
Workgroup: Independent Stream

Internet-Draft: draft-schanzen-gns-21

Published: 7 August 2022

Intended Status: Informational

Expires: 8 February 2023

Authors: M. Schanzenbach

Fraunhofer AISEC

C. Grothoff

Berner Fachhochschule

B. Fix

GNUnet e.V.

The GNU Name System

Abstract

This document contains the GNU Name System (GNS) technical

specification. GNS is a decentralized and censorship-resistant

domain name resolution protocol that provides a privacy-enhancing

alternative to the Domain Name System (DNS) protocols.

This document defines the normative wire format of resource records,

resolution processes, cryptographic routines and security

considerations for use by implementers.

This specification was developed outside the IETF and does not have

IETF consensus. It is published here to inform readers about the

function of GNS, guide future GNS implementations, and ensure

interoperability among implementations including with the pre-

existing GNUnet implementation.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 8 February 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Requirements Notation

2. Terminology

3. Overview

4. Zones

4.1. Zone Top-Level Domain

4.2. Zone Revocation

5. Resource Records

5.1. Zone Delegation Records

5.1.1. PKEY

5.1.2. EDKEY

5.2. Redirection Records

5.2.1. REDIRECT

5.2.2. GNS2DNS

5.3. Auxiliary Records

5.3.1. LEHO

5.3.2. NICK

5.3.3. BOX

6. Record Encoding

6.1. The Storage Key

6.2. The Records Block

7. Name Resolution

7.1. Start Zones

7.2. Recursion

7.3. Record Processing

7.3.1. REDIRECT

7.3.2. GNS2DNS

7.3.3. BOX

7.3.4. Zone Delegation Records

7.3.5. NICK

8. Internationalization and Character Encoding

9. Security and Privacy Considerations

9.1. Availability

9.2. Agility

9.3. Cryptography

9.4. Abuse Mitigation

9.5. Zone Management

¶

https://trustee.ietf.org/license-info

9.6. DHTs as Storage

9.7. Revocations

9.8. Zone Privacy

9.9. Zone Governance

9.10. Namespace Ambiguity

10. GANA Considerations

11. IANA Considerations

12. Implementation and Deployment Status

13. Acknowledgements

14. Normative References

15. Informative References

Appendix A. Usage and Migration

A.1. Zone Dissemination

A.2. Start Zone Configuration

A.3. Globally Unique Names and the Web

A.4. Migration Paths

Appendix B. Example flows

B.1. AAAA Example Resolution

B.2. REDIRECT Example Resolution

B.3. GNS2DNS Example Resolution

Appendix C. Base32GNS

Appendix D. Test Vectors

Authors' Addresses

1. Introduction

This specification describes the GNU Name System (GNS), a

censorship-resistant, privacy-preserving and decentralized domain

name resolution protocol. GNS can bind names to any kind of

cryptographically secured token, enabling it to double in some

respects as an alternative to some of today's public key

infrastructures.

In the terminology of the Domain Name System (DNS) [RFC1035], GNS

roughly follows the idea of a local root zone deployment (see

[RFC8806]), with the difference that the design encourages

alternative roots and does not expect all deployments use the same

or any specific root zone. In the GNS reference implementation,

users can autonomously and freely delegate control of names to zones

through their local configurations.

Name resolution and zone dissemination is based on the principle of

a petname system where users can assign local names to zones. The

GNS has its roots in ideas from the Simple Distributed Security

Infrastructure [SDSI], enabling the decentralized mapping of secure

identifiers to memorable names. A first academic description of the

cryptographic ideas behind GNS can be found in [GNS].

¶

¶

¶

Apex Label

Application

Blinded Zone Key

Extension Label

Label Separator

Label

This document defines the normative wire format of resource records,

resolution processes, cryptographic routines and security

considerations for use by implementers.

This specification was developed outside the IETF and does not have

IETF consensus. It is published here to guide implementers of GNS

and to ensure interoperability among implementations.

1.1. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Terminology

This type of label is used to publish resource records

in a zone that can be resolved without providing a specific

label. It is the GNS method to provide what is the "zone apex" in

DNS [RFC4033]. The apex label is represented using the character

U+0040 ("@" without the quotes).

A component which uses a GNS implementation to resolve

names into records and processes its contents.

The key derived from a zone key and a label. The

zone key and the blinded zone key are unlinkable without

knowledge of the label.

The primary use for the extension label is in

redirections where the redirection target is defined relative to

the authoritative zone of the redirection record (Section 5.2).

The extension label is represented using the character U+002B

("+" without the quotes).

Labels in a name are separated using the label

separator U+002E ("." without the quotes). In GNS, with the

exceptions of zone Top-Level Domains (see below) and boxed

records (see Section 5.3.3), every separator label in a name

delegates to another zone.

A GNS label is a label as defined in [RFC8499]. Labels are

UTF-8 strings in Unicode Normalization Form C (NFC) [Unicode-

UAX15]. The apex label, label separator and the extension label

have special purposes in the resolution protocol which are

defined in the rest of the document. Zone administrators MAY

disallow certain labels that might be easily confused with other

labels through registration policies (see also Section 9.4).

¶

¶

¶

¶

¶

¶

¶

¶

¶

Name

Resolver

Resource Record

Start Zone

Top-Level Domain

Zone

A name in GNS is a domain name as defined in [RFC8499] as an

ordered list of labels. Names are UTF-8 [RFC3629] strings

consisting of the list of labels concatenated with a label

separator. Names are resolved starting from the rightmost label.

GNS does not impose length restrictions on names or labels.

However, applications MAY ensure that name and label lengths are

compatible with DNS and in particular IDNA [RFC5890]. In the

spirit of [RFC5895], applications MAY preprocess names and labels

to ensure compatibility with DNS or support specific user

expectations, for example according to [Unicode-UTS46]. A GNS

name may be indistinguishable from a DNS name and care must be

taken by applications and implementors when handling GNS names

(see Section 9.10).

The component of a GNS implementation which provides the

recursive name resolution logic defined in Section 7.

A GNS resource record is the information associated

with a label in a GNS zone. A GNS resource record contains

information as defined by its resource record type.

In order to resolve any given GNS name an initial start

zone must be determined for this name. The start zone can be

explicitly defined through a zTLD. Otherwise, it is determined

through a local suffix-to-zone mapping (see Section 7.1).

The rightmost part of a GNS name is a GNS Top-

Level Domain (TLD). A GNS TLD can consist of one or more labels.

