>
    <xs:attribute name="Version" type="xs:string" default="1.0"/>
  </xs:complexType>
  <xs:element name="PlasmaReturnToken" type="eps:PlasmaReturnTokenType"/>
  <xs:complexType name="PlasmaReturnTokenType">
    <xs:sequence>
      <xs:any namespace="##any" processContents="lax"/>
    </xs:sequence>
    <xs:attribute name="DecisionId" type="xs:string"/>
  </xs:complexType>

   A Plasma Response has two elements:

   xacml:Response  is a mandatory element that returns the status of the
      access request.

   PlasmaReturnToken  is an optional element to return a token.  These
      tokens represent the answer, for a success, of the request.  If
      multiple tokens are being returned, then the element will occur
      mutiple times.



Schaad                   Expires August 18, 2014               [Page 19]



Internet-Draft                  EPS TRUST                  February 2014

   A Plasma Return Token is a wrapper for the actual token being
   returned.  The returned token may be any content.  This document
   defines the following elements that are to be returned in this
   location

   o  RoleToken - used to return roles.

   o  CMSMessageToken - used to return one or more CMS RecipientInfo
      strucutures.

   o  CMSKeyToken - used to return either a CMS RecipientInfo structure
      or a bare content encryption key.

   The PlasmaReturneTokenType has an optional attribute DecisionId.
   This attribute is used when in the case multiple requests are made at
   the same time in order to assoicate the rquest and the response
   tokens.

6.1.  xacml:Response Element

   The xacml:Response element has the ability to return both a decision,
   but additionally information about why a decision was not made.

   The schema for the xacml:Response element is reproduced here for
   convenience:

<xs:element name="Response" type="xacml:ResponseType"/>
<xs:complexType name="ResponseType">
  <xs:sequence>
    <xs:element ref="xacml:Result" maxOccurs="unbounded"/>
  </xs:sequence>
</xs:complexType>

<xs:element name="Result" type="xacml:ResultType"/>
<xs:complexType name="ResultType">
  <xs:sequence>
    <xs:element ref="xacml:Decision"/>
    <xs:element ref="xacml:Status" minOccurs="0"/>
    <xs:element ref="xacml:Obligations" minOccurs="0"/>
    <xs:element ref="xacml:AssociatedAdvice" minOccurs="0"/>
    <xs:element ref="xacml:Attributes" minOccurs="0" maxOccurs="unbounded"/>
    <xs:element ref="xacml:PolicyIdentifierList" minOccurs="0"/>
  </xs:sequence>
</xs:complexType>

   The xacml:Response element consists of one child the Result.

   The xacml:Response element consists of the following elements:



Schaad                   Expires August 18, 2014               [Page 20]



Internet-Draft                  EPS TRUST                  February 2014

   xacml:Decision  is a mandatory element that returns the possible
      decisions of the access control decision.  The set of permitted
      values are Permit, Deny, Indeterminate and No Policy.

   xacml:Status  is an optional element returned for the Indeterminate
      status which provides for the reason that a decision was not able
      to be reached.  Additionally it can contain hints for remedying
      the situation.  This document defines an additional set of status
      values to be returned.  Formal declaration may be found in

Section 15.

      *  gss-api indicates that a gss-api message has been returned as
         part of the authentication process.

   xacml:Obligations  is designed to force the PEP to perform specific
      actions prior to allowing access to the resource.  If a response
      is returned with this element present, the processing MUST fail
      unless the PEP can perform the required action.  A set of Plasma
      specific obligations are found in Section 10.2.  [[CREF9: What
      about audit obligatiouns --Trevor]]

   xacml:AssocatedAdvice  is designed to give suggestions to the PEP
      about performing specific actions prior to allowing access to the
      resource.  This element is not used by Plasma and SHOULD be
      absent.  If the response is returned with this element present,
      processing will succeed even if the PEP does not know how to
      perform the required action.  A set of Plasma specific advice
      elements are found in Section 10.2.

   xacml:Attributes  provides a location for the server to return
      attributes used in the access control evaluation process.  Only
      those attributes requested in the Attributes section of the
      request are to be returned.  Since Plasma does not generally
      supply attributes for the evaluation process, this field will
      normally be absent.

   xacml:PolicyIdentifierList  provides a location to return the set of
      policies used to grant access to the resource.  This element is
      expected to be absent for Plasma.  [[CREF10: Should we ignore it
      if present? --Trevor]][[CREF11: I don't think we need to say
      anything about looking at it or ignoring it.  While it would be
      something for debugging, as a general rule the client does not
      care which policies where evaluated and passed to grant access.
      --JLS]]



Schaad                   Expires August 18, 2014               [Page 21]



Internet-Draft                  EPS TRUST                  February 2014

7.  Role Token and Policy Acquisition

   In order to send an email using a Plasma server, the first step is to
   obtain a role token that provides the description of the labels that
   can be applied and the authorization to send an email using one or
   more of the labels.  The process of obtaining the role token is
   designed to be a request/response round trip to the Plasma server.
   In practice a number of round trips may be necessary in order to
   provide all of the identity and attributes to the Plasma server that
   are needed to evaluate the policies for the labels.

   When a Plasma server receives a role token request from a client, it
   needs to perform a policy evaluation for all of the policies that it
   arbitrates along with all of the options for those policies.  In
   general, the first time that a client requests a role token from the
   server, it will not know the level of authentication that is needed
   or the set of attributes that needs to be presented in order to get
   the set of tokens.  A server MUST NOT issue a role token without
   first attempting to retrieve from an attribute source (either the
   client or a back end server) all of the attributes required to check
   all policies.  Since the work load required on the server is expected
   to be potentially extensive for creating the role token, it is
   expected that the token returned will be valid for a period of time.
   This will allow for the frequency of the operation to be reduced.
   While the use of an extant role token can be used for identity proof,
   it is not generally suggested that a new token be issued without
   doing a full evaluation of the attributes of the client as either the
   policy or the set of client attributes may have changed in the mean
   time.

7.1.  Role Token Request

   The process starts by a client sending a server a role token request.
   Generally, but not always, the request will include some type of
   identity proof information and a set of attributes.  It is suggested
   that, after the first successful conversation, the client cache hints
   about the identity and attributes needed for a server.  This allows
   for fewer round trips in later conversations.  An example of a
   request token can be found in Appendix B.

   The role token request, as with all requests, uses the
   eps:PlasmaRequest XML structure.  The eps:Authentication MAY be
   included on the first message and MUST be included on subsequent
   authentication round trips.

   A role token request by a client MUST include the GetRoleTokens
   Plasma action request as an attribute of the xacml:Request element.
   Details on the action can be found in section Section 15.1.  When



Schaad                   Expires August 18, 2014               [Page 22]



Internet-Draft                  EPS TRUST                  February 2014

   role tokens are requested, no additional data needs to be supplied by
   the requester.

   An example of a message requesting the set of policy information is:

   <esp:PlasmaRequest>
     <eps:Authentication>...</eps:Authentication>
     <xacml:Request>
       <xacml:Attributes Category="...:action">
         <xacml:Attribute AttributeId="urn:plasma:action-id">
           <xacml:AttributeValue
              DataType="http://www.w3.org/2001/XMLSchema#string">
             GetRoleToken</xacml:AttributeValue>
         </xacml:Attribute>
       </xacml:Attributes>
     </xacml:Request>
   </esp:PlasmaRequest>

7.2.  Request Role Token Response

   In response to a role token request, the Plasma server returns a role
   token response.  The response uses the eps:PlasmaResponse XML
   structure.  When a response is create the following should be noted:

   An xacml:Decision is always included in a response.  The values
   permitted are:

   Permit  is used to signal success.  In this case the response MUST
      include one or more eps:RoleToken element.

   Deny  is used to signal failure.  In this case the xacml:Status
      element MUST be present an contain a failure reason.

   Indeterminate  is used to signal that a final result has not yet been
      reached.  When this decision is reached, the server SHOULD return
      a list of additional attributes to be returned and SHOULD return
      the list of role tokens that have been granted based on the
      attributes received to that point.

   NotApplicable  is returned if the Plasma server does not have the
      capability to issue role tokens.

   An example of a response returning the set of policy information is:



Schaad                   Expires August 18, 2014               [Page 23]



Internet-Draft                  EPS TRUST                  February 2014

  <eps:PlasmaResponse>
    <xacml:Response>
      <xacml:Result>
        <xacml:Decision>Permit</xacml:Decision>
      </xacml:Result>
    </xacml:Response>
    <eps:PlasmaTokens>
      <eps:PlasmaToken>
        <eps:PolicyList>
          <eps:Policy>
            Details of a policy
          </eps:Policy>
          ... More policies ...
          <wst:RequestSecurityTokenResponse>
            <wst:TokenType>urn:...:plasma:roleToken</wst:TokenType>
            <wst:RequestedSecurityToken>...</wst:RequestedSecurityToken>
          </wst:RequestSecurityTokenResponse>
        </eps:PolicyList>
      </eps:PlasmaToken>
    </eps:PlasmaTokens>
  </eps:PlasmaResponse>

   The process of getting role tokens has a problem that is not part of
   the normal XACML design.  It is possible to compute a partial result
   based on the current set of attributes that have been supplied by the
   client, while having other role tokens that cannot be provided to the
   client since required attributes have not been provided.  Since this
   is not part of the standard XACML model, one only has a single access
   /deny decision and if the attributes have not been provided then the
   response would be deny, we need to look at it in a bit more detail
   here.

   In the process of discussions three different solutions to the
   problem were considered:

      A signal could be added that allows for the client to signal that
      it cannot provide any more attributes to the server.  This would
      allow for a final decision to be provided, but would potentially
      involve an additional round trip as the set of attributes can be
      determined based on the set of attributes provided.  Supplying new
      attributes from the client can result in the server asking for new
      attributes from the client.  This is not currently supported by
      the XACML model and there is no clear point where it would go into
      our model.

      The server can return a partial result on each round trip.  This
      maps directly onto the XACML model, but leads to some other
      problems.  It means that all of the policies must be designed such



Schaad                   Expires August 18, 2014               [Page 24]



Internet-Draft                  EPS TRUST                  February 2014

      that adding a new attribute to the policy evaluation process will
      not cause a policy that previously had been permitted is now
      denied.

      A method could be added that allows for the client to state that
      it either does not have or does not know what an attribute is.
      This method would allow for the server to make a definitive
      answer, but it requires that one extra round trip be made to get
      the final answer.

   The normal mode that Plasma servers are expected to operate in is
   returning incremental results, however they can also keep internal
   state looking at what additional attributes are being provided by the
   client.  If the client provides no new attributes, then the server
   can return a set of role tokens close down the conversation.  If the
   server expects to get all attributes from the back end, and just get
   authentication from client, then it can return a set of role tokens
   immediately without providing a list of attributes to the client for
   it to try and satisfy.

7.2.1.  RoleToken XML element

   The eps:PlasmaReturnToken element is used to return a role token to
   the client.  Multiple role tokens can be returned by using multiple
   eps:PlasmaReturnToken elements.  Each role token returned contains
   one or more policies that can be asserted, the role token, and
   optionally one or more set of obligations or advice that need to be
   observed when creating messages.  Additionally the name of a Plasma
   server to be used with the token can be included as well as
   cryptographic information to be used with the token.

   The schema used for the PlasmaTokens element is:



Schaad                   Expires August 18, 2014               [Page 25]



Internet-Draft                  EPS TRUST                  February 2014

  <xs:element name="RoleToken" type="eps:RoleTokenType"/>
  <xs:complexType name="RoleTokenType">
    <xs:sequence>
      <xs:element name="FriendlyName" type="xs:string"/>
      <xs:element name="PDP" type="xs:anyURI" maxOccurs="unbounded"/>
      <xs:choice>
        <xs:element name="PolicyList">
          <xs:complexType>
            <xs:sequence>
              <xs:element name="Policy" type="eps:PolicyDescType" 
maxOccurs="unbounded"/>
            </xs:sequence>
          </xs:complexType>
        </xs:element>
        <xs:element ref="eps:Policy"/>
        <xs:element ref="eps:PolicySet"/>
      </xs:choice>
      <xs:element ref="wst:RequestSecurityTokenResponse"/>
      <xs:element ref="xacml:Obligations" minOccurs="0"/>
      <xs:element ref="xacml:AssociatedAdvice" minOccurs="0"/>
    </xs:sequence>
  </xs:complexType>
  <xs:complexType name="PolicyDescType">
    <xs:sequence>
      <xs:element name="FriendlyName" type="xs:string"/>
      <xs:element name="Options" minOccurs="0">
        <xs:complexType>
          <xs:complexContent>
            <xs:extension base="xs:anyType">
              <xs:attribute name="optionsType" type="xs:anyURI" use="required"/
>
            </xs:extension>
          </xs:complexContent>
        </xs:complexType>
      </xs:element>
    </xs:sequence>
    <xs:attribute name="PolicyId" type="xs:anyURI" use="required"/>
  </xs:complexType>

   The eps:RoleToken element contains the following items:

   FriendlyName  This element returns a descriptive name of the role as
      a whole.  The string returned SHOULD be selected based on the
      language attribute on the request message.  The string is suitable
      for display to the user and should be indicative of the scope of
      the role.  Examples of role descriptive strings would be "Company
      President", "Senior Executive", "Project X Electrical Engineer".



   PDP  The element provides one or more URLs to be used for contacting
      a Plasma server for the purpose of sending a message.  This

Schaad                   Expires August 18, 2014               [Page 26]



Internet-Draft                  EPS TRUST                  February 2014

      element allows for the use of different Plasma servers for issuing
      role tokens and message tokens.  No ranking of the servers is
      implied by the order of the URLs returned.[[CREF12: Should perhaps
      rename to be more understandable - perhaps Server --JLS]]

   PolicyList  contains the description of one or more policies that can
      be asserted using the issued role token.  Any of the policies
      contained in the list may be combined together using the policy
      logic in constructing a label during the send message process.

