
Network Working Group J. Schanck
Internet-Draft University of Waterloo
Intended status: Experimental D. Stebila
Expires: October 19, 2017 McMaster University
 April 17, 2017

A Transport Layer Security (TLS) Extension For Establishing An
Additional Shared Secret

draft-schanck-tls-additional-keyshare-00

Abstract

 This document defines a Transport Layer Security (TLS) extension that
 allows parties to establish an additional shared secret using a
 second key exchange algorithm and incorporates this shared secret
 into the TLS key schedule.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 19, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Schanck & Stebila Expires October 19, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Additional Key Share TLS Extension April 2017

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Use cases . 3
1.2. Conventions and Terminology 3

2. Additional Key Share Extension 4
2.1. ExtensionType . 4
2.2. Existing data structures 4
2.3. AdditionalKeyShare extension 4
2.3.1. Requirements for use in ClientHello 5
2.3.2. Requirements for use in ServerHello 6
2.3.3. Requirements for use in HelloRetryRequest 6

2.4. Backward Compatibility 6
 2.4.1. Negotiating with a server that does not support the
 additional_key_share extension 6
 2.4.2. Negotiating with a client that does not support the
 additional_key_share extension 6

3. Key Schedule . 7
4. Pre-shared key modes and session resumption 8
5. Security Considerations 9
6. IANA Considerations . 9
7. References . 9
7.1. Normative References 9
7.2. Informative References 10

 Authors' Addresses . 10

1. Introduction

 The key schedule of TLS 1.3 [TLS13draft19] is capable of extracting
 session key material from multiple shared secrets. A notable use of
 this feature is in forward secret pre-shared key (PSK) modes wherein
 a PSK is combined with an ephemeral shared secret established through
 a Diffie-Hellman exchange. While the key schedule can process
 arbitrary lists of shared secrets, it is currently only possible to
 incorporate a pre-shared key and a shared secret established through
 the "key_share" extension.

 This document defines a TLS ClientHello, HelloRetryRequest, and
 ServerHello extension of type "additional_key_share" that allows
 parties to establish an additional shared secret.

 This document does not define any named groups or key exchange modes.

Schanck & Stebila Expires October 19, 2017 [Page 2]

Internet-Draft Additional Key Share TLS Extension April 2017

1.1. Use cases

 One use case is to provide pre- to post-quantum transitional security
 while hedging against potential weaknesses of post-quantum
 algorithms. A post-quantum cryptographic algorithm is one that is
 believed to be resistant to attacks by quantum computers; algorithms
 based on factoring and discrete log are said to be pre-quantum.
 Authenticated and confidential channel establishment protocols are
 said to be secure in a transitional setting if they provide pre-
 quantum authentication and post-quantum confidentiality. Such
 protocols provide forward secrecy so long as adversaries do not have
 quantum computers at the time of session establishment.

 An additional key share can be used to combine a high-confidence pre-
 quantum confidentiality mechanism with a more experimental post-
 quantum confidentiality mechanism without any added risk.

 One could argue that if post-quantum algorithms are available then
 they should be used in place of pre-quantum algorithms. However
 there are several reasons why a user might not want to rely solely on
 a post-quantum algorithm today. First, confidence in cryptographic
 assumptions relies in part on the duration and intensity of their
 study. Most post-quantum assumptions have received less scrutiny
 than DH or ECDH, and cryptanalysis may progress rapidly as more
 attention is drawn to these assumptions. Second, the cryptographic
 community has less experience writing secure implementations of post-
 quantum algorithms, and one may be concerned that there are yet-to-
 be-discovered implementation pitfalls and side-channel attacks that
 could compromise confidentiality. Finally there may be users who are
 required to use certain pre-quantum algorithms, but who nevertheless
 desire forward secrecy against post-quantum adversaries. For
 example, NIST has made it clear that hybrid modes are not
 incompatible with FIPS 140 validation [NISTPQFAQ].

 The simultaneous use of pre-quantum and post-quantum algorithms
 provides users with the potential of long-term, quantum-resistant
 confidentiality without any added risk.

1.2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC

2119 [RFC2119].

 In [TLS13draft19], all asymmetric key exchange modes are either
 (finite field) Diffie-Hellman or elliptic curve Diffie-Hellman, and
 the term "named group" is used to identify which group. Some key

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Schanck & Stebila Expires October 19, 2017 [Page 3]

Internet-Draft Additional Key Share TLS Extension April 2017

 exchange mechanisms, especially post-quantum mechanisms, are not
 parameterized by a group. However, we continue to use the term
 "named group" to identify a key exchange mechanism more broadly.

2. Additional Key Share Extension

 The "additional_key_share" extension replicates the functionality of
 the "key_share" extension defined in [TLS13draft19], although there
 are some semantic differences between the two extensions.