Unlike DNS Top-Level Domains (defined in [RFC8499]), GNS does not

expect all users to use the same global root zone. Instead, with

the exception of Zone Top-Level Domains (see below), GNS TLDs are

typically part of the configuration of the local resolver (see

Section 7.1), and might thus not be globally unique.

A GNS zone contains authoritative information (resource

records). A zone is uniquely identified by its zone key. Unlike

¶

¶

¶

¶

¶

Zone Key

Zone Key Derivation Function

Zone Master

Zone Owner

Zone Top-Level Domain

Zone Type

DNS zones, a GNS zone does not need to have a SOA record under

the apex label.

A key which uniquely identifies a zone. It is usually a

public key of an asymmetric key pair.

The zone key derivation function

(ZKDF) blinds a zone key using a label.

The component of a GNS implementation which provides

local zone management and publication as defined in Section 6.

The holder of the secret (typically a private key) that

(together with a label and a value to sign) allows the creation

of zone signatures that can be validated against the respective

blinded zone key.

A GNS Zone Top-Level Domain (zTLD) is a

sequence of GNS labels at the end of a GNS name which encodes a

zone type and zone key of a zone. Due to the statistical

uniqueness of zone keys, zTLDs are also globally unique. A zTLD

label sequence can only be distinguished from ordinary TLD label

sequences by attempting to decode the labels into a zone type and

zone key.

The type of a GNS zone determines the cipher system and

binary encoding format of the zone key, blinded zone keys, and

signatures.

3. Overview

GNS exhibits the three properties that are commonly used to describe

a petname system:

Global names through the concept of zone top-level domains

(zTLDs): As zones can be uniquely identified by their zone key

and are statistically unique, zTLDs are globally unique

mappings to zones. Consequently, GNS domain names with a zTLD

suffix are also globally unique. Names with zTLDs suffixes are

not human-readable.

Memorable petnames for zones: Users can configure local, human-

readable references to zones. Such petnames serve as zTLD

monikers in order to support human-readable domain names. The

petnames may also be published in order to delegate namespaces

of zones.

A secure mapping from names to records: GNS allows zone owners

to map petnames to resource records or to delegate authority of

the petname to other zones and publish this information. The

¶

¶

¶

¶

¶

¶

¶

¶

1.

¶

2.

¶

3.

mappings are signed and encrypted using keys derived from local

labels. When names are resolved, resource records including

delegations can be verified by the implementation.

It follows from the above that GNS does not support names which are

simultaneously global, secure and human-readable. Instead, names are

either global and not human-readable or not globally unique and

human-readable. An example for a global name pointing to the record

"example" in a zone is:

example.000G006K2TJNMD9VTCYRX7BRVV3HAEPS15E6NHDXKPJA1KAJJEG9AFF884

Now consider the petname "pet" for the example zone of the name

above. The following name would point to the same record as the

globally unique name above but it is only valid locally:

example.pet

The delegation of petnames and subsequent resolution of delegation

builds on ideas from the Simple Distributed Security Infrastructure

[SDSI]. In GNS, any user can create and manage one or more zones

(Section 4) as part of a zone master implementation. The zone type

determines the respective set of cryptographic operations and the

wire formats for encrypted data, public keys and signatures. A zone

can be populated with mappings from labels to resource records by

its owner (Section 5). A label can be mapped to a delegation record

which results in the corresponding subdomain being delegated to

another zone. Circular delegations are explicitly allowed, including

delegating a subdomain to its immediate parent zone. In order to

support (legacy) applications as well as to facilitate the use of

petnames, GNS defines auxiliary record types in addition to

supporting existing DNS records.

Zone contents are encrypted and signed before being published in a

key-value storage (Section 6) as illustrated in Figure 1. In this

process, unique zone identification is hidden from the network

through the use of key blinding. Key blinding allows the creation of

signatures for zone contents using a blinded public/private key

pair. This blinding is realized using a deterministic key derivation

from the original zone key and corresponding private key using

record label values as blinding factors. Specifically, the zone

owner can derive blinded private keys for each record set published

under a label, and a resolver can derive the corresponding blinded

public keys. It is expected that GNS implementations use distributed

or decentralized storages such as distributed hash tables (DHT) in

order to facilitate availability within a network without the need

¶

¶

¶

¶

¶

¶

for dedicated infrastructure. Specification of such a distributed or

decentralized storage is out of scope of this document, but possible

existing implementations include those based on [RFC7363],

[Kademlia] or [R5N].

Figure 1: An example diagram of two hosts publishing GNS zones.

Applications use the resolver to lookup GNS names. Starting from a

configurable start zone, names are resolved by following zone

delegations recursively as illustrated in Figure 2. For each label

in a name, the recursive GNS resolver fetches the respective record

from the storage layer (Section 7). Without knowledge of the label

values and the zone keys, the different derived keys are unlinkable

both to the original zone key and to each other. This prevents zone

enumeration (except via impractical online brute force attacks) and

requires knowledge of both the zone key and the label to confirm

affiliation of a query or the corresponding encrypted record set

with a specific zone. At the same time, the blinded zone key

provides resolvers with the ability to verify the integrity of the

published information without disclosing the originating zone.

¶

 Local Host | Remote | Remote Host

 | Storage |

 | |

 | +---------+ |

 | / /| |

 Publish | +---------+ | | Publish

 +---------+ Records | | | | | Records +---------+

 | Zone |----------|->| Record | |<-|----------| Zone |

 | Master | | | Storage | | | | Master |

 +---------+ | | |/ | +---------+

 A | +---------+ | A

 | | | |

 +---------+ | | +---------+

 / | /| | | / | /|

 +---------+ | | | +---------+ |

 | | | | | | | |

 | Local | | | | | Local | |

 | Zones | | | | | Zones | |

 | |/ | | | |/

 +---------+ | | +---------+

¶

Figure 2: High-level view of the GNS resolution process.

In the remainder of this document, the "implementer" refers to the

developer building a GNS implementation including the resolver, zone

master, and supporting configuration such as start zones (Section

7.1).

4. Zones

A zone master implementation SHOULD enable the zone owners to create

and manage zones. If this functionality is not implemented, names

can still be resolved if zone keys for the initial step in the name

resolution are available (see Section 7).

A zone in GNS is uniquely identified by its zone type and zone key.

Each zone can be represented by a Zone Top-Level Domain (zTLD)

string. A zone type (ztype) is a unique 32-bit number. This number

corresponds to a resource record type number identifying a

delegation record type in the GNUnet Assigned Numbers Authority

[GANA]. The ztype is a unique identifier for the set cryptographic

functions of the zone and the format of the delegation record type.