   Policy  contains a single simple policy.  This element is returned as
      part of a read message token.  The purposes is to allow for a
      recipient to reply to a message that they would not normally be
      able to assert.

   PolicySet  contains a complex policy.  This element is returned as
      part of a read message token The purpose is to allow for a
      recipient to reply to a message that they would not normally be
      able to assert.

   wst:RequestSecurityTokenResponse  contains the actual token itself.

   xacml:Obligations  This optional element contains a set of
      obligations that the client is required to enforce in order to use
      any of the policies listed when combined with the returned
      security token.  These obligations can include items such as
      required algorithms or required operational steps such as
      requiring a signature to be placed on the content.  A policy can
      be listed in multiple role tokens and the set of obligations may
      be different depending on which role token is used.  If the client
      is unable to fulfill the obligations then it MUST NOT allow the
      role token to be used.

   xacml:AssociatedAdvice  This optional element contains a set of
      advice statements that the client is requested to enforce when
      using any of the policies listed when combined with the returned
      security token.  This advice can include items such as encryption
      or signature algorithms or operational steps such as requiring a
      signature to be placed on the content.  The client is SHOULD
      fulfill the advice, however if it cannot fulfill the advice the
      role token may still be used.

   The eps:PolicyType type is used to represent the elements of a policy
   to the client.  The elements in this type are:

   FriendlyName  contains a display string that represents the policy.
      This element is localized in response to the xs:lang attribute in
      the eps:PlasmaRequest node.



Schaad                   Expires August 18, 2014               [Page 27]



Internet-Draft                  EPS TRUST                  February 2014

   PolicyId  contains a "unique" identifier for the policy.  This is the
      value that identifies the policy to the software.  The type for
      the value is defined as a URI.

   Options  This element is used to inform the client what the set of
      options that need to be filled in as part of asserting the policy.
      If the client software does not understand how to set the options
      for the supplied type, then the client software MUST NOT allow the
      user to assert the policy.  The option structure is identified by
      the URI in the optionsType attribute.  This document defines one
      option structure for holding a list of email addresses (section

Section 7.2.2).  This option structure is used in the basic
      policies defined in [PlasmaBasicPolicy].

   When building the wst:RequestSecurityTokenResponse element, the
   following should be noted:

      A wst:RequestedSecurityToken element containing the security token
      MUST be included.  The format of the security token is not
      specified and is implementation specific, it is not expected that
      clients should be able to get useful information from the token
      itself.  Information such as lifetimes need to be provided as
      addition elements in the response.  Examples of items that could
      be used as security tokens are SAML statements or encrypted record
      numbers in a server database.

      A wst:Lifetime giving the life time of the token SHOULD be
      included.  It is not expected that this should be determinable
      from the token itself and thus must be independently provided.
      There is no guarantee that the token will be good during the
      lifetime as it may get revoked due to changes in the environment
      (for example, if the policies are updated then all existing tokens
      may need to be re-issued), however the client is permitted to act
      as if it were.  The token provided may be used for duration.  If
      this element is absent, it should be assumed that the token is
      either a one time token or of limited duration.

      Talk about cryptographic information - There are three different
      types of crypto information that can be returned and we need to
      figure out how to talk about them.  These are 1) a symmetric key,
      2) a new asymmetric key and 3) a pre-existing asymmetric key - for
      example from the certificate used for authentication purposes.
      There is probably good ways to do 1 and 2, but I don't know how to
      talk about 3 at this point in time.



Schaad                   Expires August 18, 2014               [Page 28]



Internet-Draft                  EPS TRUST                  February 2014

7.2.2.  Email Address List Options

   Some policies are designed to be restricted to a set of explicitly
   named people by the sender of the message.  This policy is used for
   the set of basic policies defined in [PlasmaBasicPolicy].  In these
   cases the creator of the message specifies a set of recipients by
   using email address names without any decoration.

   The Email Address List Option is identified by the uri
   "urn:ietf:params:xml:ns:plasma:options:emailAddrs".  The type
   associated with the structure is a string.  The string contains a
   space separated set of internalized email addresses.  Domains SHOULD
   be encoded as U-labels rather than using puny code.

   All Plasma clients and servers MUST be able to create, parse and use
   the Email Address List Option for any policy.

   As of the release of this document, Plasma clients and servers are
   not expected to understand any other options.

8.  Sending An Email

   After having obtained a role token from a Plasma server, the client
   can then prepare to send an Email by requesting a message token from
   the Plasma server.  As part of the preparatory process, the client
   will construct the label to be applied to the Email from the set of
   policies that it can assert, determine the optional elements for
   those policies which have options, generate the random key encryption
   key and possible create the key recipient structures for the email.
   Although this section is written in terms of a CMS Encrypted message,
   there is nothing to prevent the specification of different formats
   and still use this same basic protocol.  An example of a send mail
   request token can be found in Appendix D.

8.1.  Send Message Request

   The send message request is built using the eps:PlasmaRequest XML
   structure.  When building the request, the following applies:

   o  The eps:Authentication element MUST be included in the initial
      message.  The role token that authorizes the use of the label MUST
      be included in the initial message.  If the role token is
      dependent on a cryptographic key for authentication, then that
      authentication MUST be included in the initial message.

   o  The client MUST include an action attribute.  This document
      defines the GetSendCMSToken action attribute for this purpose.



Schaad                   Expires August 18, 2014               [Page 29]



Internet-Draft                  EPS TRUST                  February 2014

   o  The client MUST include a data attribute.  This attribute contains
      the information that is used to build the CMS Message token to be
      returned.  There MAY be more than one data attribute, but this
      will not be a normal case.  More details on this attribute are in

Section 8.1.1.

   o  If the client is using the XML Digital Signature element in this
      message, then the client MUST include the cryptographic channel
      binding token (Section 10.1.1) in the set of XACML attributes.

   A message requesting that a CMS message token be created looks like
   this:

   <eps:PlasmaRequest>
     <eps:Authentication>
       <eps:WS_Token>
         Role Token goes here
       </eps:WS_Token>
       <xacml:Request>
         <xacml:Attributes Category="...:action">
           <xacml:Attribute AttributeId="urn:plasma:action-id">
             <xacml:AttributeValue>
               GetSendCMSToken
             </xacml:AttributeValue>
           </xacml:Attribute>
         </xacml:Attributes>
         <xacml:Attributes Category="...:data">
           <xcaml:Attribute AttributeId="urn:plasma:data-id">
             <xacml:AttributeValue>
               Label and keys
             </xacml:AttributeValue>
           </xcaml:Attribute>
         </xacml:Attributes>
       </xacml:Request>
     </eps:Authentication>
   </eps:PlasmaRequest>

8.1.1.  CMS Message Token Data Structure

   The message token data structure is used as an attribute to carry the
   necessary information to issue a CMS message token.  The schema that
   describes the structure is:



Schaad                   Expires August 18, 2014               [Page 30]



Internet-Draft                  EPS TRUST                  February 2014

  <xs:element name="GetCMSToken" type="eps:CMSTokenRequestType"/>
  <xs:complexType name="CMSTokenRequestType">
    <xs:sequence>
      <xs:choice>
        <xs:element ref="eps:Policy"/>
        <xs:element ref="eps:PolicySet"/>
      </xs:choice>
      <xs:element name="Hash">
        <xs:complexType>
          <xs:sequence>
            <xs:element ref="ds2:DigestMethod"/>
            <xs:element ref="ds2:DigestValue" maxOccurs="unbounded"/>
          </xs:sequence>
        </xs:complexType>
      </xs:element>
      <xs:element name="LockBox" type="eps:LockBoxType" minOccurs="0" 
maxOccurs="unbounded"/>
      <xs:element name="CEK" type="xs:hexBinary" minOccurs="0"/>
    </xs:sequence>
  </xs:complexType>
  <xs:element name="LockBox" type="eps:LockBoxType"/>
  <xs:complexType name="LockBoxType">
    <xs:sequence>
      <xs:element name="Subject" maxOccurs="unbounded">
        <xs:complexType>
          <xs:simpleContent>
            <xs:extension base="xs:anySimpleType">
              <xs:attribute name="type" type="xs:string" use="required"/>
            </xs:extension>
          </xs:simpleContent>
        </xs:complexType>
      </xs:element>
      <xs:choice>
        <xs:element name="CMSLockBox" type="xs:base64Binary"/>
        <xs:element name="XMLLockBox" type="xenc:EncryptedKeyType"/>
        <xs:any namespace="##other" processContents="lax"/>
      </xs:choice>
    </xs:sequence>
  </xs:complexType>

   When used in an xacml:Attribute, the structure is identified by:

   Category = "urn:ietf:params:xml:ns:plasma:data"
   AttributeId = "urn:ietf:params:xml:ns:plasma:data:CMSTokenRequest"
   DataType =
   "urn:ietf:params:xml:schema:plasma:1.0#CMSTokenRequestType"

   The elements of the structure are used as:



Schaad                   Expires August 18, 2014               [Page 31]



Internet-Draft                  EPS TRUST                  February 2014

   Policy
      This element contains a the policy to be applied to the message
      when a single policy is used.

   PolicySet
      This element contains the policy to be applied to the message when
      a combination of policies is to be applied.

   Hash
      This element contains the hash of the encrypted content of the
      message that the policy is being applied to.  The algorithm used
      to compute the hash is contained in the DigestMethod element and
      the value is contained in the DigestValue element.

   LockBox
      This optional element contains a pre-computed CMS recipient info
      structure for a message recipient.  This element may be repeated
      when more than one lock box is pre-computed for recipients by the
      message sender.  This element is used in those cases where the
      sender does not want to share the content encryption key with the
      Plasma server and the sender has the ability to retrieve the
      necessary keys for all of the recipients.  If the #### obligation
      was returned for the role token, then a recipient info lock box
      MUST be created for the Plasma server and the CEK element MUST
      absent.  [[CREF13: Do we define this obligation or remove the
      previous sentence? --JLS]]

   CEK
      This optional element contains the content encryption key (CEK) to
      decrypt the message.

   One or both of CEK and Recipients elements MUST be present.

   The elements of the LockBoxType structure are:

   Subject
      This element contains a subject identifier.  The element can occur
      more than one time in situations where a subject has multiple
      names or a key is used by multiple subjects.  Since a CMS
      recipient info structure does not contain a great deal of
      information about the recipient, this element contains a string
      which can be used to identify the subject.  The format of the
      subject name is provided by the required type attribute of the
      element.  All implementations MUST recognize
      "urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress" as a name
      type.  [[CREF14: Call for other mandatory to implement name types
      --JLS]] Other name types MAY be recognized.



Schaad                   Expires August 18, 2014               [Page 32]



Internet-Draft                  EPS TRUST                  February 2014

   CMSLockBox
      This element contains a base64 encoded CMS Recipient Info
      structure.  If the recipient info structure is placed here, it
      MUST NOT be placed in the CMS EnvelopedData structure as well.

   XMLLockBox
      This element contains an EncryptedKeyType structure as defined by
      the XML Encryption standard [W3C.WD-xmlenc-core1-20101130].  If
      this recipien structure is placed here, it MUST NOT placed in the
      XML EncryptedType struture as well.

   In addition, the structure allows for other formats of encrypted data
   structures to be included as well.  Servers which do not recognize
   the name space and data structure MUST return an unrecognized data
   structure error and not process the request.

8.1.2.  XML Label Structure

   A client is allowed to build a complex label to be sent to the Plasma
   server for evaluation.  While there are some cases that a simple
   single policy is applied to a message, it is expected that many, if
   not most, messages will have more than one policy applied to it with
   logical statements connected those policies.

   The schema for specifying a label is:

  <xs:element name="PolicySet" type="eps:PolicySetType"/>
  <xs:complexType name="PolicySetType">
    <xs:sequence>
      <xs:choice maxOccurs="unbounded">
        <xs:element ref="eps:Policy"/>
        <xs:element ref="eps:PolicySet"/>
      </xs:choice>
    </xs:sequence>
    <xs:attribute name="PolicyCombiningAlgId" type="xs:anyURI" use="required"/>
  </xs:complexType>
  <xs:element name="Policy" type="eps:PolicyType"/>
  <xs:complexType name="PolicyType">
    <xs:sequence>
      <xs:any namespace="##any" minOccurs="0" maxOccurs="unbounded"/>
    </xs:sequence>
    <xs:attribute name="PolicyId" type="xs:anyURI" use="required"/>
  </xs:complexType>

   The Policy and the PolicySet elements are used when specifying a
   policy for a message depending on whether a single policy or multiple
   policies are to be evaluated.



Schaad                   Expires August 18, 2014               [Page 33]



Internet-Draft                  EPS TRUST                  February 2014

   The Policy element is used to specify a single policy to the server
   along with any options that are defined for that policy.  The Policy
   element contains:

   PolicyId
      Is an attribute that contains the URI which identifies a specific
      policy to be evaluated.

   inner content
      The content of the Policy element can be any XML element.  The
      content is to be the set of selected options for the policy (if
      any exist).  The schema applied to the content is based on the
      policy selected.

   The PolicySet element is used to specify a logical set of policies to
   be applied to the message.  This element allows one to specify
   multiple policies along with a logic operation to combine them
   together.

   Policy
      This element allows for a single policy and any policy specific
      options for the policy to be specified.  This element can occur
      zero or more times.

   PolicySet
      This element allows for a logical set of policies to be
      recursively evaluated.  This element can occur zero or more times.