2.1. ExtensionType

 This document extends the ExtensionType enum as follows:

 enum {
 ...,
 additional_key_share(XX),
 (65535)
 } ExtensionType;

2.2. Existing data structures

 The definition of the AdditionalKeyShare extension requires the
 KeyShareEntry and NamedGroup structs defined in [TLS13draft19].
 NamedGroup is a 2-octet enum. For convenience of the reader, we
 reproduce the definition of KeyShareEntry from [TLS13draft19] below:

 struct {
 NamedGroup group;
 opaque key_exchange<1..2^16-1>;
 } KeyShareEntry;

2.3. AdditionalKeyShare extension

 The "extension_data" field of the "additional_key_share" extension
 contains an "AdditionalKeyShare" value.

Schanck & Stebila Expires October 19, 2017 [Page 4]

Internet-Draft Additional Key Share TLS Extension April 2017

 struct {
 select (Handshake.msg_type) {
 case client_hello:
 KeyShareEntry additional_client_shares<0..2^16-1>;

 case hello_retry_request:
 NamedGroup additional_selected_group;

 case server_hello:
 KeyShareEntry additional_server_share;
 };
 } AdditionalKeyShare;

 additional_client_shares A list of offered KeyShareEntry values in
 descending order of client preference.

 additional_selected_group A mutually supported key exchange
 algorithm that the server is willing to negotiate if the client
 sends an "additional_key_share" extension in a new ClientHello.

 additional_server_share A single KeyShareEntry value that is in the
 same NamedGroup as one of the client's shares.

2.3.1. Requirements for use in ClientHello

 The client MUST NOT send the "additional_key_share" extension without
 sending the "key_share" extension. The client MAY send an empty
 "additional_client_shares" vector when requesting a
 HelloRetryRequest, but SHOULD NOT do so otherwise.

 The client MUST NOT offer a KeyShareEntry value for a NamedGroup that
 is not listed in the "supported_groups" extension.

 The client MUST NOT offer multiple KeyShareEntry values in the
 "additional_client_shares" vector for the same NamedGroup. This is
 because the "additional_server_share" value of the server's
 "additional_key_share" extension must uniquely identify the client
 share to which it corresponds.

 The client MAY offer a KeyShareEntry value in
 "additional_client_shares" for a NamedGroup that they offered in
 their "key_share" extension, as this causes no ambiguity.

 Each value in the client's "additional_client_shares" vector MUST be
 generated independently. The independence requirement extends to the
 KeyShareEntry values offered in the "key_share" extension. In
 particular, the client MUST NOT offer KeyShareEntry values in

Schanck & Stebila Expires October 19, 2017 [Page 5]

Internet-Draft Additional Key Share TLS Extension April 2017

 "additional_key_share" that duplicate the contents of KeyShareEntry
 values offered in "key_share".

 The server MAY check for violations of these rules and MAY abort the
 connection with a fatal "illegal_parameter" alert if a rule is
 violated.

2.3.2. Requirements for use in ServerHello

 The server MUST NOT send a KeyShareEntry for any NamedGroup not
 indicated in the "supported_groups" extension. The server MUST NOT
 send a KeyShareEntry for a NamedGroup that does not match one of the
 client's offers.

2.3.3. Requirements for use in HelloRetryRequest

 The server MAY send HelloRetryRequest based on the contents of the
 client's "additional_client_shares" vector. The client processes
 this message as in Section 4.2.5 of [TLS13draft19].

2.4. Backward Compatibility

2.4.1. Negotiating with a server that does not support the
 additional_key_share extension

 If a server does not provide an "additional_key_share" extension in
 its ServerHello, the client MAY abort the handshake with a
 "missing_extension" alert, or the client MAY finish the handshake
 based on the server's "key_share" extension. (The latter allows a
 client to negotiate a connection with a server who does not recognize
 this extension without retrying the handshake.)

2.4.2. Negotiating with a client that does not support the
 additional_key_share extension

 If a client does not provide an "additional_key_share" extension in
 its ClientHello, the server MAY abort the handshake with a
 "missing_extension" alert, or the server MAY finish the handshake
 based on the client's "key_share" extension.

 If the server chooses to finish the handshake based on the client's
 "key_share" extension, this allows a server that supports both pre-
 quantum and post-quantum key exchange to negotiate a connection with
 a client that does not recognize this extension and only supports
 pre-quantum key exchange.

Schanck & Stebila Expires October 19, 2017 [Page 6]

Internet-Draft Additional Key Share TLS Extension April 2017

3. Key Schedule

 The presence of the "additional_key_share" extension alters the
 derivation of the master secret. The key schedule employed by TLS
 1.3 handles a list of input secrets by iteratively invoking HKDF-
 Extract. When the "additional_key_share" extension is not present,
 secrets are processed in the following order:

 o PSK

 o (EC)DHE shared secret.