Any ztype MUST define the following set of cryptographic functions:

 Local Host | Remote

 | Storage

 |

 | +---------+

 | / /|

 | +---------+ |

+-----------+ Name +----------+ Recursive | | | |

| | Lookup | | Resolution | | Record | |

|Application|----------| Resolver |-------------|->| Storage | |

| |<---------| |<------------|--| |/

+-----------+ Results +----------+ Intermediate| +---------+

 A Results |

 | |

 +---------+ |

 / | /| |

 +---------+ | |

 | | | |

 | Start | | |

 | Zones | | |

 | |/ |

 +---------+ |

¶

¶

¶

KeyGen() -> d, zk

ZKDF(zk,label) -> zk'

S-Encrypt(zk,label,expiration,message) -> ciphertext

S-Decrypt(zk,label,expiration,ciphertext) -> message

Sign(d,message) -> signature

Verify(zk,message,signature) -> boolean

SignDerived(d,label,message) -> signature

VerifyDerived(zk,label,message,signature) -> boolean

is a function to generate a new private key d and

the corresponding public zone key zk.

is a zone key derivation function which

blinds a zone key zk using a label. zk and zk' must be

unlinkable. Furthermore, blinding zk with different values for

the label must result in different, unlinkable zk' values.

is a symmetric

encryption function which encrypts the record data based on key

material derived from the zone key, a label, and an expiration

timestamp. In order to leverage performance-enhancing caching

features of certain underlying storages, in particular DHTs, a

deterministic encryption scheme is recommended.

is a symmetric

decryption function which decrypts the encrypted record data

based on key material derived from the zone key, a label, and an

expiration timestamp.

is a function to sign a message using

the private key d, yielding an unforgeable cryptographic

signature. In order to leverage performance-enhancing caching

features of certain underlying storages, in particular DHTs, a

deterministic signature scheme is recommended.

is a function to verify the

signature was created using the private key d corresponding to

the zone key zk where d,zk := Keygen(). The function returns a

boolean value of "TRUE" if the signature is valid, and otherwise

"FALSE".

is a function to sign a

message (typically encrypted record data) that can be verified

using the derived zone key zk' := ZKDF(zk,label). In order to

leverage performance-enhancing caching features of certain

underlying storages, in particular DHTs, a deterministic

signature scheme is recommended.

is function to

verify the signature using the derived zone key zk' :=

ZKDF(zk,label). The function returns a boolean value of "TRUE" if

the signature is valid, and otherwise "FALSE".

The cryptographic functions of the default ztypes are specified with

their corresponding delegation records in Section 5.1. In order to

support cryptographic agility, additional ztypes MAY be defined in

the future which replace or update the default ztypes defined in

this document. All ztypes MUST be registered as dedicated zone

¶

¶

¶

¶

¶

¶

¶

¶

delegation record types in the GNU Name System Record Types registry

(see Section 10). When defining new record types the cryptographic

security considerations of this document apply, in particular

Section 9.3.

4.1. Zone Top-Level Domain

The zTLD is the Zone Top-Level Domain. It is a string which encodes

the zone type and zone key into a domain name. The zTLD is used as a

globally unique reference to a specific zone in the process of name

resolution. It is created by encoding a binary concatenation of the

zone type and zone key (see Figure 3). The used encoding is a

variation of the Crockford Base32 encoding [CrockfordB32] called

Base32GNS. The encoding and decoding symbols for Base32GNS including

this modification are defined in the table found in Figure 29. The

functions for encoding and decoding based on this table are called

Base32GNS-Encode and Base32GNS-Decode, respectively.

Figure 3: The decoded binary representation of the zTLD

Consequently, a zTLD is encoded and decoded as follows:

where "||" is the concatenation operator.

The zTLD can be used as-is as a rightmost label in a GNS name. If an

application wants to ensure DNS compatibility of the name, it MAY

also represent the zTLD as follows: If the zTLD is less than or

equal to 63 characters, it can be used as a zTLD as-is. If the zTLD

is longer than 63 characters, the zTLD is divided into smaller

labels separated by the label separator. Here, the most significant

bytes of the "ztype||zkey" concatenation must be contained in the

rightmost label of the resulting string and the least significant

bytes in the leftmost label of the resulting string. This allows the

resolver to determine the ztype and zTLD length from the rightmost

label and to subsequently determine how many labels the zTLD should

span. A GNS implementation MUST support the division of zTLDs in DNS

compatible label lengths. For example, assuming a zTLD of 130

characters, the division is:

¶

¶

0 8 16 24 32 40 48 56

+-----+-----+-----+-----+-----+-----+-----+-----+

| ZONE TYPE | ZONE KEY /

+-----+-----+-----+-----+ /

/ /

/ /

¶

zTLD := Base32GNS-Encode(ztype||zkey)

ztype||zkey := Base32GNS-Decode(zTLD)

¶

¶

¶

S

t

m

T

p

v

y

X

K

4.2. Zone Revocation

In order to revoke a zone key, a signed revocation message MUST be

published. This message MUST be signed using the private key. The

revocation message is broadcast to the network. The specification of

the broadcast mechanism is out of scope for this document. A

possible broadcast mechanism for efficient flooding in a distributed

network is implemented in [GNUnet]. Alternatively, revocation

messages could also be distributed via a distributed ledger or a

trusted central server. To prevent flooding attacks, the revocation

message MUST contain a proof of work (PoW). The revocation message

including the PoW MAY be calculated ahead of time to support timely

revocation.

For all occurrences below, "Argon2id" is the Password-based Key

Derivation Function as defined in [RFC9106]. For the PoW

calculations the algorithm is instantiated with the following

parameters:

The salt. Fixed 16-byte string: "GnsRevocationPow".

Number of iterations: 3

Memory size in KiB: 1024

Output length of hash in bytes: 64

Parallelization parameter: 1

Algorithm version: 0x13

Algorithm type (Argon2id): 2

Unused

Unused

Figure 4 illustrates the format of the data "P" on which the PoW is

calculated.

zTLD[126..129].zTLD[63..125].zTLD[0..62]¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

POW

TIMESTAMP

ZONE TYPE

ZONE KEY

Figure 4: The Format of the PoW Data.