   PolicyCombiningAlgId
      This attribute specifies the operation to be used in combining the
      elements of the tree together.  This specification uses the XACML
      policy combining algorithms from [XACML].  Servers and clients
      MUST support the unordered Deny-Overrides and Permit-Overrides
      policy combining rules.  Servers SHOULD support all of the policy
      combining rules defined in [XACML].  Clients are expected to use a
      friendly name when displaying the policy combining rule to users.
      When displaying strings to users, the following strings are
      suggested:

      AND  Is used to represent either the ordered or unordered Deny-
         Overrides combining algorithm.

      OR Is used to represent either the ordered or unordered Permit-
         Overrides combining algorithm.



Schaad                   Expires August 18, 2014               [Page 34]



Internet-Draft                  EPS TRUST                  February 2014

8.2.  Send Message Response

   In response to a send message request, the Plasma server returns a
   send message response message.  The response messages uses the
   eps:PlasmaResponse XML structure.  When the response message is
   created, the following should be noted:

   o  The xacml:Decision is always included in the response.  If the
      'Permit' value is returned then a CMS Token Response element MUST
      be present.

   o  The PlasmaReturnToken element with a eps:CMSToken content is
      included with a permit response.  The CMSToken contains one or
      more CMS RecipientInfo objects to be included in the message sent.

   An example of a message returning the set of policy information is:

   <eps:PlasmaResponse>
     <xacml:Response>
       <xacml:Result>
         <xacml:Decision>Permit</xacml:Decision>
       </xacml:Result>
     </xacml:Response>
     <eps:CMSToken>234e34d3</eps:CMSToken>
   </eps:PlasmaResponse>

   The schema use for returning a CMS token is:

     <xs:element name="CMSToken" type="eps:CMSTokenResponseType"/>
     <xs:complexType name="CMSTokenResponseType">
       <xs:sequence>
         <xs:element name="CMSLockBox" maxOccurs="unbounded">
           <xs:complexType>
             <xs:simpleContent>
               <xs:extension base="xs:base64Binary">
                 <xs:attribute name="CMSType" type="xs:string"/>
               </xs:extension>
             </xs:simpleContent>
           </xs:complexType>
         </xs:element>
       </xs:sequence>
     </xs:complexType>

   This schema fragment extends the Plasma response token type and
   allows for the return of one or more base64 encoded RecipientInfo
   structures.  The Plasma server can return recipient info information
   for any recipient that it pre-authorizes to receive the message (see
   Section ### of [I-D.freeman-plasma-requirements] for examples of when



Schaad                   Expires August 18, 2014               [Page 35]



Internet-Draft                  EPS TRUST                  February 2014

   this would occur).  Additionally the Plasma server can return a
   KEKRecipientInfo structure with the Plasma Other Key attribute.  (For
   details see [I-D.schaad-plasma-cms].)  In some extremely rare cases
   where the Plasma server can pre-authorize the entire set of
   recipients , the KEKRecipientInfo structure with the Plasma Other Key
   Attribute may not be included in the returned set of recipients.  The
   recipient info structure for the plasma server SHOULD be placed last
   in the list of recipients infos.

   The CMSTokenResponse type has the following:

   CMSLockBox
      This element contains the ASN.1 encoding for a CMS RecipientInfo
      structure to be placed in the final message.  This element will
      occur multiple times if there are multiple CMS RecipientInfo
      structures being returned from the server.

   CMSType
      This attribute of the RecipientInfo structure is an optional text
      value that identifies the type of recipient info structure
      returned.  NOTE: This attribute is currently optional and is
      likely to disappear if I do not find it useful.

8.3.  XML Message Send Request

   It is possible to do a send message request for an XML rather than a
   CMS message structure.  The send message request is built using the
   eps:PlasmaRequest XML structure.  When building the request, the
   following applies:

   o  The eps:Authentication element MUST be included in the initial
      message.  The role token that authorizes the use of the label MUST
      be included in the initial message.  If the role token is
      dependent on a cryptographic key for authentication, then that
      authentication MUST be included in the initial message.

   o  The client MUST include an action attribute.  This document
      defines the GetSendXMLToken action attribute for this purpose.

   o  The client MUST include a data attribute.  This attribute contains
      the information that is used to build the XML Message token to be
      returned.  There MAY be more than one data attribute but that is
      not a normal case.  More details on this attribute are in

Section 8.1.1.

   o  If the client using the XML Digital Signature element in this
      message, then the client MUST include the cryptographic channel
      binding token (Section 10.1.1) in the set of the XACML attributes.



Schaad                   Expires August 18, 2014               [Page 36]



Internet-Draft                  EPS TRUST                  February 2014

8.4.  XML Message Send Response

   In response to a send message request, the Plasma server returns a
   send message response message.  The response messages uses the
   eps:PlasmaResponse XML structure.  When the response message is
   created, the following should be noted:

   o  The xacml:Decision is always included in the response.  If the
      'Permit' value is returned then a XML Token Response element MUST
      be present.

   o  The PlasmaReturnToken element with a eps:XMLToken content is
      included with a permit response.  The XMLToken contains one or
      more XML EncyptedKey objects to be included in the message sent.

        <xs:element name="XMLToken" type="eps:XMLTokenResponseType"/>
        <xs:complexType name="XMLTokenResponseType">
          <xs:sequence>
            <xs:element name="XMLLockBox" maxOccurs="unbounded" 
type="xenc:EncryptedKeyType"/>
          </xs:sequence>
        </xs:complexType>

9.  Decoding A Message

   When the receiving agent is ready to decrypt the email, it identifies
   that there is a KEKRecipientInfo object which contains a key
   attribute identified by id-keyatt-eps-token.  It validates the
   signature, determines that communicating with the Plasma Service is
   within local policy, and then sends a request to the service to
   obtain the decryption key for the message.

   In some cases the recipient of a message is not authorized to use the
   same set of labels for sending a message.  For this purpose a token
   can be returned in the message along with the key so that recipient
   of the can reply to the message using the same set of security
   labels.

9.1.  Requesting Message Key

   The client sends a request to the Plasma server that is identified in
   the token.  For the CMS base tokens, the address of the Plasma server
   to use is defined in [I-D.schaad-plasma-cms] this is located in the
   aa-eps-url attribute.

   The request uses the eps:PlasmaRequest XML structure.  When building
   the request, the following should be noted:



Schaad                   Expires August 18, 2014               [Page 37]



Internet-Draft                  EPS TRUST                  February 2014

   o  The xacml:Request MUST be present in the first message of the
      exchange.

   o  The action used to denote that a CMS token should be decrypted is
      "ParseCMSToken".

   o  The CMS token to be cracked is identified by "CMSToken"

   o  In the event that a reply to role token is wanted as well, then
      that is supplied as a separate action.  [[CREF15: We may want to
      require that a reply token always be returned instead of just
      returning it on demand. --jls]] In this case the action is
      "GetReplyToken".

   o  If the client is using the XML Digital Signature element in this
      message, then the client MUST include the cryptographic channel
      binding token (Section 10.1.1) in the set of XACML attributes.

   An example of a message returning the set of policy information is:

   <eps:PlasmaRequest>
     <eps:Authentication>...</eps:Authentication>
     <xacml:Request>
       <xacml:Attributes Category="...:action">
         <xacml:Attribute AttributeId="..:action-id">
           <xacml:AttributeValue>ParseCMSToken</xacml:AttributeValue>
         </xacml:Attribute>
       </xacml:Attributes>
       <xacml:Attribute Category="...:data">
         <xacml:Attribute AttreibuteId="..:data-id">
           <xacml:AttributeValue>
             Hex encoded CMS Token Value
           </xacml:AttributeValue>
         </xacml:Attribute>
       </xacml:Attribute>
     </xacml:Request>
   </eps:PlasmaRequest>

   When used in an xacml:Attribute, the structure is identified by:

   Category = "urn:ietf:params:xml:ns:plasma:data"
   AttributeId = "urn:ietf:params:xml:ns:plasma:data:CMSToken"
   DataType =
   "urn:ietf:params:xml:schema:plasma:1.0#CMSTokenResponseType



Schaad                   Expires August 18, 2014               [Page 38]



Internet-Draft                  EPS TRUST                  February 2014

9.2.  Requesting Message Key Response

   In response to a message key request, the Plasma server returns a
   decrypted key in the message key response.  The response message uses
   the eps:Plasma XML structure.  When a response message is create the
   following should be noted:

   o  If the value of xacml:Decision is Permit, then response MUST
      include an eps:CMSKey element.

   o  For all other decision types the eps:CMSKey MUST be absent.

   o  If a reply token was requested and granted, then the response MUST
      include an eps:PlasmaToken element.  The eps:PlasmaToken element
      MUST use the Label option

   o  Only the CEK and CMSLockBox elements in the choice are permitted
      for the CMSKey tag name.

   An example of a message returning the set of policy information is:

   <eps:PlasmaResponse>
     <xacml:Response>
       <xacml:Result>
         <xacml:Decision>Permit</xacml:Decision>
       </xacml:Result>
     </xacml:Response>
     <eps:CMSKey>
       <eps:DisplayString>Label TExt</eps:DisplayString>
       <eps:KEK>hex based KEK</eps:KEK>
     </eps:CMSKey>
   </eps:PlasmaResponse>

   The schema for returning the decrypted key is:



Schaad                   Expires August 18, 2014               [Page 39]



Internet-Draft                  EPS TRUST                  February 2014

  <xs:element name="CMSKey" type="eps:CMSKeyResponseType"/>
  <xs:complexType name="CMSKeyResponseType">
    <xs:sequence>
      <xs:element name="DisplayString" type="xs:string"/>
      <xs:choice>
        <xs:element name="CEK" type="xs:base64Binary"/>
        <xs:element name="CMSLockBox" type="xs:base64Binary"/>
                                <xs:element name="XMLLockBox" 
type="enc:EncryptedKeyType"/>
                                <xs:any namespace="##other" 
processContents="lax"/>
      </xs:choice>
      <xs:element ref="eps:RoleToken" minOccurs="0"/>
      <xs:element ref="xacml:Attributes" minOccurs="0" maxOccurs="unbounded"/>
    </xs:sequence>
  </xs:complexType>

   This schema extends the Plasma response token type and restricts the
   content to the listed elements.  The values returned are:

   DisplayString  returns a localized display string for the policy(s)
      which were applied to the message.  The lang attribute on the
      request is used to determine which language to use for this
      string.

   CEK  returns the base64 encoded content encryption key.

   CMSLockBox  returns the content encryption key in the form of a CMS
      RecipientInfo structure.

   XMLLockBox  returns the content encryption key in the form of an XML
      Encrypted Key type.

   RoleToken  optionally returns a role token for replying to this
      message.

   Attributes  optionally returns a set of attributes associated with
      the message.

   The structure allows for additional key types to be defined in other
   schemas and returned in this structure as well.  The set of allows
   lock boxes to be returned is restricted by the XML tag nd not the
   schema.

10.  Plasma Attributes

   In this document a number of different XACML attributes have been
   defined, this section provides a more detailed description of these
   elements.



Schaad                   Expires August 18, 2014               [Page 40]



Internet-Draft                  EPS TRUST                  February 2014

10.1.  Data Attributes

10.1.1.  Channel Binding Data Attribute

   The channel binding data attribute is used to provide for a binding
   of the TLS session that is being used to transport the Plasma
   messages with the content of the Plasma requests themselves.  There
   is a need for the server to be able to validate that the
   cryptographic operations related to holder of key statements be made
   specifically for the current conversation and not be left over from a
   previous one as a replay attack.  By deriving a cryptographic value
   from the shared TLS session key and signing that value we are able to
   do so.

   The channel binding value to be used is created by the TLS key
   exporter specification defined in RFC 5705 [RFC5705].  This allows
   for a new cryptographic value to be derived from the existing shared
   secret key with additional input to defined the context in which the
   key is being derived.  When using the exporter, the label to be input
   into the key exporter is "EXPORTER_PLASMA".  The value to be derived
   is 512 bits in length, and no context is provided to the exporter.

   When used as an XACML attribute in a request:

      The category of the attribute is
      "urn:ietf:params:xml:ns:plasma:data".

      The AttributeId attribute is
      "urn:ietf:params:xml:ns:plasma:data:ChannelBinding".

      The Issuer attribute is absent.

      The DataType is either base64Binary or hexBinary

   The same value is used for both the XACML channel binding data
   attribute and the XM1L channel binding structure defined in

Section 5.1.3.

10.1.2.  CMS Signer Info Data Attribute

   In many cases a policy states that the client is required to sign the
   message before encrypting it.  The server cannot verify that a
   signature is applied to the message and included, but we can require
   that a signature be supplied to the server.  This signature can then
   be validated by the server (except for the message digest attribute
   value), and the server can take a hash of the value and return it as
   part of the key returned to a decrypting agent.  This agent can then
   validate that the signature is a part of the message and complain if

https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5705


Schaad                   Expires August 18, 2014               [Page 41]



Internet-Draft                  EPS TRUST                  February 2014

   it absent.  This means we do not have an enforcement mechanism, but
   we do have a way of performing an audit at a later time to see that
   the signature operation was carried out correctly.

   By requiring that a signature be supplied to the server as part of
   the authentication process, the Plasma server can also be setup so
   that the supplied signature is automatically feed into archival
   operations.  One way to do archiving is to use the data records
   defined in [RFC4998].

   The following applies when this data value is present:

      The Category attribute is "urn:ietf:params:xml:ns:plasma:data".

      The AttributeId attribute is
      "urn:ietf:params:xml:ns:plasma:data:CMSSignerInfo".

      The Issuer attribute is absent.

      The DataType attribute is either base64Binary or hexBinary.

      The data value is a CMSSignerInfo ASN.1 encoded object.

10.1.3.  S/MIME Capabilities Data Attribute

   Policies sometimes require that specific algorithms be used in order
   to meet the security needs of the policy.  This attribute allows for
   an S/MIME Capabilities to be carried in a DER encoded
   SMIMECapabilities ASN.1 structure to be transmitted to the client.
   Details on how the S/MIME Capabilities function can be found in
   [RFC5751].