 When an additional secret is derived through "additional_key_share"
 the order is:

 o PSK

 o (EC)DHE shared secret

 o Additional secret.

Schanck & Stebila Expires October 19, 2017 [Page 7]

Internet-Draft Additional Key Share TLS Extension April 2017

 0
 |
 v
 PSK -> HKDF-Extract = Early Secret
 |
 +--> Derive-Secret(...) = binder_key
 +--> Derive-Secret(...) = client_early_traffic_secret
 +--> Derive-Secret(...) = early_exporter_secret
 |
 v
 Derive-Secret(., "derived secret", "")
 |
 v
 (EC)DHE -> HKDF-Extract
 |
 v
 Derive-Secret(., "derived secret", "")
 |
 |
 Additional v
 Secret -> HKDF-Extract = Handshake Secret
 |
 +--> Derive-Secret(...) = client_handshake_traffic_secret
 +--> Derive-Secret(...) = server_handshake_traffic_secret
 |
 v
 Derive-Secret(., "derived secret", "")
 |
 v
 0 -> HKDF-Extract = Master Secret
 |
 +--> Derive-Secret(...) = client_traffic_secret_0
 +--> Derive-Secret(...) = server_traffic_secret_0
 +--> Derive-Secret(...) = exporter_secret
 +--> Derive-Secret(...) = resumption_master_secret

4. Pre-shared key modes and session resumption

 [[FOR DISCUSSION]]

 TLS 1.3 allows the client to restrict the use of PSKs that they
 provide in ClientHello through the "psk_key_exchange_modes"
 extension. The client may, for instance, request that the PSK only
 be used in a PSK+(EC)DHE mode, so as to ensure that the resumed
 session has forward secrecy.

 If the client sends "additional_key_share" in an initial ClientHello,
 it is reasonable to expect that they will want to use

Schanck & Stebila Expires October 19, 2017 [Page 8]

Internet-Draft Additional Key Share TLS Extension April 2017

 "additional_key_share" in PSK-resumption. It is possible to
 accomodate such a client by defining a new PskKeyExchangeMode,
 however there is a caveat in doing so that we feel it is worth
 pointing out.

 Suppose that a PSK has been established through some combination of
 pre-quantum and post-quantum mechanisms, as in our proposed use case.
 This PSK is treated as long-term key material during resumption, so a
 "psk_dhe_ke" mode would not be sufficient to preserve the security
 properties of the initial handshake, namely forward secrecy against
 post-quantum adversaries. To avoid this, a post-quantum mechanisms
 must be used in the resumption handshake.

 It is not sufficient to require the use of "additional_key_share"
 during resumption, as this could be used to combine two pre-quantum
 mechanisms.

 Possible remedies:

 o Add a new PskKeyExchangeMode that enforces the use of the same
 NamedGroups that were used to establish the initial secret. enum
 { ..., psk_same_groups_ke(XX), (255) } PskKeyExchangeMode;

 o Add a new PskKeyExchangeMode for "transitional" security enum {
 ..., psk_transitional_ke(XX), (255) } PskKeyExchangeMode;

5. Security Considerations

 This document does not change the intended security properties of
 TLS. In particular, it retains the goals of "establishing the same
 session key" and "secrecy of the session key" as described in

Appendix E.1 of [TLS13draft19].

6. IANA Considerations

 IANA [SHALL add/has added] a new entry to the TLS extensions
 ExtensionType values registry for "additional_key_share".

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119

Schanck & Stebila Expires October 19, 2017 [Page 9]

Internet-Draft Additional Key Share TLS Extension April 2017

7.2. Informative References

 [NISTPQFAQ]
 NIST, "Post-Quantum Crypto Standardization FAQ", April
 2017, <http://csrc.nist.gov/groups/ST/post-quantum-crypto/

faq.html#Q1>.

 [TLS13draft19]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", March 2017, <https://tools.ietf.org/html/

draft-ietf-tls-tls13-19>.

Authors' Addresses

 John M. Schanck
 University of Waterloo
 200 University Avenue West
 Waterloo, ON N2L 3G1
 Canada

 Email: jschanck@uwaterloo.ca

 Douglas Stebila
 McMaster University
 1280 Main Street West
 Hamilton, ON L8S 4L8
 Canada

 Email: stebilad@mcmaster.ca

http://csrc.nist.gov/groups/ST/post-quantum-crypto/faq.html#Q1
http://csrc.nist.gov/groups/ST/post-quantum-crypto/faq.html#Q1
https://tools.ietf.org/html/draft-ietf-tls-tls13-19
https://tools.ietf.org/html/draft-ietf-tls-tls13-19

Schanck & Stebila Expires October 19, 2017 [Page 10]