A 64-bit value that is a solution to the PoW. In network byte

order.

denotes the absolute 64-bit date when the revocation was

computed. In microseconds since midnight (0 hour), January 1,

1970 UTC in network byte order.

is the 32-bit zone type.

is the 256-bit public key zk of the zone which is being

revoked. The wire format of this value is defined by the ZONE

TYPE.

Usually, PoW schemes require to find one POW value such that a

specific number of leading zeroes are found in the hash result. This

number is then referred to as the difficulty of the PoW. In order to

reduce the variance in time it takes to calculate the PoW, a valid

GNS revocation requires that a number Z different PoWs must be found

that on average have D leading zeroes.

The resulting proofs are ready for dissemination. The concrete

dissemination and publication methods are out of scope of this

document. Given an average difficulty of D, the proofs have an

expiration time of EPOCH. With each additional bit difficulty, the

lifetime of the proof is prolonged for another EPOCH. Consequently,

by calculating a more difficult PoW, the lifetime of the proof can

be increased on demand by the zone owner.

The parameters are defined as follows:

0 8 16 24 32 40 48 56

+-----+-----+-----+-----+-----+-----+-----+-----+

| POW |

+---+

| TIMESTAMP |

+---+

| ZONE TYPE | ZONE KEY |

+-----+-----+-----+-----+ |

/ /

/ /

+-----+-----+-----+-----+-----+-----+-----+-----+

¶

¶

¶

¶

¶

¶

¶

Z

D

EPOCH

TIMESTAMP

TTL

The number of PoWs that are required. Its value is fixed at 32.

The lower limit of the average difficulty. Its value is fixed at

22.

A single epoch. Its value is fixed at 365 days in

microseconds.

The revocation message wire format is illustrated in Figure 5.

Figure 5: The Revocation Message Wire Format.

denotes the absolute 64-bit date when the revocation was

computed. In microseconds since midnight (0 hour), January 1,

1970 UTC in network byte order. This is the same value as the

time stamp used in the individual PoW calculations.

denotes the relative 64-bit time to live of the record in

microseconds in network byte order. The field SHOULD be set to

EPOCH * 1.1. Given an average number of leading zeros D', then

the field value MAY be increased up to (D'-D+1) * EPOCH * 1.1.

Validators MAY reject messages with lower or higher values when

received. The EPOCH is extended by 10% in order to deal with

unsynchronized clocks.

¶

¶

¶

¶

0 8 16 24 32 40 48 56

+-----+-----+-----+-----+-----+-----+-----+-----+

| TIMESTAMP |

+-----+-----+-----+-----+-----+-----+-----+-----+

| TTL |

+-----+-----+-----+-----+-----+-----+-----+-----+

| POW_0 |

+-----+-----+-----+-----+-----+-----+-----+-----+

| ... |

+-----+-----+-----+-----+-----+-----+-----+-----+

| POW_Z-1 |

+---+

| ZONE TYPE | ZONE KEY |

+-----+-----+-----+-----+ |

/ /

/ /

+-----+-----+-----+-----+-----+-----+-----+-----+

| SIGNATURE |

/ /

/ /

| |

+-----+-----+-----+-----+-----+-----+-----+-----+

¶

¶

POW_i

ZONE TYPE

ZONE KEY

SIGNATURE

SIZE

PURPOSE

TIMESTAMP

ZONE TYPE

The values calculated as part of the PoW, in network byte

order. Each POW_i MUST be unique in the set of POW values. To

facilitate fast verification of uniqueness, the POW values must

be given in strictly monotonically increasing order in the

message.

The 32-bit zone type corresponding to the zone key.

is the public key zk of the zone which is being revoked

and the key to be used to verify SIGNATURE.

A signature over a time stamp and the zone zk of the zone

which is revoked and corresponds to the key used in the PoW. The

signature is created using the Sign() function of the

cryptosystem of the zone and the private key (see Section 4).

The signature over the public key covers a 32-bit header prefixed to

the time stamp and public key fields. The header includes the key

length and signature purpose. The wire format is illustrated in

Figure 6.

Figure 6: The Wire Format of the Revocation Data for Signing.

A 32-bit value containing the length of the signed data in

bytes in network byte order.

A 32-bit signature purpose flag. The value of this field

MUST be 3. The value is encoded in network byte order. It defines

the context in which the signature is created so that it cannot

be reused in other parts of the protocol including possible

future extensions. The value of this field corresponds to an

entry in the GANA "GNUnet Signature Purpose" registry Section 10.

Field as defined in the revocation message above.

Field as defined in the revocation message above.

¶

¶

¶

¶

¶

0 8 16 24 32 40 48 56

+-----+-----+-----+-----+-----+-----+-----+-----+

| SIZE | PURPOSE (0x03) |

+-----+-----+-----+-----+-----+-----+-----+-----+

| TIMESTAMP |

+-----+-----+-----+-----+-----+-----+-----+-----+

| ZONE TYPE | ZONE KEY |

+-----+-----+-----+-----+ |

/ /

/ /

+-----+-----+-----+-----+-----+-----+-----+-----+

¶

¶

¶

¶

ZONE KEY
Field as defined in the revocation message above.

In order to validate a revocation the following steps MUST be taken:

The signature MUST be verified against the zone key.

The set of POW values MUST NOT contain duplicates which MUST be

checked by verifying that the values are strictly monotonically

increasing.

The average number of leading zeroes D' resulting from the

provided POW values MUST be greater than or equal to D.

Implementers MUST NOT use an integer data type to calculate or

represent D'.

The TTL field in the revocation message is informational. A

revocation MAY be discarded without checking the POW values or the

signature if the TTL (in combination with TIMESTAMP) indicates that

the revocation has already expired. The actual validity period of

the revocation MUST be determined by examining the leading zeroes in

the POW values.

The validity period of the revocation is calculated as (D'-D+1) *

EPOCH * 1.1. The EPOCH is extended by 10% in order to deal with

unsynchronized clocks. The validity period added on top of the

TIMESTAMP yields the expiration date. If the current time is after

the expiration date, the revocation is considered stale.

Verified revocations MUST be stored locally. The implementation MAY

discard stale revocations and evict then from the local store at any

time.

Implementations MUST broadcast received revocations if they are

valid and not stale. Should the calculated validity period differ

from the TTL field value, the calculated value MUST be used as TTL

field value when forwarding the revocation message. Systems might

disagree on the current time, so implementations MAY use stale but

otherwise valid revocations but SHOULD NOT broadcast them. Forwarded

stale revocations MAY be discarded.

Any locally stored revocation MUST be considered during delegation

record processing (Section 7.3.4).