   The following attributes are to be set for the data value:

      The Category attribute is "urn:ietf:params:xml:ns:plasma:data".

      The AttributeId attribute is "urn:ietf:params:xml:ns:plasma:data
      :SMIME-Capabilties".

      The Issuer attribute is absent.

      The DataType attribute is either base64binary or hexBinary.

10.1.4.  EMAIL Recipient Addreses

   In order for Plasma Servers to do pre-authentication in the Email
   environment, it is necessary for the set of recipient addresses to be
   delivered to the Plasma Server.  The Plasma Server cannot reliably

https://datatracker.ietf.org/doc/html/rfc4998
https://datatracker.ietf.org/doc/html/rfc5751


Schaad                   Expires August 18, 2014               [Page 42]



Internet-Draft                  EPS TRUST                  February 2014

   determine the set of recipients from the policies set on the message
   as the set of recipients and the set of people authorized to view the
   message may not have a one-to-one correspondance.  People may be
   authorized to see the content who are not recipients of the message
   or visa versa.

   The content of the attribute is a space separated list of email
   addresses.  Each address represents an Email recipient address that
   the client will be placing in one or more of the recipient fields in
   the message submission.

   The following attributes are to be set for the data value:

      The Category for the attribute is
      "urn:ietf:params:xml:ns:plasma:data".

      The AttributeId for the attribute is
      "urn:ietf:params:xml:ns:plasma:data:SMTPRecipients".

      The Issuer for the attribute is absent.

      The DataType for the attribute is "http://www.w3.org/2001/
      XMLSchema#string".

10.1.5.  Return Lockbox Key Information

   Some policies require that the content encryption key be transported
   wrapped by another key rather than being sent in plain text.  This
   data value allows for this state to be indicated by the Plasma Server
   to the Plasma Client, and for the client to provide the necessary key
   information to the server.

   This data attribute is returned as a missing attribute under the
   circumstances where it is required by the policy and has not been
   provided the client.  This is an indication that the content
   encryption key needs to be returned in a lock box rather than as
   plain text.  The Plasma Server MAY ignore this data value if it is
   provided in a situation where the policy does not require that the
   content encryption key be returned in an encrypted form.

   The following attributes are to be set for this data value:

      The Category for the attribute is
      "urn:ietf:params:xml:ns:plasma:data".

      The AttributeId for the attribute is
      "urn:ietf:params:xml:ns:plasma:data:LockboxKey".



Schaad                   Expires August 18, 2014               [Page 43]



Internet-Draft                  EPS TRUST                  February 2014

      The issue for the attribute is absent.

      The DataType for the attribute is
      "urn:ietf:params:xml:schema:plasma:1.0LockboxKey".

   The schema for the type LockboxKey is:

  <xs:complexType name="LockboxKey">
    <xs:sequence>
      <xs:choice>
        <xs:element name="X509Certificate" type="xs:base64Binary"/>
        <xs:element name="PGPKey" type="xs:base64Binary"/>
        <xs:element ref="ds2:KeyInfo"/>
      </xs:choice>
      <xs:element name="Capabilities" type="xs:base64Binary" minOccurs="0"/>
    </xs:sequence>
  </xs:complexType>

   The fields of this structure are as follows:

   X509Certificate  holds a certificate with the public key to be used
      in building the CMS Lockbox returned containing the content
      encryption key.

   PGPKey  holds a PGP public key to be used in building the PGP lock
      box returned containing the content encryption key.

   ds2:KeyInfo  holds a public key to be used in building a CMS lock box
      returned containing the content encryption key.

   Capabilities  contains a base64 encoded SMimeCapablities ASN.1
      structure allowing the client to advertise to the server which
      algorithms are supported for building the lockbox structure.  This
      element is optional.  If the element is omitted then the server
      will make the selection of algorithms to be used based solely on
      the pubic key.

10.2.  Obligations and Advice

   Obligations and advice consist of actions that the Plasma server
   either requires or requests that the client PEP perform in order to
   gain access or before granting access to the data.  These normally
   represent actions or restrictions that the PDP itself cannot enforce
   and thus are not input attributes to the policy evaluation.  The same
   set of values can be used either as obligations or advice, the
   difference being that if the PEP cannot do an obligation it is
   required to change the policy decision.



Schaad                   Expires August 18, 2014               [Page 44]



Internet-Draft                  EPS TRUST                  February 2014

10.2.1.  Signature Required

   Many policies require that a message be signed before it is encrypted
   and sent.  Since the unencrypted version of message is not sent to
   the Plasma server, the policy cannot verify that a signature has been
   placed onto the signed message.  The attribute is not for use as a
   returned obligation from an XACML decisions, rather it is for a pre-
   request obligations used in role responses (Section 7.2).

   When used as an Obligation:

      The ObligationId attribute is
      "urn:ietf:params:xml:ns:plasma:obligation:signature-required".

      A S/MIME Capabilities data value can optionally be included.  If
      it is included, then it contains the set of S/MIME capabilities
      that describes the set of signature algorithms from which the
      signature algorithm for the message MUST be selected.

10.2.2.  Content Encryption Algorithm Required

   Occasionally a policy requires a specific set of encryption
   algorithms be used for a message, when this is the case then the
   encryption required obligation is included in the returned set of
   obligations.  If the default set of encryption algorithms is
   sufficient then the obligation is omitted.

   When used as an Obligation:

      The ObligationId attribute is
      "urn:ietf:params:xml:schema:plasma:1.0:obligation:content-
      encryption".

      An S/MIME Capabilities data value MUST be included containing the
      set of permitted encryption algorithms.  The algorithms included
      MUST include a sufficient set of algorithms for the message to be
      encrypted.  An absolute minimum would be a content encryption
      algorithm and key encryption algorithm.

10.2.3.  Lock Box Required

   This obligation will be used in one of two situations:

   1.  The policy requires that the plain content encryption key not be
       given to the Plasma server, but instead the Plasma client is
       required to locate the appropriate certificates and create lock
       boxes for each of the message recipients.  In this situation, the
       Plasma server would never have any access to the content



Schaad                   Expires August 18, 2014               [Page 45]



Internet-Draft                  EPS TRUST                  February 2014

       encryption key and thus would be unable to provide the key to any
       entity.  The Plasma server in this case is responsible only for
       the enforcement of the policy enforcement on the message access.

   2.  The policy requires that the content encryption key not be given
       to the Plasma server as a base64 encoded blob, but instead the
       Plasma client is required to use the provided certificate to
       create a lock box for the Plasma server.  In this situation, the
       Plasma server does have access to the content encryption key and
       thus has the ability to do late binding.  The Plasma server is
       also still responsible for the enforcement of the policy on
       message access.

   When used as an Obligation:

      The ObligationId attribute is
      "urn:ietf:params:xml:schema:plasma:1.0:obligation:lockbox-
      required".

      There is no data value when the client is required to create lock
      boxes for every recipient, i.e. early binding.

      The data value is an X509 certificate when the Plasma client is
      required to create a lock box for the Plasma server.  The
      certificate provided MUST have the Plasma CEK Transport EKU
      specified.

11.  Certificate Profiles

   We need to put in text to express the following items:

      DNS or IPAddr subject alt name to be present

      Have one of four EKUs

         Plasma Token EKU - Signals that it can sign and/or encrypt a
         plasma object

         Plasma Secure Session - Use for the TLS session

         Plasma CEK Transport - Used for transporting the CEK to the
         server in high security situations

      MUST NOT have the anyPolicy EKU set



Schaad                   Expires August 18, 2014               [Page 46]



Internet-Draft                  EPS TRUST                  February 2014

12.  Message Transmission

   Plasma messages are sent over a TCP connection using port TBD1 on the
   server.  The client first setups up TLS on the connection, then sends
   the UTF8 encoded XML message over the TLS connection as an atomic
   message.  The XML MUST be encoded as UTF8, however the Byte Order
   Mark (BOM) is sent.  The response comes back on the same connection.
   The client is responsible for closing the TLS session and the TCP
   connection when either no more messages are to be sent to the server
   or a final indeterminate state has been reached.

   If a Plasma server receives an XML request which is not well formed
   XML, the server if free to close the connection without first sending
   an error reply.

   The Plasma server SHOULD support TLS resumption [RFC5077].

   Plasma clients and server MUST support TLS 1.1 [RFC4346] and above.
   Implementations SHOULD NOT allow for the use of TLS 1.0 or SSL.

13.  Plasma URI Scheme

13.1.  Plasma URI Schema Syntax

   The scheme name for is "plasma".

   The syntax for the plasma URI Schema is:

   URI = "plasma" ":" "//" authority path-empty

   Using the ABNF defined in [RFC3986].  When the port component is
   absent, then the value of TBD1 will be used.  The userinfo portion of
   the authority MUST be absent.

13.2.  Definition of Operations

   This schema is defined to provide the location of a Plasma server.
   The sole operation is to establish a connection to the Plasma server
   over which the protocol defined in this document is to run.

14.  Security Considerations

   To be supplied after we have a better idea of what the document looks
   like.

https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc3986


Schaad                   Expires August 18, 2014               [Page 47]



Internet-Draft                  EPS TRUST                  February 2014

14.1.  Plasma URI Schema Considerations

   TBD

15.  IANA Considerations

   We define the following name spaces

   New name space for the plasma documents urn:ietf:params:xml:ns:plasma

15.1.  Plasma Action Values

   A new registry is established for Plasma server action identifiers
   using the tag "actions".  The full urn for the registry is
   "urn:ietf:params:xml:ns:plasma:actions".  This registry operates
   under a specification required policy.  All entries in this registry
   require the following elements:

   o  A string in camel case which identifies the action to be
      performed.

   o  An optional XML data structure used to carry the control data for
      the action.

   o  An optional XML data structure used to return the result of the
      action from the server.

   o  A document reference describing the steps to be taken by the
      server.

   The registry will be initially populated with the following:

         +-----------------+-----------------+------------------+
         | Action Id       | Input Structure | Output Structure |
         +-----------------+-----------------+------------------+
         | GetRoleTokens   | none            | eps:RoleToken    |
         |                 |                 |                  |
         | GetSendCMSToken | eps:GetCMSToken | eps:CMSLockBox   |
         |                 |                 |                  |
         | ParseCMSToken   | eps:CMSLockBox  | eps:CMSKey       |
         |                 |                 |                  |
         | GetReplyToken   | none            | eps:RoleToken    |
         +-----------------+-----------------+------------------+

   When these actions are placed in an xacml:Request,

   o  the Category is "urn:oasis:names:tc:xacml:3.0:attribute-
      category:action",



Schaad                   Expires August 18, 2014               [Page 48]



Internet-Draft                  EPS TRUST                  February 2014

   o  the AttributeId is "urn:ietf:params:xml:ns:plasma:actions",

   o  the DataType is "http://www.w3.org/2001/XMLSchema#string"

15.2.  non

   Define a new data name space urn:ietf:params:xml:ns:plasma:data

      CMSToken

      ChannelBinding

      SMIME-Capabilities

   Define a new name space for status codes at
   urn:ietf:params:xml:ns:plasma:status.  The initial set of values is

   authentication-error  This identifier indicates that the
      authentication methods failed to successfully complete.

   Define a new name space for obligations.  The same namespace will be
   used both for obligations and for advice and the values may appear in
   either section.

   signature-required  This identifier indicates that that the encrypted
      body must contain a signature element.  The data value of this
      type shall be "http://www.w3.org/2001/XMLSchema#hexBinary" and the
      data structure shall consist of a DER encoded CMSCapabilities
      structure [RFC5751] with the list of permitted signature
      algorithms.  If there are no restrictions on the algorithms or the
      restriction is implicit, then the data value MAY be omitted.

   encryption-algorithms  see above

   ambigous-identity  The identity of the client is either not stated in
      a form the Plasma server understands, or there are multiple
      identities in the authentication data.  To remedy this situation,
      the client includes an explicit identity in the xacml:Reqeust
      element.

   We define a schema in appendix A at
   urn:ietf:params:xml:schema:plasma:1.0:RFCTBD

   Define a new Status Code for use in the Status URI field.

      urn:ietf:params:xml:ns:plasma:status:gss-api-response - This
      status is returned only with Indefinite responses.  Indicates a

https://datatracker.ietf.org/doc/html/rfc5751


Schaad                   Expires August 18, 2014               [Page 49]



Internet-Draft                  EPS TRUST                  February 2014

      GSS-API response object was returned in the GSSAPIResponse token
      type.  Will return until authentication has been completed.

15.3.  Port Assignment

   We request that IANA assign a new port for the use of this protocol.

   Service name: plasma

   Port Number: TBD1

   Transport Protocol: TCP

   Description: Plasma Service Protocol

   Reference: This document

   Assignee: iesg@ietf.org

   Contact: chair@ietf.org

   Notes: The protocol requires that TLS be used to communicate over
   this port.  There is no provision for unsecure messages to be sent to
   this protocol.

16.  Open Issues

   List of Open Issues:

   o  JLS: Should we require that any SignatureProperty be present for
      XML Signature elements?

   o  JLS: Need to figure out an appropriate way to reference the
      assertion from a dig sig element.  Could use a special version of
      RetrievalMethod with a transform, but that does not seem correct.
      May need to define a new KeyInfo structure to do it.

   o  JLS: Should X.509 certificates and attribute certificates be fully
      specified as an authentication method?

   o  JLS: Should a SignerInfo attribute be placed under the access-
      subject Category for a senders version and under Environment for a
      machine version?  Currently both are under Data

   o  JLS: Need an obligation to say that CEK must be encrypted.  Do we
      also need to have recipient info structures encrypted?



Schaad                   Expires August 18, 2014               [Page 50]



Internet-Draft                  EPS TRUST                  February 2014

17.  References

17.1.  Normative References

   [ABFAB]    Hartman, S. and J. Howlett, "A GSS-API Mechanism for the
              Extensible Authentication Protocol", Work In Progress

draft-ietf-abfab-gss-eap-04, Oct 2011.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [I-D.schaad-plasma-cms]
              Schaad, J., "Email Policy Service ASN.1 Processing", Work
              In Progress draft-schaad-plamsa-cms, Jan 2011.

   [XML-Signature]
              Roessler, T., Reagle, J., Hirsch, F., Eastlake, D., and D.
              Solo, "XML Signature Syntax and Processing (Second
              Edition)", World Wide Web Consortium Recommendation REC-
              xmldsig-core-20080610, June 2008,
              <http://www.w3.org/TR/2008/REC-xmldsig-core-20080610>.

   [XML-C14N11]
              Boyer, J. and G. Marcy, "Canonical XML Version 1.1", World
              Wide Web Consortium Recommendation REC-xml-
              c14n11-20080502, May 2008,
              <http://www.w3.org/TR/2008/REC-xml-c14n11-20080502>.

   [WS-TRUST]
              Lawrence, K., Kaler, C., Nadalin, A., Goodner, M., Gudgin,
              M., Barbir, A., and H. Granqvist, "WS-Trust 1.4", OASIS
              Standard ws-trust-200902, March 2007,
              <http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/

ws-trust.html>.

   [XACML]    Rissanen, E., Ed., "eXtensible Access Control Markup
              Language (XACML) Version 3.0", OASIS Standard
              xacml-201008, August 2010, <http://docs.oasis-open.org/

xacml/3.0/xacml-3.0-core-spec-cs-01.en.doc>.

   [I-D.freeman-plasma-requirements]
              Freeman, T., Schaad, J., and P. Patterson, "Requirements
              for Message Access Control", Work in progress draft-

freeman-message-access-control, October 2011.

https://datatracker.ietf.org/doc/html/draft-ietf-abfab-gss-eap-04
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-schaad-plamsa-cms
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610
http://www.w3.org/TR/2008/REC-xml-c14n11-20080502
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01.en.doc
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01.en.doc
https://datatracker.ietf.org/doc/html/draft-freeman-message-access-control
https://datatracker.ietf.org/doc/html/draft-freeman-message-access-control


Schaad                   Expires August 18, 2014               [Page 51]



Internet-Draft                  EPS TRUST                  February 2014

   [OASIS-CORE]
              Cantor, S., Ed., Kemp, J., Ed., Philpott, R., Ed., and E.
              Maler, Ed., "Assertions and Protocols for the OASIS
              Security Assertion Markup Language (SAML) V2.0", OASIS
              Standard saml-core-2.0-os, March 2005.

   [RFC5705]  Rescorla, E., "Keying Material Exporters for Transport
              Layer Security (TLS)", RFC 5705, March 2010.

   [RFC5751]  Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
              Mail Extensions (S/MIME) Version 3.2 Message
              Specification", RFC 5751, January 2010.

   [RFC7055]  Hartman, S. and J. Howlett, "A GSS-API Mechanism for the
              Extensible Authentication Protocol", RFC 7055, December
              2013.

17.2.  Informative References

   [RFC5554]  Williams, N., "Clarifications and Extensions to the
              Generic Security Service Application Program Interface
              (GSS-API) for the Use of Channel Bindings", RFC 5554, May
              2009.

   [RFC2743]  Linn, J., "Generic Security Service Application Program
              Interface Version 2, Update 1", RFC 2743, January 2000.

   [RFC4346]  Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.1", RFC 4346, April 2006.

   [RFC4998]  Gondrom, T., Brandner, R., and U. Pordesch, "Evidence
              Record Syntax (ERS)", RFC 4998, August 2007.

   [RFC5077]  Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
              "Transport Layer Security (TLS) Session Resumption without
              Server-Side State", RFC 5077, January 2008.

   [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
              Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, January 2005.

   [SAML-XACML]
              Anderson, A., Ed. and H. Lockhart, Ed., "SAML 2.0 profile
              of XACML v2.0", OASIS Standard access_control-xacml-2.0
              -saml-profile-spec-os.pdf, February 2005.

   [PlasmaBasicPolicy]
              Anon, A., "IETF Defined Plasma Policies", February 2005.

https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5751
https://datatracker.ietf.org/doc/html/rfc7055
https://datatracker.ietf.org/doc/html/rfc5554
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc4998
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986


Schaad                   Expires August 18, 2014               [Page 52]



Internet-Draft                  EPS TRUST                  February 2014

   [SOAP11]   Box, D., Ehnebuske, D., Kakivaya, G., Layman, A.,
              Mendelsohn, N., Nielsen, H., Thatte, S., and D. Winer,
              "Simple Object Access Protocol (SOAP) 1.1", W3C NOTE NOTE-
              SOAP-20000508, May 2000.

   [SOAP12]   Lafon, Y., Gudgin, M., Hadley, M., Moreau, J., Mendelsohn,
              N., Karmarkar, A., and H. Nielsen, "SOAP Version 1.2 Part
              1: Messaging Framework (Second Edition)", World Wide Web
              Consortium Recommendation REC-soap12-part1-20070427, April
              2007,
              <http://www.w3.org/TR/2007/REC-soap12-part1-20070427>.

   [I-D.ietf-emu-eap-tunnel-method]
              Zhou, H., Cam-Winget, N., Salowey, J., and S. Hanna,
              "Tunnel EAP Method (TEAP) Version 1", draft-ietf-emu-eap-

tunnel-method-09 (work in progress), September 2013.

   [RFC7029]  Hartman, S., Wasserman, M., and D. Zhang, "Extensible
              Authentication Protocol (EAP) Mutual Cryptographic
              Binding", RFC 7029, October 2013.

   [RFC5891]  Klensin, J., "Internationalized Domain Names in
              Applications (IDNA): Protocol", RFC 5891, August 2010.

   [W3C.WD-xmlenc-core1-20101130]
              Roessler, T., Reagle, J., Hirsch, F., and D. Eastlake,
              "XML Encryption Syntax and Processing Version 1.1", World
              Wide Web Consortium LastCall WD-xmlenc-core1-20101130,
              November 2010,
              <http://www.w3.org/TR/2010/WD-xmlenc-core1-20101130>.

Appendix A.  XML Schema

   This appendix represents the entirety of the XML Schema for Plasma
   documents.

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSpy v2007 rel. 3 sp1 (http://www.altova.com) by James 
Schaad (exmsft) -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 
xmlns:xacml="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17" xmlns:wst="http://
schemas.xmlsoap.org/ws/2005/02/trust" xmlns:eps="urn:ietf:params:ns:plasma:1.0" 
xmlns:ds2="http://www.w3.org/2000/09/xmldsig#" 
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion" xmlns:xenc="http://
www.w3.org/2001/04/xmlenc#" targetNamespace="urn:ietf:params:ns:plasma:1.0" 
elementFormDefault="qualified" attributeFormDefault="unqualified">
  <xs:annotation>
    <xs:documentation>
    The PlasmaRequest element is one of two top level elements defined by this 

http://www.w3.org/TR/2007/REC-soap12-part1-20070427
https://datatracker.ietf.org/doc/html/draft-ietf-emu-eap-tunnel-method-09
https://datatracker.ietf.org/doc/html/draft-ietf-emu-eap-tunnel-method-09
https://datatracker.ietf.org/doc/html/rfc7029
https://datatracker.ietf.org/doc/html/rfc5891
http://www.w3.org/TR/2010/WD-xmlenc-core1-20101130
http://www.altova.com


XSD schema.
    The PlasmaRequest element is sent from the client to the server in order to
  </xs:documentation>
  </xs:annotation>
  <xs:element name="PlasmaRequest" type="eps:RequestType"/>
  <xs:complexType name="RequestType">
    <xs:sequence>

Schaad                   Expires August 18, 2014               [Page 53]



Internet-Draft                  EPS TRUST                  February 2014

      <xs:element ref="eps:Authentication" minOccurs="0"/>
      <xs:element ref="xacml:Request"/>
    </xs:sequence>
    <xs:attribute name="Version" type="xs:string" default="1.0"/>
  </xs:complexType>
  <xs:element name="PlasmaResponse" type="eps:ResponseType"/>
  <xs:complexType name="ResponseType">
    <xs:sequence>
      <xs:element ref="xacml:Response"/>
      <xs:element ref="eps:PlasmaReturnToken" minOccurs="0" 
maxOccurs="unbounded"/>
    </xs:sequence>
    <xs:attribute name="Version" type="xs:string" default="1.0"/>
  </xs:complexType>
  <xs:element name="PlasmaReturnToken" type="eps:PlasmaReturnTokenType"/>
  <xs:complexType name="PlasmaReturnTokenType">
    <xs:sequence>
      <xs:any namespace="##any" processContents="lax"/>
    </xs:sequence>
    <xs:attribute name="DecisionId" type="xs:string"/>
  </xs:complexType>
  <xs:element name="Authentication" type="eps:AuthenticationType"/>
  <xs:complexType name="AuthenticationType">
    <xs:choice maxOccurs="unbounded">
      <xs:element ref="saml:Assertion"/>
      <xs:element name="GSSAPI" type="xs:hexBinary"/>
      <xs:element name="RoleToken">
        <xs:complexType>
          <xs:sequence>
            <xs:any namespace="##any" processContents="lax"/>
          </xs:sequence>
        </xs:complexType>
      </xs:element>
      <xs:element ref="ds2:Signature"/>
      <xs:element name="Other">
        <xs:complexType>
          <xs:sequence>
            <xs:any namespace="##other"/>
          </xs:sequence>
        </xs:complexType>
      </xs:element>
    </xs:choice>
  </xs:complexType>
  <xs:element name="RoleToken" type="eps:RoleTokenType"/>
  <xs:complexType name="RoleTokenType">
    <xs:sequence>
      <xs:element name="FriendlyName" type="xs:string"/>
      <xs:element name="PDP" type="xs:anyURI" maxOccurs="unbounded"/>



      <xs:choice>

Schaad                   Expires August 18, 2014               [Page 54]



Internet-Draft                  EPS TRUST                  February 2014

        <xs:element name="PolicyList">
          <xs:complexType>
            <xs:sequence>
              <xs:element name="Policy" type="eps:PolicyDescType" 
maxOccurs="unbounded"/>
            </xs:sequence>
          </xs:complexType>
        </xs:element>
        <xs:element ref="eps:Policy"/>
        <xs:element ref="eps:PolicySet"/>
      </xs:choice>
      <xs:element ref="wst:RequestSecurityTokenResponse"/>
      <xs:element ref="xacml:Obligations" minOccurs="0"/>
      <xs:element ref="xacml:AssociatedAdvice" minOccurs="0"/>
    </xs:sequence>
  </xs:complexType>
  <xs:complexType name="PolicyDescType">
    <xs:sequence>
      <xs:element name="FriendlyName" type="xs:string"/>
      <xs:element name="Options" minOccurs="0">
        <xs:complexType>
          <xs:complexContent>
            <xs:extension base="xs:anyType">
              <xs:attribute name="optionsType" type="xs:anyURI" use="required"/
>
            </xs:extension>
          </xs:complexContent>
        </xs:complexType>
      </xs:element>
    </xs:sequence>
    <xs:attribute name="PolicyId" type="xs:anyURI" use="required"/>
  </xs:complexType>
  <xs:element name="PolicySet" type="eps:PolicySetType"/>
  <xs:complexType name="PolicySetType">
    <xs:sequence>
      <xs:choice maxOccurs="unbounded">
        <xs:element ref="eps:Policy"/>
        <xs:element ref="eps:PolicySet"/>
      </xs:choice>
    </xs:sequence>
    <xs:attribute name="PolicyCombiningAlgId" type="xs:anyURI" use="required"/>
  </xs:complexType>
  <xs:element name="Policy" type="eps:PolicyType"/>
  <xs:complexType name="PolicyType">
    <xs:sequence>
      <xs:any namespace="##any" minOccurs="0" maxOccurs="unbounded"/>
    </xs:sequence>
    <xs:attribute name="PolicyId" type="xs:anyURI" use="required"/>



  </xs:complexType>
  <xs:element name="GetCMSToken" type="eps:CMSTokenRequestType"/>

Schaad                   Expires August 18, 2014               [Page 55]



Internet-Draft                  EPS TRUST                  February 2014

  <xs:complexType name="CMSTokenRequestType">
    <xs:sequence>
      <xs:choice>
        <xs:element ref="eps:Policy"/>
        <xs:element ref="eps:PolicySet"/>
      </xs:choice>
      <xs:element name="Hash">
        <xs:complexType>
          <xs:sequence>
            <xs:element ref="ds2:DigestMethod"/>
            <xs:element ref="ds2:DigestValue" maxOccurs="unbounded"/>
          </xs:sequence>
        </xs:complexType>
      </xs:element>
      <xs:element name="LockBox" type="eps:LockBoxType" minOccurs="0" 
maxOccurs="unbounded"/>
      <xs:element name="CEK" type="xs:hexBinary" minOccurs="0"/>
    </xs:sequence>
  </xs:complexType>
  <xs:element name="LockBox" type="eps:LockBoxType"/>
  <xs:complexType name="LockBoxType">
    <xs:sequence>
      <xs:element name="Subject" maxOccurs="unbounded">
        <xs:complexType>
          <xs:simpleContent>
            <xs:extension base="xs:anySimpleType">
              <xs:attribute name="type" type="xs:string" use="required"/>
            </xs:extension>
          </xs:simpleContent>
        </xs:complexType>
      </xs:element>
      <xs:choice>
        <xs:element name="CMSLockBox" type="xs:base64Binary"/>
        <xs:element name="XMLLockBox" type="xenc:EncryptedKeyType"/>
        <xs:any namespace="##other" processContents="lax"/>
      </xs:choice>
    </xs:sequence>
  </xs:complexType>
  <xs:element name="CMSKey" type="eps:CMSKeyResponseType"/>
  <xs:complexType name="CMSKeyResponseType">
    <xs:sequence>
      <xs:element name="DisplayString" type="xs:string"/>
      <xs:choice>
        <xs:element name="CEK" type="xs:base64Binary"/>
        <xs:element name="CMSLockBox" type="xs:base64Binary"/>
                                <xs:element name="XMLLockBox" 
type="enc:EncryptedKeyType"/>
                                <xs:any namespace="##other" 



processContents="lax"/>
      </xs:choice>
      <xs:element ref="eps:RoleToken" minOccurs="0"/>