5. Resource Records

A GNS implementation SHOULD provide a mechanism to create and manage

local zones as well as a persistence mechanism such as a database

for resource records. A new local zone is established by selecting a

zone type and creating a zone key pair. If this mechanism is not

¶

¶

1. ¶

2.

¶

3.

¶

¶

¶

¶

¶

¶

EXPIRATION

SIZE

FLAGS

TYPE

DATA

implemented, no zones can be published in the storage (Section 6)

and name resolution is limited to non-local start zones (Section

7.1).

A GNS resource record holds the data of a specific record in a zone.

The resource record format is defined in Figure 7.

Figure 7: The Resource Record Wire Format.

denotes the absolute 64-bit expiration date of the

record. In microseconds since midnight (0 hour), January 1, 1970

UTC in network byte order.

denotes the 16-bit size of the DATA field in bytes and in

network byte order.

is a 16-bit resource record flags field (see below).

is the 32-bit resource record type. This type can be one of

the GNS resource records as defined in Section 5 or a DNS record

type as defined in [RFC1035] or any of the complementary

standardized DNS resource record types. This value must be stored

in network byte order. Note that values below 2^16 are reserved

for 16-bit DNS Resorce Record types allocated by IANA [RFC6895].

Values above 2^16 are allocated by the GNUnet Assigned Numbers

Authority [GANA].

the variable-length resource record data payload. The content

is defined by the respective type of the resource record.

Flags indicate metadata surrounding the resource record. An

application creating resource records MUST set all bits to 0 unless

it wants to set the respective flag. As additional flags can be

defined in future protocol versions, if an application or

implementation encounters a flag which it does not recognize, it

MUST be ignored. Any combination of the flags specified below are

valid. Figure 8 illustrates the flag distribution in the 16-bit flag

field of a resource record:

¶

¶

0 8 16 24 32 40 48 56

+-----+-----+-----+-----+-----+-----+-----+-----+

| EXPIRATION |

+-----+-----+-----+-----+-----+-----+-----+-----+

| SIZE | FLAGS | TYPE |

+-----+-----+-----+-----+-----+-----+-----+-----+

| DATA /

/ /

/ /

¶

¶

¶

¶

¶

¶

CRITICAL

SHADOW

SUPPLEMENTAL

Figure 8: The Resource Record Flag Wire Format.

If this flag is set, it indicates that processing is

critical. Implementations that do not support the record type or

are otherwise unable to process the record MUST abort resolution

upon encountering the record in the resolution process.

If this flag is set, this record MUST be ignored by

resolvers unless all (other) records of the same record type have

expired. Used to allow zone publishers to facilitate good

performance when records change by allowing them to put future

values of records into the storage. This way, future values can

propagate and can be cached before the transition becomes active.

This is a supplemental record. It is provided in

addition to the other records. This flag indicates that this

record is not explicitly managed alongside the other records

under the respective name but might be useful for the

application.

5.1. Zone Delegation Records

This section defines the initial set of zone delegation record

types. Any implementation SHOULD support all zone types defined here

and MAY support any number of additional delegation records defined

in the GNU Name System Record Types registry (see Section 10). Not

supporting some zone types will result in resolution failures in

case the respective zone type is encountered. This is be a valid

choice if some zone delegation record types have been determined to

be cryptographically insecure. Zone delegation records MUST NOT be

stored and published under the apex label. A zone delegation record

type value is the same as the respective ztype value. The ztype

defines the cryptographic primitives for the zone that is being

delegated to. A zone delegation record payload contains the public

key of the zone to delegate to. A zone delegation record MUST have

the CRITICAL flag set and MUST be the only non-supplemental record

under a label. There MAY be inactive records of the same type which

have the SHADOW flag set in order to facilitate smooth key

rollovers.

In the following, "||" is the concatenation operator of two byte

strings. The algorithm specification uses character strings such as

GNS labels or constant values. When used in concatenations or as

0 13 14 15

+--------...+-------------+-------+---------+

| Reserved |SUPPLEMENTAL |SHADOW |CRITICAL |

+--------...+-------------+-------+---------+

¶

¶

¶

¶

PUBLIC KEY

d

zk

p

G

L

KeyGen()

input to functions the null-terminator of the character strings MUST

NOT be included.

5.1.1. PKEY

In GNS, a delegation of a label to a zone of type "PKEY" is

represented through a PKEY record. The PKEY DATA entry wire format

can be found in Figure 9.

Figure 9: The PKEY Wire Format.

A 256-bit Ed25519 public key.

For PKEY zones the zone key material is derived using the curve

parameters of the twisted Edwards representation of Curve25519

[RFC7748] (a.k.a. Ed25519) with the ECDSA scheme [RFC6979]. The

following naming convention is used for the cryptographic primitives

of PKEY zones:

is a 256-bit Ed25519 private key (private scalar).

is the Ed25519 public zone key corresponding to d.

is the prime of edwards25519 as defined in [RFC7748], i.e. 2^255

- 19.

is the group generator (X(P),Y(P)) of edwards25519 as defined in

[RFC7748].

is the order of the prime-order subgroup of edwards25519 in

[RFC7748].

The generation of the private scalar d and the curve point

zk := d*G (where G is the group generator of the elliptic curve)

as defined in Section 2.2. of [RFC6979] represents the KeyGen()

function.

The zone type and zone key of a PKEY are 4 + 32 bytes in length.

This means that a zTLD will always fit into a single label and does

not need any further conversion. Given a label, the output zk' of

the ZKDF(zk,label) function is calculated as follows for PKEY zones:

¶

¶

0 8 16 24 32 40 48 56

+-----+-----+-----+-----+-----+-----+-----+-----+

| PUBLIC KEY |

| |

| |

| |

+-----+-----+-----+-----+-----+-----+-----+-----+

¶

¶

¶

¶

¶

¶

¶

¶

¶

The PKEY cryptosystem uses a hash-based key derivation function

(HKDF) as defined in [RFC5869], using SHA-512 [RFC6234] for the

extraction phase and SHA-256 [RFC6234] for the expansion phase.

PRK_h is key material retrieved using an HKDF using the string "key-

derivation" as salt and the zone key as initial keying material. h

is the 512-bit HKDF expansion result and must be interpreted in

network byte order. The expansion information input is a

concatenation of the label and the string "gns". The multiplication

of zk with h is a point multiplication, while the multiplication of

d with h is a scalar multiplication.