Schaad                   Expires August 18, 2014               [Page 56]



Internet-Draft                  EPS TRUST                  February 2014

      <xs:element ref="xacml:Attributes" minOccurs="0" maxOccurs="unbounded"/>
    </xs:sequence>
  </xs:complexType>
  <xs:element name="CMSToken" type="eps:CMSTokenResponseType"/>
  <xs:complexType name="CMSTokenResponseType">
    <xs:sequence>
      <xs:element name="CMSLockBox" maxOccurs="unbounded">
        <xs:complexType>
          <xs:simpleContent>
            <xs:extension base="xs:base64Binary">
              <xs:attribute name="CMSType" type="xs:string"/>
            </xs:extension>
          </xs:simpleContent>
        </xs:complexType>
      </xs:element>
    </xs:sequence>
  </xs:complexType>
  <xs:complexType name="LockboxKey">
    <xs:sequence>
      <xs:choice>
        <xs:element name="X509Certificate" type="xs:base64Binary"/>
        <xs:element name="PGPKey" type="xs:base64Binary"/>
        <xs:element ref="ds2:KeyInfo"/>
      </xs:choice>
      <xs:element name="Capabilities" type="xs:base64Binary" minOccurs="0"/>
    </xs:sequence>
  </xs:complexType>
        <xs:element name="XMLToken" type="eps:XMLTokenResponseType"/>
        <xs:complexType name="XMLTokenResponseType">
          <xs:sequence>
            <xs:element name="XMLLockBox" maxOccurs="unbounded" 
type="xenc:EncryptedKeyType"/>
          </xs:sequence>
        </xs:complexType>
</xs:schema>

Appendix B.  Example: Get Roles Request

   This section provides an example of a request message to obtain the
   set of roles for an individual named 'bart@simpsons.com'.  The
   authentication provided in this is a SAML statement included in the
   SAML_Collection element.



Schaad                   Expires August 18, 2014               [Page 57]



Internet-Draft                  EPS TRUST                  February 2014

<?xml version="1.0" encoding="UTF-8"?>
<PlasmaRequest xmlns="urn:ietf:schema:plasma:1.0"
    xmlns:xacml="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"
    xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="urn:ietf:schema:plasma:1.0 C:
\ietf\drafts\Schema\Plasma.xsd" >
  <Authentication>
      <WS-Token>123456</WS-Token>
    <!-- <saml:Assertion>....</saml:Assertion> -->
  </Authentication>
  <xacml:Request CombinedDecision="false" ReturnPolicyIdList="false">
    <xacml:Attributes Category="urn:oasis:names:tc:xaml:3.0:attribute-
catagory:action">
      <xacml:Attribute IncludeInResult="false" AttributeId="urn:plasma:action-
id">
        <xacml:AttributeValue DataType="http://www.w3.org/2001/
XMLSchema#string">GetRoleTokens</xacml:AttributeValue>
      </xacml:Attribute>
    </xacml:Attributes>
    <xacml:Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-
category:environment">
      <xacml:Attribute AttributeId="urn:ietf:plasma:data:channel" 
IncludeInResult="false">
        <xacml:AttributeValue DataType="http://www.w3.org/2001/
XMLSchema#base64Binary">ABCDEFGH</xacml:AttributeValue>
      </xacml:Attribute>
    </xacml:Attributes>
  </xacml:Request>
</PlasmaRequest>

Appendix C.  Example: Get Roles Response

   This section provides an example response to a successful request for
   a role sets.

&#65279;<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<eps:PlasmaResponse xmlns:eps="urn:ietf:params:ns:plasma:1.0">
  <xacml:Response xmlns:xacml="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17">
    <xacml:Result>
      <xacml:Decision>Permit</xacml:Decision>
    </xacml:Result>
  </xacml:Response>
  <eps:PlasmaReturnToken>
    <eps:RoleToken>
      <eps:FriendlyName>Role #1</eps:FriendlyName>
      <eps:PDP>plasma://localhost:8080</eps:PDP>
      <eps:PolicyList>



        <eps:Policy PolicyId="urn:example:PlasmaPolicies:Policy1">
          <eps:FriendlyName>Schaad Policy 1</eps:FriendlyName>
        </eps:Policy>
      </eps:PolicyList>
      <wst:RequestSecurityTokenResponse xmlns:wst="http://schemas.xmlsoap.org/
ws/2005/02/trust">
        <wst:RequestedSecurityToken>
          <ex:MyToken xmlns:ex="http://example.com/
SecurityToken">MCgMCzxDb250ZXh0IC8+AgEBMBYYFDEvMTAvMjAxMyA0OjIyOjAwIEFN</
ex:MyToken>

Schaad                   Expires August 18, 2014               [Page 58]



Internet-Draft                  EPS TRUST                  February 2014

        </wst:RequestedSecurityToken>
        <wst:Lifetime>
          <wsu:Expires xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-utility-1.0.xsd">2013-01-10T04:22:00</wsu:Expires>
        </wst:Lifetime>
      </wst:RequestSecurityTokenResponse>
      <Obligations xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17">
        <Obligation ObligationId="Obligation-Fred" />
      </Obligations>
    </eps:RoleToken>
  </eps:PlasmaReturnToken>
  <eps:PlasmaReturnToken>
    <eps:RoleToken>
      <eps:FriendlyName>Plasma Basic Policy</eps:FriendlyName>
      <eps:PDP>plasma://localhost:8080</eps:PDP>
      <eps:PolicyList>
        <eps:Policy PolicyId="urn:ietf:ns:plasma:policy:basic">
          <eps:FriendlyName>Plasma Basic Policy</eps:FriendlyName>
        </eps:Policy>
        <eps:Policy PolicyId="urn:example:PlasmaPolicies:Policy1">
          <eps:FriendlyName>Schaad Policy 1</eps:FriendlyName>
        </eps:Policy>
      </eps:PolicyList>
      <wst:RequestSecurityTokenResponse xmlns:wst="http://schemas.xmlsoap.org/
ws/2005/02/trust">
        <wst:RequestedSecurityToken>
          <ex:MyToken xmlns:ex="http://example.com/
SecurityToken">MCgMCzxDb250ZXh0IC8+AgEBMBYYFDEvMTAvMjAxMyA0OjIyOjAwIEFN</
ex:MyToken>
        </wst:RequestedSecurityToken>
        <wst:Lifetime>
          <wsu:Expires xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-utility-1.0.xsd">2013-01-10T04:22:00</wsu:Expires>
        </wst:Lifetime>
      </wst:RequestSecurityTokenResponse>
    </eps:RoleToken>
  </eps:PlasmaReturnToken>
</eps:PlasmaResponse>

   In this example a role is returned that has two different policies
   that can be used by that role.  Along with the role token, a binary
   secret is returned that is to be used in proving that the same entity
   is returning to use the roles.

Appendix D.  Example: Get CMS Token Request

   This section contains an example of a request from a client to a
   server for a CMS message token to be issued.  The authentication for



   the request is provided by using a WS-Trust token previously issued
   as part of a role request/response dialog.  The request contains the
   following elements:

Schaad                   Expires August 18, 2014               [Page 59]



Internet-Draft                  EPS TRUST                  February 2014

   o  A complex rule set is requested where permission to is to be
      granted to anyone who meets either of the two policies given.

   o  A specific recipient info structure is provided for a subject
      who's name is 'lisa@simpsons.com'.  The details of the recipient
      info structure are skipped but it would be any encoding of a
      RecipientInfo structure from CMS.

   o  A generic key encryption key is provided for any other subject who
      meets the policies specified.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<eps:PlasmaRequest xmlns:eps="urn:ietf:params:ns:plasma:1.0">
  <eps:Authentication>
    <eps:RoleToken>
      <ex:MyToken xmlns:ex="http://example.com/
SecurityToken">MCgMCzxDb250ZXh0IC8+AgEBMBYYFDEvMTAvMjAxMyAxOjI3OjEyIEFN</
ex:MyToken>
    </eps:RoleToken>
  </eps:Authentication>
  <xacml:Request CombinedDecision="false" ReturnPolicyIdList="false" 
id="XACMLRequest" xmlns:xacml="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17">
    <xacml:Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-
category:action">
      <xacml:Attribute AttributeId="urn:ietf:params:xml:ns:params:actions" 
IncludeInResult="false">
        <xacml:AttributeValue DataType="http://www.w3.org/2001/
XMLSchema#string">GetCMSToken</xacml:AttributeValue>
      </xacml:Attribute>
    </xacml:Attributes>
    <xacml:Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-
category:environment">
      <xacml:Attribute AttributeId="urn:ietf:params:xml:ns:plasma:data:channel" 
IncludeInResult="false">
        <xacml:AttributeValue DataType="http://www.w3.org/2001/
XMLSchema#base64Binary">tls-unique</xacml:AttributeValue>
      </xacml:Attribute>
    </xacml:Attributes>
    <xacml:Attributes Category="urn:ietf:params:xml:ns:params:data">
      <xacml:Attribute 
AttributeId="urn:ietf:params:xml:ns:params:data:CMSTokenRequest" 
IncludeInResult="false">
        <xacml:AttributeValue DataType="urn:ietf:params:ns:plasma:
1.0#CMSTokenRequestType">
          <eps:GetCMSToken>
            <eps:PolicySet PolicyCombiningAlgId="urn:oasis:names:tc:xacml:
3.0:policy-combining-algorithm:permit-overrides">
              <eps:Policy PolicyId="urn:example:PlasmaPolicies:Policy1" />



            </eps:PolicySet>
            <eps:Hash>
              <ds2:DigestMethod Algorithm="http://www.w3.org/2001/04/
xmlenc#sha256" xmlns:ds2="http://www.w3.org/2000/09/xmldsig#" />
              <ds2:DigestValue xmlns:ds2="http://www.w3.org/2000/09/
xmldsig#">AQIDBAUGBwgJCg==</ds2:DigestValue>
            </eps:Hash>
            <eps:CEK>0102030405060708090A</eps:CEK>
          </eps:GetCMSToken>
        </xacml:AttributeValue>
      </xacml:Attribute>
    </xacml:Attributes>
  </xacml:Request>
</eps:PlasmaRequest>

Schaad                   Expires August 18, 2014               [Page 60]



Internet-Draft                  EPS TRUST                  February 2014

Appendix E.  Example: Get CMS Token Response

   This section contains an example of a response from a server to a
   client for a CMS message token to be issued.  The token is returned
   in the CMSToken element.  This element would then be placed into the
   CMS message being created by the client.

&#65279;<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<eps:PlasmaResponse xmlns:eps="urn:ietf:params:ns:plasma:1.0">
  <xacml:Response xmlns:xacml="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17">
    <xacml:Result>
      <xacml:Decision>Permit</xacml:Decision>
    </xacml:Result>
  </xacml:Response>
  <eps:PlasmaReturnToken>