The Sign() and Verify() functions for PKEY zones are implemented

using 512-bit ECDSA deterministic signatures as specified in

[RFC6979]. The same functions can be used for derived keys:

A signature (R,S) is valid if the following holds:

The S-Encrypt() and S-Decrypt() functions use AES in counter mode as

defined in [MODES] (CTR-AES-256):

ZKDF(zk,label):

 PRK_h := HKDF-Extract ("key-derivation", zk)

 h := HKDF-Expand (PRK_h, label || "gns", 512 / 8)

 zk' := (h mod L) * zk

 return zk'

¶

¶

¶

SignDerived(d,label,message):

 zk := d * G

 PRK_h := HKDF-Extract ("key-derivation", zk)

 h := HKDF-Expand (PRK_h, label || "gns", 512 / 8)

 d' := (h * d) mod L

 return Sign(d',message)

¶

¶

VerifyDerived(zk,label,message,signature):

 zk' := ZKDF(zk,label)

 return Verify(zk',message,signature)

¶

¶

The key K and counter IV are derived from the record label and the

zone key zk using a hash-based key derivation function (HKDF) as

defined in [RFC5869]. SHA-512 [RFC6234] is used for the extraction

phase and SHA-256 [RFC6234] for the expansion phase. The output

keying material is 32 bytes (256 bits) for the symmetric key and 4

bytes (32 bits) for the nonce. The symmetric key K is a 256-bit AES

[RFC3826] key.

The nonce is combined with a 64-bit initialization vector and a 32-

bit block counter as defined in [RFC3686]. The block counter begins

with the value of 1, and it is incremented to generate subsequent

portions of the key stream. The block counter is a 32-bit integer

value in network byte order. The initialization vector is the

expiration time of the resource record block in network byte order.

The resulting counter (IV) wire format can be found in Figure 10.

Figure 10: The Block Counter Wire Format.

5.1.2. EDKEY

In GNS, a delegation of a label to a zone of type "EDKEY" is

represented through a EDKEY record. The EDKEY DATA entry wire format

is illustrated in Figure 11.

S-Encrypt(zk,label,expiration,plaintext):

 PRK_k := HKDF-Extract ("gns-aes-ctx-key", zk)

 PRK_n := HKDF-Extract ("gns-aes-ctx-iv", zk)

 K := HKDF-Expand (PRK_k, label, 256 / 8)

 NONCE := HKDF-Expand (PRK_n, label, 32 / 8)

 IV := NONCE || expiration || 0x0000000000000001

 return CTR-AES256(K, IV, plaintext)

S-Decrypt(zk,label,expiration,ciphertext):

 PRK_k := HKDF-Extract ("gns-aes-ctx-key", zk)

 PRK_n := HKDF-Extract ("gns-aes-ctx-iv", zk)

 K := HKDF-Expand (PRK_k, label, 256 / 8)

 NONCE := HKDF-Expand (PRK_n, label, 32 / 8)

 IV := NONCE || expiration || 0x0000000000000001

 return CTR-AES256(K, IV, ciphertext)

¶

¶

¶

0 8 16 24 32

+-----+-----+-----+-----+

| NONCE |

+-----+-----+-----+-----+

| EXPIRATION |

| |

+-----+-----+-----+-----+

| BLOCK COUNTER |

+-----+-----+-----+-----+

¶

PUBLIC KEY

d

a

zk

p

G

L

KeyGen()

Figure 11: The EDKEY DATA Wire Format.

A 256-bit EdDSA zone key.

For EDKEY zones the zone key material is derived using the curve

parameters of the twisted edwards representation of Curve25519

[RFC7748] (a.k.a. Ed25519) with the Ed25519 scheme [ed25519] as

specified in [RFC8032]. The following naming convention is used for

the cryptographic primitives of EDKEY zones:

is a 256-bit EdDSA private key.

is is an integer derived from d using the SHA-512 hash function

as defined in [RFC8032].

is the EdDSA public key corresponding to d. It is defined as the

curve point a*G where G is the group generator of the elliptic

curve as defined in [RFC8032].

is the prime of edwards25519 as defined in [RFC8032], i.e. 2^255

- 19.

is the group generator (X(P),Y(P)) of edwards25519 as defined in

[RFC8032].

is the order of the prime-order subgroup of edwards25519 in

[RFC8032].

The generation of the private key d and the associated

public key zk := a*G where G is the group generator of the

elliptic curve and a is an integer derived from d using the

SHA-512 hash function as defined in Section 5.1.5 of [RFC8032]

represents the KeyGen() function.

The zone type and zone key of an EDKEY are 4 + 32 bytes in length.

This means that a zTLD will always fit into a single label and does

not need any further conversion.

The "EDKEY" ZKDF instantiation is based on [Tor224]. The calculation

of a is defined in Section 5.1.5 of [RFC8032]. Given a label, the

output of the ZKDF function is calculated as follows:

0 8 16 24 32 40 48 56

+-----+-----+-----+-----+-----+-----+-----+-----+

| PUBLIC KEY |

| |

| |

| |

+-----+-----+-----+-----+-----+-----+-----+-----+

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Implementers SHOULD employ a constant time scalar multiplication for

the constructions above to protect against timing attacks.

Otherwise, timing attacks could leak private key material if an

attacker can predict when a system starts the publication process.

The EDKEY cryptosystem uses a hash-based key derivation function

(HKDF) as defined in [RFC5869], using SHA-512 [RFC6234] for the

extraction phase and HMAC-SHA256 [RFC6234] for the expansion phase.

PRK_h is key material retrieved using an HKDF using the string "key-

derivation" as salt and the zone key as initial keying material. The

blinding factor h is the 512-bit HKDF expansion result. The

expansion information input is a concatenation of the label and the

string "gns". The result of the HKDF must be clamped and interpreted

in network byte order. a is the 256-bit integer corresponding to the

256-bit private key d. The multiplication of zk with h is a point

multiplication, while the division and multiplication of a and a1

with the co-factor are integer operations.

The Sign(d,message) and Verify(zk,message,signature) procedures MUST

be implemented as defined in [RFC8032].

Signatures for EDKEY zones use a derived private scalar d' which is

not compliant with [RFC8032]. As the corresponding private key to

the derived private scalar is not known, it is not possible to

deterministically derive the signature part R according to

[RFC8032]. Instead, signatures MUST be generated as follows for any

given message and private zone key: A nonce is calculated from the

highest 32 bytes of the expansion of the private key d and the

blinding factor h. The nonce is then hashed with the message to r.