<eps:CMSLockbox>MIIQJAYJKoZIhvcNAQcCoIIQFTCCEBECAQExCzAJBgUrDgMCGgUAMIIDOQYJKoZIhvcNAQcDoIIDKjCCAyYGCSqGSIb3DQEHA6CCAxcwggMTAgEAMYIB4TCCAd0CAQAwgcQwga4xCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJVVDEXMBUGA1UEBxMOU2FsdCBMYWtlIENpdHkxHjAcBgNVBAoTFVRoZSBVU0VSVFJVU1QgTmV0d29yazEhMB8GA1UECxMYaHR0cDovL3d3dy51c2VydHJ1c3QuY29tMTYwNAYDVQQDEy1VVE4tVVNFUkZpcnN0LUNsaWVudCBBdXRoZW50aWNhdGlvbiBhbmQgRW1haWwCEQDVeeyr0T13xrMgLQj+cJ0iMA0GCSqGSIb3DQEBAQUABIIBAEB7LT/
qFbvzz7xxan6Q01By/J8X12Mpq00jLVst0+mGl7cmsBknS6TXC13638r8ow904GMB/
1YzmWVYs4Pc+p9l7UJ0MFjhVULuahMbwrpEEFg90GBvZzZXKy8syxTcyh3TwCMTpYHOJxz9DfowvSJi2TPUiXG0mXzzMkbS3yiyJasacbgmG2d9G/
cYJpVDlQqMCOVui7UMlQAz3LQLa9GINTzs1I5j8uqPDwPKxKmWNJ5AYj3jb6uLsf0tD1h+mCKotjdVsC0Jx05xZ53UCYPg3K5IoK8v/
hu8psH7Njq3aZ6McxgeBFKxswSD3ffipEWkwLyN0heyhvIn3/
prEsAwggEnBgsqhkiG9w0BB4aNFzAUBggqhkiG9w0DBwQIirvrkunYtn+AggEAlPZGLqxBvE2sdmmzUfAljJpKredC3fUxXgvPcpf07hcDz+NRf/
miOwNTCUNrXg82s1NYfhWAQEuTxDtuGq7Lwd70fohcX0mXgxGbqlaPjEVzhUQwZvJfn1r7oosJ5qzO59sKStEntQdYR5cyYXnHDO2xGE1TdB7X6ibfTubPq52UC/
Lt7xRyB1HMz+eeLTl6amF1lO8VOITkAEOeI9noaePDheHMS7k0xMQMEMHYU1TN/
09/2RSbMY740MEDNpidtomFv4gvhWWzGrzYNPFNtHQh/
4UDhqXl9eJ+MOXRdGupV9vdt6RhGKC6krszfMV9O0vHzh750XwqxtQ38FolZ6CCChEwggSKMIIDcqADAgECAhAn9OoR9HqGxG6du26pFwcHMA0GCSqGSIb3DQEBBQUAMG8xCzAJBgNVBAYTAlNFMRQwEgYDVQQKEwtBZGRUcnVzdCBBQjEmMCQGA1UECxMdQWRkVHJ1c3QgRXh0ZXJuYWwgVFRQIE5ldHdvcmsxIjAgBgNVBAMTGUFkZFRydXN0IEV4dGVybmFsIENBIFJvb3QwHhcNMDUwNjA3MDgwOTEwWhcNMjAwNTMwMTA0ODM4WjCBrjELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAlVUMRcwFQYDVQQHEw5TYWx0IExha2UgQ2l0eTEeMBwGA1UEChMVVGhlIFVTRVJUUlVTVCBOZXR3b3JrMSEwHwYDVQQLExhodHRwOi8vd3d3LnVzZXJ0cnVzdC5jb20xNjA0BgNVBAMTLVVUTi1VU0VSRmlyc3QtQ2xpZW50IEF1dGhlbnRpY2F0aW9uIGFuZCBFbWFpbDCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBALI5haTyfatBO2JGN67NwWB1vDll+UoaR6K5zEjMapjVTTUZuaRC5c5J4oovHnzSMQfHTrSDZJ0uKdWiZMSFvYVRNXmkTmiQexx6pJKoF/
KYFfKTzMmkMpW7DE8wvZigC4vlbhuiRvp4vKJvq1lepS/Pytptqi/
rrKGzaqq3Lmc1i3nhHmmI4uZGzaCl6r4LznY6eg6b6vzaJ1s9cx8i5khhxkzzabGoLhu21DEgLLyCio6kDqXXiUP8FlqvHXHXEVnauocNr/
rz4cLwpMVnjNbWVDreCqS6A3ezZcj9HtN0YqoYymiTHqGFfvVHZcv4TVcodNI0/
zC27vZiMBSMLOsCAwEAAaOB4TCB3jAfBgNVHSMEGDAWgBStvZh6NLQm9/
rEJlTvA73gJMtUGjAdBgNVHQ4EFgQUiYJnfcSdJnAAS7RQSHzePa4Ebn0wDgYDVR0PAQH/
BAQDAgEGMA8GA1UdEwEB/
wQFMAMBAf8wewYDVR0fBHQwcjA4oDagNIYyaHR0cDovL2NybC5jb21vZG9jYS5jb20vQWRkVHJ1c3RFeHRlcm5hbENBUm9vdC5jcmwwNqA0oDKGMGh0dHA6Ly9jcmwuY29tb2RvLm5ldC9BZGRUcnVzdEV4dGVybmFsQ0FSb290LmNybDANBgkqhkiG9w0BAQUFAAOCAQEAGdiJEW8orKYAoueHwZuQA9t+oRL9HvPi8AGplFRCa5oJxKBt15CSBANmeUNx/
Phvr9t2ReI3Gj3d5FkEeKwc9ING83rPW4RyLeVGwboYESnzy0l5hzy6bQWdpG1oT61yFDaoubH9v89/8KRqlDVQj8+BbVWx3VkwSt9toJxkH0l87za79ONp9Pg5j1qtS4U6tw7t088NRKL7BL/
kL3COJftaVAaz0MS8bY37czIs6ZuEJC3Wf5F6aAJQHw4/
TenM9btn6NwcLjv8Ts3+Ao7jqBMKpSZEZekQ8k1Sp67cPsprMlxBbP71XaDq/
9H6m4ZYbT2WR+X+LpUEwgDMjqHyuzCCBX8wggRnoAMCAQICEQDVeeyr0T13xrMgLQj+cJ0iMA0GCSqGSIb3DQEBBQUAMIGuMQswCQYDVQQGEwJVUzELMAkGA1UECBMCVVQxFzAVBgNVBAcTDlNhbHQgTGFrZSBDaXR5MR4wHAYDVQQKExVUaGUgVVNFUlRSVVNUIE5ldHdvcmsxITAfBgNVBAsTGGh0dHA6Ly93d3cudXNlcnRydXN0LmNvbTE2MDQGA1UEAxMtVVROLVVTRVJGaXJzdC1DbGllbnQgQXV0aGVudGljYXRpb24gYW5kIEVtYWlsMB4XDTExMDUyNzAwMDAwMFoXDTEyMDUyNjIzNTk1OVowKTEnMCUGCSqGSIb3DQEJARYYamltc2NoYWFkQHpzLnBlbmFuZ28ubmV0MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAwBLgJtGWe6ib5nTzwL2QAVPwQCUeTl0ItoLig2/
WhKcrZJIcM9c/opX6Mi7V44v38hFxwurjJplF74xLp5IqhaPGXHf0t8Yas/
F06UnZyMlXQ197jCIkqChfqnOxDJ+7zASoveRt6aNyFJRy3eJyYasqbURvmdBYom1UOYxfWrIM9VaulvW5TCiJIpbKiEwdIcs+JCLuNs/
OgtFXB7C+IjIw1C7ZTxBD9Q8g9RRr/
TvmhGQ1Ru1BL7g52+Hs1vrAtjENxwmJwrZSsJHgMw5FfDbVLrwOI97iCWnrQ8acFiS5iRFGqWzQCJyWhJFHYvuw7RzQg761+tin8hpue2OsEwIDAQABo4ICGjCCAhYwHwYDVR0jBBgwFoAUiYJnfcSdJnAAS7RQSHzePa4Ebn0wHQYDVR0OBBYEFNltOqTDux3i8fOkK7gnr5Zo/
FEfMA4GA1UdDwEB/
wQEAwIFoDAMBgNVHRMBAf8EAjAAMCAGA1UdJQQZMBcGCCsGAQUFBwMEBgsrBgEEAbIxAQMFAjARBglghkgBhvhCAQEEBAMCBSAwRgYDVR0gBD8wPTA7BgwrBgEEAbIxAQIBAQEwKzApBggrBgEFBQcCARYdaHR0cHM6Ly9zZWN1cmUuY29tb2RvLm5ldC9DUFMwgaUGA1UdHwSBnTCBmjBMoEqgSIZGaHR0cDovL2NybC5jb21vZG9jYS5jb20vVVROLVVTRVJGaXJzdC1DbGllbnRBdXRoZW50aWNhdGlvbmFuZEVtYWlsLmNybDBKoEigRoZEaHR0cDovL2NybC5jb21vZG8ubmV0L1VUTi1VU0VSRmlyc3QtQ2xpZW50QXV0aGVudGljYXRpb25hbmRFbWFpbC5jcmwwbAYIKwYBBQUHAQEEYDBeMDYGCCsGAQUFBzAChipodHRwOi8vY3J0LmNvbW9kb2NhLmNvbS9VVE5BQUFDbGllbnRDQS5jcnQwJAYIKwYBBQUHMAGGGGh0dHA6Ly9vY3NwLmNvbW9kb2NhLmNvbTAjBgNVHREEHDAagRhqaW1zY2hhYWRAenMucGVuYW5nby5uZXQwDQYJKoZIhvcNAQEFBQADggEBAK9Ndz6RqjMdXDXZ5xrkc1FYcq69Gm/
yacR4Lkj35uHZ6kzndhsdcsug06879gOsW1OTFMSRYvHhYkwknLL4PKISxozVmiDvVYzYXqE+Gj4jZaNzbF8suowQCq7dS82Ggoj68C4Hh5+PyUlySmQZKnsyDuE6PxIlFlhLCmFYl9hsgRmgqe4sbB2cxZu03SYWvWI92IwwrouOtrI3JbFXJnn9obKLYj3LMRr9VrAHBd3A99VW6OMNT75b0ScuwcoS96YZutVC/
y1Y65mMlGQW+FOr8sIxxFz6lsvTxEul0VXUxbfAZ0MkrRxJH0Mw3W2QUAQ3dRR81Ba/
g8GNhawC+jUxggKrMIICpwIBATCBxDCBrjELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAlVUMRcwFQYDVQQHEw5TYWx0IExha2UgQ2l0eTEeMBwGA1UEChMVVGhlIFVTRVJUUlVTVCBOZXR3b3JrMSEwHwYDVQQLExhodHRwOi8vd3d3LnVzZXJ0cnVzdC5jb20xNjA0BgNVBAMTLVVUTi1VU0VSRmlyc3QtQ2xpZW50IEF1dGhlbnRpY2F0aW9uIGFuZCBFbWFpbAIRANV57KvRPXfGsyAtCP5wnSIwCQYFKw4DAhoFAKCBvDAYBgkqhkiG9w0BCQMxCwYJKoZIhvcNAQcDMBwGCSqGSIb3DQEJBTEPFw0xMzAxMDgwNjQ1MTBaMCMGCSqGSIb3DQEJBDEWBBSHHd6eVaOraNTvfMOaBDOIsfS5eDArBgsqhkiG9w0BCYaNGjEcMBowDAYKKhCGSAFlAwQCAQQKAQIDBAUGBwgJCjAwBgsqhkiG9w0BCYaNGTEhDB9wbGFzbWE6cGxhc21hLmF1Z3VzdGNlbGxhcnMuY29tMA0GCSqGSIb3DQEBAQUABIIBAKUc/
zlevtNMuRrfnRJA30ecoXgXr33rEsbj9xEgH+xaJwBotwLC/i7wKutjc+Z8sfUt9X+H/
jNFyMFZwXYF2fgw6xKtSlkYXgTu9GioK6rpftHSifOd+aRJHMKJTeWAkwamF9XBmaWhQusDVHZmmd9uUEPNkUSo4T6r2atZ8avgMc8DhwKLw8NGf9ZhkNtJciIW76X3AO+XbUr4vIsLT1mTFr4wJ7Tk9rOnk6oyGS/



q1jvgVl53xKCTP+xa1usZarYUo2u974JjADN8uGlI4gv1wH1scojgXVYp8HWe6Uh0fYFdFRmefHj5rEkiB4POVVQoq8Bsk4sJUR3+rfaM3QI=</
eps:CMSLockbox>
  </eps:PlasmaReturnToken>
</eps:PlasmaResponse>

Appendix F.  Example: Get CMS Key Request

&#65279;<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<eps:PlasmaRequest xmlns:eps="urn:ietf:params:ns:plasma:1.0">
  <eps:Authentication>
    <eps:RoleToken>
      <ex:MyToken xmlns:ex="http://example.com/
SecurityToken">MCgMCzxDb250ZXh0IC8+AgEBMBYYFDEvMTAvMjAxMyAxOjI3OjEyIEFN</
ex:MyToken>
    </eps:RoleToken>
  </eps:Authentication>
  <xacml:Request CombinedDecision="false" ReturnPolicyIdList="false" 
xmlns:xacml="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17">
    <xacml:Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-
category:action">
      <xacml:Attribute AttributeId="urn:ietf:params:xml:ns:params:actions" 
IncludeInResult="false">
        <xacml:AttributeValue DataType="http://www.w3.org/2001/
XMLSchema#string">GetCMSKey</xacml:AttributeValue>
      </xacml:Attribute>
    </xacml:Attributes>
    <xacml:Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-
category:environment">
      <xacml:Attribute AttributeId="urn:ietf:params:xml:ns:plasma:data:channel" 
IncludeInResult="false">
        <xacml:AttributeValue DataType="http://www.w3.org/2001/
XMLSchema#base64Binary">tls-unique</xacml:AttributeValue>
      </xacml:Attribute>
    </xacml:Attributes>
    <xacml:Attributes Category="urn:ietf:params:xml:ns:params:data">
      <xacml:Attribute 
AttributeId="urn:ietf:params:xml:ns:params:data:CMSKeyRequest" 
IncludeInResult="false">
        <xacml:AttributeValue DataType="urn:ietf:params:ns:plasma:
1.0#CMSLockbox">