This way, the full derivation path is included in the calculation of

the R value of the signature, ensuring that it is never reused for

two different derivation paths or messages.

ZKDF(zk,label):

 /* Calculate the blinding factor */

 PRK_h := HKDF-Extract ("key-derivation", zk)

 h := HKDF-Expand (PRK_h, label || "gns", 512 / 8)

 /* Ensure that h == h mod L */

 h[31] &= 7

 zk' := h * zk

 return zk'

¶

¶

¶

¶

¶

A signature (R,S) is valid if the following holds:

The S-Encrypt() and S-Decrypt() functions use XSalsa20 as defined in

[XSalsa20] (XSalsa20-Poly1305):

SignDerived(d,label,message):

 /* Key expansion */

 dh := SHA-512 (d)

 /* EdDSA clamping */

 a := dh[0..31]

 a[0] &= 248

 a[31] &= 127

 a[31] |= 64

 /* Calculate zk corresponding to d */

 zk := a * G

 /* Calculate blinding factor */

 PRK_h := HKDF-Extract ("key-derivation", zk)

 h := HKDF-Expand (PRK_h, label || "gns", 512 / 8)

 /* Ensure that h == h mod L */

 h[31] &= 7

 zk' := h * zk

 a1 := a >> 3

 a2 := (h * a1) mod L

 d' := a2 << 3

 nonce := SHA-256 (dh[32..63] || h)

 r := SHA-512 (nonce || message)

 R := r * G

 S := r + SHA-512(R || zk' || message) * d' mod L

 return (R,S)

¶

¶

VerifyDerived(zk,label,message,signature):

 zk' := ZKDF(zk,label)

 (R,S) := signature

 return S * G == R + SHA-512(R, zk', message) * zk'

¶

¶

The result of the XSalsa20-Poly1305 encryption function is the

encrypted ciphertext followed by the 128-bit authentication tag.

Accordingly, the length of encrypted data equals the length of the

data plus the 16 bytes of the authentication tag.

The key K and counter IV are derived from the record label and the

zone key zk using a hash-based key derivation function (HKDF) as

defined in [RFC5869]. SHA-512 [RFC6234] is used for the extraction

phase and SHA-256 [RFC6234] for the expansion phase. The output

keying material is 32 bytes (256 bits) for the symmetric key and 16

bytes (128 bits) for the NONCE. The symmetric key K is a 256-bit

XSalsa20 [XSalsa20] key. No additional authenticated data (AAD) is

used.

The nonce is combined with an 8 byte initialization vector. The

initialization vector is the expiration time of the resource record

block in network byte order. The resulting counter (IV) wire format

is illustrated in Figure 12.

Figure 12: The Counter Block Initialization Vector.

S-Encrypt(zk,label,expiration,message):

 PRK_k := HKDF-Extract ("gns-xsalsa-ctx-key", zk)

 PRK_n := HKDF-Extract ("gns-xsalsa-ctx-iv", zk)

 K := HKDF-Expand (PRK_k, label, 256 / 8)

 NONCE := HKDF-Expand (PRK_n, label, 128 / 8)

 IV := NONCE || expiration

 return XSalsa20-Poly1305(K, IV, message)

S-Decrypt(zk,label,expiration,ciphertext):

 PRK_k := HKDF-Extract ("gns-xsalsa-ctx-key", zk)

 PRK_n := HKDF-Extract ("gns-xsalsa-ctx-iv", zk)

 K := HKDF-Expand (PRK_k, label, 256 / 8)

 NONCE := HKDF-Expand (PRK_n, label, 128 / 8)

 IV := NONCE || expiration

 return XSalsa20-Poly1305(K, IV, ciphertext)

¶

¶

¶

¶

0 8 16 24 32

+-----+-----+-----+-----+

| NONCE |

| |

| |

| |

+-----+-----+-----+-----+

| EXPIRATION |

| |

+-----+-----+-----+-----+

REDIRECT NAME

5.2. Redirection Records

Redirect records are used to redirect resolution. Any implementation

SHOULD support all redirection record types defined here and MAY

support any number of additional redirection records defined in the

GNU Name System Record Types registry (see Section Section 10).

Redirection records MUST have the CRITICAL flag set. Not supporting

some record types can result in resolution failures. This can be a

valid choice if some redirection record types have been determined

to be insecure, or if an application has reasons to not support

redirection to DNS for reasons such as complexity or security.

Redirection records MUST NOT be stored and published under the apex

label.

5.2.1. REDIRECT

A REDIRECT record is the GNS equivalent of a CNAME record in DNS. A

REDIRECT record MUST be the only non-supplemental record under a

label. There MAY be inactive records of the same type which have the

SHADOW flag set in order to facilitate smooth changes of redirection

targets. No other records are allowed. Details on processing of this

record is defined in Section 7.3.1. A REDIRECT DATA entry is

illustrated in Figure 13.

Figure 13: The REDIRECT DATA Wire Format.

The name to continue with. The value of a redirect

record can be a regular name, or a relative name. Relative GNS

names are indicated by an extension label (U+002B, "+") as

rightmost label. The string is UTF-8 encoded and 0-terminated.

5.2.2. GNS2DNS

It is possible to delegate a label back into DNS through a GNS2DNS

record. The resource record contains a DNS name for the resolver to

continue with in DNS followed by a DNS server. Both names are in the

format defined in [RFC1034] for DNS names. There MAY be multiple

GNS2DNS records under a label. There MAY also be DNSSEC DS records

or any other records used to secure the connection with the DNS

servers under the same label. There MAY be inactive records of the

same type(s) which have the SHADOW flag set in order to facilitate

¶

¶

0 8 16 24 32 40 48 56

+-----+-----+-----+-----+-----+-----+-----+-----+

| REDIRECT NAME |

/ /

/ /

| |

+-----+-----+-----+-----+-----+-----+-----+-----+

¶

NAME

DNS SERVER NAME

smooth changes of redirection targets. No other non-supplemental

record types are allowed in the same record set. A GNS2DNS DATA

entry is illustrated in Figure 14.

Figure 14: The GNS2DNS DATA Wire Format.

The name to continue with in DNS. The value is UTF-8 encoded

and 0-terminated.

The DNS server to use. This value can be an IPv4

address in dotted-decimal form or an IPv6 address in colon-

hexadecimal form or a DNS name. It can also be a relative GNS

name ending with a "+" as the rightmost label. The implementation

MUST check the string syntactically for an IP address in the

respective notation before checking for a relative GNS name. If

all three checks fail, the name MUST be treated as a DNS name.