<eps:CMSLockbox>MIIQJAYJKoZIhvcNAQcCoIIQFTCCEBECAQExCzAJBgUrDgMCGgUAMIIDOQYJKoZIhvcNAQcDoIIDKjCCAyYGCSqGSIb3DQEHA6CCAxcwggMTAgEAMYIB4TCCAd0CAQAwgcQwga4xCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJVVDEXMBUGA1UEBxMOU2FsdCBMYWtlIENpdHkxHjAcBgNVBAoTFVRoZSBVU0VSVFJVU1QgTmV0d29yazEhMB8GA1UECxMYaHR0cDovL3d3dy51c2VydHJ1c3QuY29tMTYwNAYDVQQDEy1VVE4tVVNFUkZpcnN0LUNsaWVudCBBdXRoZW50aWNhdGlvbiBhbmQgRW1haWwCEQDVeeyr0T13xrMgLQj+cJ0iMA0GCSqGSIb3DQEBAQUABIIBAEB7LT/
qFbvzz7xxan6Q01By/J8X12Mpq00jLVst0+mGl7cmsBknS6TXC13638r8ow904GMB/
1YzmWVYs4Pc+p9l7UJ0MFjhVULuahMbwrpEEFg90GBvZzZXKy8syxTcyh3TwCMTpYHOJxz9DfowvSJi2TPUiXG0mXzzMkbS3yiyJasacbgmG2d9G/
cYJpVDlQqMCOVui7UMlQAz3LQLa9GINTzs1I5j8uqPDwPKxKmWNJ5AYj3jb6uLsf0tD1h+mCKotjdVsC0Jx05xZ53UCYPg3K5IoK8v/
hu8psH7Njq3aZ6McxgeBFKxswSD3ffipEWkwLyN0heyhvIn3/
prEsAwggEnBgsqhkiG9w0BB4aNFzAUBggqhkiG9w0DBwQIirvrkunYtn+AggEAlPZGLqxBvE2sdmmzUfAljJpKredC3fUxXgvPcpf07hcDz+NRf/
miOwNTCUNrXg82s1NYfhWAQEuTxDtuGq7Lwd70fohcX0mXgxGbqlaPjEVzhUQwZvJfn1r7oosJ5qzO59sKStEntQdYR5cyYXnHDO2xGE1TdB7X6ibfTubPq52UC/
Lt7xRyB1HMz+eeLTl6amF1lO8VOITkAEOeI9noaePDheHMS7k0xMQMEMHYU1TN/
09/2RSbMY740MEDNpidtomFv4gvhWWzGrzYNPFNtHQh/
4UDhqXl9eJ+MOXRdGupV9vdt6RhGKC6krszfMV9O0vHzh750XwqxtQ38FolZ6CCChEwggSKMIIDcqADAgECAhAn9OoR9HqGxG6du26pFwcHMA0GCSqGSIb3DQEBBQUAMG8xCzAJBgNVBAYTAlNFMRQwEgYDVQQKEwtBZGRUcnVzdCBBQjEmMCQGA1UECxMdQWRkVHJ1c3QgRXh0ZXJuYWwgVFRQIE5ldHdvcmsxIjAgBgNVBAMTGUFkZFRydXN0IEV4dGVybmFsIENBIFJvb3QwHhcNMDUwNjA3MDgwOTEwWhcNMjAwNTMwMTA0ODM4WjCBrjELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAlVUMRcwFQYDVQQHEw5TYWx0IExha2UgQ2l0eTEeMBwGA1UEChMVVGhlIFVTRVJUUlVTVCBOZXR3b3JrMSEwHwYDVQQLExhodHRwOi8vd3d3LnVzZXJ0cnVzdC5jb20xNjA0BgNVBAMTLVVUTi1VU0VSRmlyc3QtQ2xpZW50IEF1dGhlbnRpY2F0aW9uIGFuZCBFbWFpbDCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBALI5haTyfatBO2JGN67NwWB1vDll+UoaR6K5zEjMapjVTTUZuaRC5c5J4oovHnzSMQfHTrSDZJ0uKdWiZMSFvYVRNXmkTmiQexx6pJKoF/



KYFfKTzMmkMpW7DE8wvZigC4vlbhuiRvp4vKJvq1lepS/Pytptqi/
rrKGzaqq3Lmc1i3nhHmmI4uZGzaCl6r4LznY6eg6b6vzaJ1s9cx8i5khhxkzzabGoLhu21DEgLLyCio6kDqXXiUP8FlqvHXHXEVnauocNr/
rz4cLwpMVnjNbWVDreCqS6A3ezZcj9HtN0YqoYymiTHqGFfvVHZcv4TVcodNI0/
zC27vZiMBSMLOsCAwEAAaOB4TCB3jAfBgNVHSMEGDAWgBStvZh6NLQm9/
rEJlTvA73gJMtUGjAdBgNVHQ4EFgQUiYJnfcSdJnAAS7RQSHzePa4Ebn0wDgYDVR0PAQH/
BAQDAgEGMA8GA1UdEwEB/
wQFMAMBAf8wewYDVR0fBHQwcjA4oDagNIYyaHR0cDovL2NybC5jb21vZG9jYS5jb20vQWRkVHJ1c3RFeHRlcm5hbENBUm9vdC5jcmwwNqA0oDKGMGh0dHA6Ly9jcmwuY29tb2RvLm5ldC9BZGRUcnVzdEV4dGVybmFsQ0FSb290LmNybDANBgkqhkiG9w0BAQUFAAOCAQEAGdiJEW8orKYAoueHwZuQA9t+oRL9HvPi8AGplFRCa5oJxKBt15CSBANmeUNx/
Phvr9t2ReI3Gj3d5FkEeKwc9ING83rPW4RyLeVGwboYESnzy0l5hzy6bQWdpG1oT61yFDaoubH9v89/8KRqlDVQj8+BbVWx3VkwSt9toJxkH0l87za79ONp9Pg5j1qtS4U6tw7t088NRKL7BL/
kL3COJftaVAaz0MS8bY37czIs6ZuEJC3Wf5F6aAJQHw4/
TenM9btn6NwcLjv8Ts3+Ao7jqBMKpSZEZekQ8k1Sp67cPsprMlxBbP71XaDq/
9H6m4ZYbT2WR+X+LpUEwgDMjqHyuzCCBX8wggRnoAMCAQICEQDVeeyr0T13xrMgLQj+cJ0iMA0GCSqGSIb3DQEBBQUAMIGuMQswCQYDVQQGEwJVUzELMAkGA1UECBMCVVQxFzAVBgNVBAcTDlNhbHQgTGFrZSBDaXR5MR4wHAYDVQQKExVUaGUgVVNFUlRSVVNUIE5ldHdvcmsxITAfBgNVBAsTGGh0dHA6Ly93d3cudXNlcnRydXN0LmNvbTE2MDQGA1UEAxMtVVROLVVTRVJGaXJzdC1DbGllbnQgQXV0aGVudGljYXRpb24gYW5kIEVtYWlsMB4XDTExMDUyNzAwMDAwMFoXDTEyMDUyNjIzNTk1OVowKTEnMCUGCSqGSIb3DQEJARYYamltc2NoYWFkQHpzLnBlbmFuZ28ubmV0MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAwBLgJtGWe6ib5nTzwL2QAVPwQCUeTl0ItoLig2/
WhKcrZJIcM9c/opX6Mi7V44v38hFxwurjJplF74xLp5IqhaPGXHf0t8Yas/
F06UnZyMlXQ197jCIkqChfqnOxDJ+7zASoveRt6aNyFJRy3eJyYasqbURvmdBYom1UOYxfWrIM9VaulvW5TCiJIpbKiEwdIcs+JCLuNs/
OgtFXB7C+IjIw1C7ZTxBD9Q8g9RRr/
TvmhGQ1Ru1BL7g52+Hs1vrAtjENxwmJwrZSsJHgMw5FfDbVLrwOI97iCWnrQ8acFiS5iRFGqWzQCJyWhJFHYvuw7RzQg761+tin8hpue2OsEwIDAQABo4ICGjCCAhYwHwYDVR0jBBgwFoAUiYJnfcSdJnAAS7RQSHzePa4Ebn0wHQYDVR0OBBYEFNltOqTDux3i8fOkK7gnr5Zo/
FEfMA4GA1UdDwEB/
wQEAwIFoDAMBgNVHRMBAf8EAjAAMCAGA1UdJQQZMBcGCCsGAQUFBwMEBgsrBgEEAbIxAQMFAjARBglghkgBhvhCAQEEBAMCBSAwRgYDVR0gBD8wPTA7BgwrBgEEAbIxAQIBAQEwKzApBggrBgEFBQcCARYdaHR0cHM6Ly9zZWN1cmUuY29tb2RvLm5ldC9DUFMwgaUGA1UdHwSBnTCBmjBMoEqgSIZGaHR0cDovL2NybC5jb21vZG9jYS5jb20vVVROLVVTRVJGaXJzdC1DbGllbnRBdXRoZW50aWNhdGlvbmFuZEVtYWlsLmNybDBKoEigRoZEaHR0cDovL2NybC5jb21vZG8ubmV0L1VUTi1VU0VSRmlyc3QtQ2xpZW50QXV0aGVudGljYXRpb25hbmRFbWFpbC5jcmwwbAYIKwYBBQUHAQEEYDBeMDYGCCsGAQUFBzAChipodHRwOi8vY3J0LmNvbW9kb2NhLmNvbS9VVE5BQUFDbGllbnRDQS5jcnQwJAYIKwYBBQUHMAGGGGh0dHA6Ly9vY3NwLmNvbW9kb2NhLmNvbTAjBgNVHREEHDAagRhqaW1zY2hhYWRAenMucGVuYW5nby5uZXQwDQYJKoZIhvcNAQEFBQADggEBAK9Ndz6RqjMdXDXZ5xrkc1FYcq69Gm/
yacR4Lkj35uHZ6kzndhsdcsug06879gOsW1OTFMSRYvHhYkwknLL4PKISxozVmiDvVYzYXqE+Gj4jZaNzbF8suowQCq7dS82Ggoj68C4Hh5+PyUlySmQZKnsyDuE6PxIlFlhLCmFYl9hsgRmgqe4sbB2cxZu03SYWvWI92IwwrouOtrI3JbFXJnn9obKLYj3LMRr9VrAHBd3A99VW6OMNT75b0ScuwcoS96YZutVC/
y1Y65mMlGQW+FOr8sIxxFz6lsvTxEul0VXUxbfAZ0MkrRxJH0Mw3W2QUAQ3dRR81Ba/
g8GNhawC+jUxggKrMIICpwIBATCBxDCBrjELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAlVUMRcwFQYDVQQHEw5TYWx0IExha2UgQ2l0eTEeMBwGA1UEChMVVGhlIFVTRVJUUlVTVCBOZXR3b3JrMSEwHwYDVQQLExhodHRwOi8vd3d3LnVzZXJ0cnVzdC5jb20xNjA0BgNVBAMTLVVUTi1VU0VSRmlyc3QtQ2xpZW50IEF1dGhlbnRpY2F0aW9uIGFuZCBFbWFpbAIRANV57KvRPXfGsyAtCP5wnSIwCQYFKw4DAhoFAKCBvDAYBgkqhkiG9w0BCQMxCwYJKoZIhvcNAQcDMBwGCSqGSIb3DQEJBTEPFw0xMzAxMDgwNjQ1MTBaMCMGCSqGSIb3DQEJBDEWBBSHHd6eVaOraNTvfMOaBDOIsfS5eDArBgsqhkiG9w0BCYaNGjEcMBowDAYKKhCGSAFlAwQCAQQKAQIDBAUGBwgJCjAwBgsqhkiG9w0BCYaNGTEhDB9wbGFzbWE6cGxhc21hLmF1Z3VzdGNlbGxhcnMuY29tMA0GCSqGSIb3DQEBAQUABIIBAKUc/
zlevtNMuRrfnRJA30ecoXgXr33rEsbj9xEgH+xaJwBotwLC/i7wKutjc+Z8sfUt9X+H/
jNFyMFZwXYF2fgw6xKtSlkYXgTu9GioK6rpftHSifOd+aRJHMKJTeWAkwamF9XBmaWhQusDVHZmmd9uUEPNkUSo4T6r2atZ8avgMc8DhwKLw8NGf9ZhkNtJciIW76X3AO+XbUr4vIsLT1mTFr4wJ7Tk9rOnk6oyGS/
q1jvgVl53xKCTP+xa1usZarYUo2u974JjADN8uGlI4gv1wH1scojgXVYp8HWe6Uh0fYFdFRmefHj5rEkiB4POVVQoq8Bsk4sJUR3+rfaM3QI=</
eps:CMSLockbox>
        </xacml:AttributeValue>
      </xacml:Attribute>
    </xacml:Attributes>
  </xacml:Request>
</eps:PlasmaRequest>

Schaad                   Expires August 18, 2014               [Page 61]



Internet-Draft                  EPS TRUST                  February 2014

Appendix G.  Example: Get CMS KeyResponse

&#65279;<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<eps:PlasmaResponse xmlns:eps="urn:ietf:params:ns:plasma:1.0">
  <xacml:Response xmlns:xacml="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17">
    <xacml:Result>
      <xacml:Decision>Permit</xacml:Decision>
    </xacml:Result>
  </xacml:Response>
  <eps:PlasmaReturnToken>
    <CMSKey:eps xmlns:CMSKey="urn:ietf:params:ns:plasma:1.0">
      <eps:DisplayString>Schaad Policy 1</eps:DisplayString>
      <eps:CEK>AQIDBAUGBwgJCg==</eps:CEK>
    </CMSKey:eps>
  </eps:PlasmaReturnToken>
</eps:PlasmaResponse>

Appendix H.  Enabling the MultiRequests option

   NOTE: RFC Editor please remove this section prior to publication.
   This section exists as a note to the author to make sure that it can
   be done.  It will be published as a separate document if desired.

   One of the issues in doing multiple requests in a single message is
   the issue of correlation between the request and the results.  We
   have make this issue even worse by the fact that we are return
   results that are not input attributes for the decision and that we
   are not returning as attributes of the decision.

   The best way to deal with this is by putting tags into the request
   and reflect them in the return values for the response.  The only
   place that this does not work is for the GSS-API response token as
   this element would normally be part of the response of multiple
   requests.  You want to finish that authentication step before issuing
   final decisions if the input is needed as part of that decision.

   With this in mind what we do is the following:

   o  Define a new data attribute for plasma as plasma-request-id.  The
      category for it is urn:ietf:params:xml:ns:plasma:data.  The type
      will be a string.

   o  When the new attribute is used, then the return attribute flag
      MUST be set on the attribute.

   o  There MUST be one entity of the new attribute, with a unique
      value, for each of the requests in the MultiRequest element.



Schaad                   Expires August 18, 2014               [Page 62]



Internet-Draft                  EPS TRUST                  February 2014

   o  Exactly one of the new attributes MUST be referenced in each
      request in the MultiRequest element.

   o  The server copies the value of the attribute into the ***
      attribute of the returned token.

   We could probably relax the restrictions if we know that the token
   can only be returned by one request, however using the token to
   correlate the request and the decision is still probably desired so
   that those values can be correlated.

Author's Address

   Jim Schaad
   Soaring Hawk Consulting

   Email: ietf@augustcellars.com



Schaad                   Expires August 18, 2014               [Page 63]