The value is UTF-8 encoded and 0-terminated.

NOTE: If an application uses DNS names obtained from GNS2DNS records

in a DNS request they MUST first be converted to an IDNA compliant

representation [RFC5890].

5.3. Auxiliary Records

This section defines the initial set of auxiliary GNS record types.

Any implementation SHOULD be able to process the specified record

types according to Section 7.3.

5.3.1. LEHO

This record is used to provide a hint for LEgacy HOstnames:

Applications can use the GNS to lookup IPv4 or IPv6 addresses of

internet services. However, sometimes connecting to such services

does not only require the knowledge of an address and port, but also

requires the canonical DNS name of the service to be transmitted

over the transport protocol. In GNS, legacy host name records

¶

0 8 16 24 32 40 48 56

+-----+-----+-----+-----+-----+-----+-----+-----+

| NAME |

/ /

/ /

| |

+-----+-----+-----+-----+-----+-----+-----+-----+

| DNS SERVER NAME |

/ /

/ /

| |

+---+

¶

¶

¶

¶

LEGACY HOSTNAME

provide applications the DNS name that is required to establish a

connection to such a service. The most common use case is HTTP

virtual hosting and TLS Server Name Indication [RFC6066], where a

DNS name must be supplied in the HTTP "Host"-header and the TLS

handshake, respectively. Using a GNS name in those cases might not

work as it might not be globally unique. Furthermore, even if

uniqueness is not an issue, the legacy service might not even be

aware of GNS.

A LEHO resource record is expected to be found together in a single

resource record with an IPv4 or IPv6 address. A LEHO DATA entry is

illustrated in Figure 15.

Figure 15: The LEHO DATA Wire Format.

A UTF-8 string (which is not 0-terminated)

representing the legacy hostname.

NOTE: If an application uses a LEHO value in an HTTP request header

(e.g. "Host:" header) it MUST be converted to an IDNA compliant

representation [RFC5890].

5.3.2. NICK

Nickname records can be used by zone administrators to publish a

label that a zone prefers to have used when it is referred to. This

is a suggestion to other zones what label to use when creating a

delegation record (Section 5.1) containing this zone key. This

record SHOULD only be stored under the apex label "@" but MAY be

returned with record sets under any label as a supplemental record.

Section 7.3.5 details how a resolver must process supplemental and

non-supplemental NICK records. A NICK DATA entry is illustrated in

Figure 16.

¶

¶

0 8 16 24 32 40 48 56

+-----+-----+-----+-----+-----+-----+-----+-----+

| LEGACY HOSTNAME |

/ /

/ /

| |

+-----+-----+-----+-----+-----+-----+-----+-----+

¶

¶

¶

NICKNAME

PROTO

Figure 16: The NICK DATA Wire Format.

A UTF-8 string (which is not 0-terminated) representing

the preferred label of the zone. This string MUST be a valid GNS

label.

5.3.3. BOX

GNS lookups are expected to return all of the required useful

information in one record set. This avoids unnecessary additional

lookups and cryptographically ties together information that belongs

together, making it impossible for an adversarial storage to provide

partial answers that might omit information critical for security.

This general strategy is incompatible with the special labels used

by DNS for SRV and TLSA records. Thus, GNS defines the BOX record

format to box up SRV and TLSA records and include them in the record

set of the label they are associated with. For example, a TLSA

record for "_https._tcp.example.org" will be stored in the record

set of "example.org" as a BOX record with service (SVC) 443 (https)

and protocol (PROTO) 6 (tcp) and record TYPE "TLSA". For reference,

see also [RFC2782]. A BOX DATA entry is illustrated in Figure 17.

Figure 17: The BOX DATA Wire Format.

the 16-bit protocol number, e.g. 6 for TCP. Note that values

below 2^8 are reserved for 8-bit Internet Protocol numbers

allocated by IANA [RFC5237]. Values above 2^8 are allocated by

the GNUnet Assigned Numbers Authority [GANA]. In network byte

order.

0 8 16 24 32 40 48 56

+-----+-----+-----+-----+-----+-----+-----+-----+

| NICKNAME |

/ /

/ /

| |

+-----+-----+-----+-----+-----+-----+-----+-----+

¶

¶

¶

0 8 16 24 32 40 48 56

+-----+-----+-----+-----+-----+-----+-----+-----+

| PROTO | SVC | TYPE |

+-----------+-----------------------------------+

| RECORD DATA |

/ /

/ /

| |

+-----+-----+-----+-----+-----+-----+-----+-----+

¶

SVC

TYPE

RECORD DATA

the 16-bit service value of the boxed record. In case of TCP

and UDP it is the port number. In network byte order.

is the 32-bit record type of the boxed record. In network byte

order.

is a variable length field containing the "DATA" format

of TYPE as defined for the respective TYPE in DNS.

6. Record Encoding

Any API which allows storing a value under a 512-bit key and

retrieving one or more values from the key can be used by an

implementation for record storage. To be useful, the API MUST permit

storing at least 176 byte values to be able to support the defined

zone delegation record encodings, and SHOULD allow at least 1024

byte values. In the following, it is assumed that an implementation

realizes two procedures on top of a storage:

There is no explicit delete function as the deletion of a non-

expired record would require a revocation of the record. In GNS,

zones can only be revoked as a whole. Records automatically expire

and it is under the discretion of the storage as to when to delete

the record. The GNS implementation MUST NOT publish expired resource

records. Any GNS resolver MUST discard expired records returned from

the storage.

Resource records are grouped by their respective labels, encrypted

and published together in a single records block (RRBLOCK) in the

storage under a storage key q as illustrated in Figure 18. The

implementation MUST use the PUT storage procedure in order to update

the zone contents accordingly.

¶

¶

¶

¶

PUT(key,value)

GET(key) -> value

¶

¶

¶

Figure 18: Management and publication of local zones in the distributed

storage.

The storage key is derived from the zone key and the respective

label of the contained records. The required knowledge of both zone

key and label in combination with the similarly derived symmetric

secret keys and blinded zone keys ensure query privacy (see

[RFC8324], Section 3.5). The storage Key derivation and records

block creation using is specified in the following sections and a

high-level overview is illustrated in Figure 19.

 Local Host | Remote

 | Storage

 |

 | +---------+

 | / /|

 | +---------+ |

+-----------+ | | | |

| | +---------+PUT(q, RRBLOCK) | | Record | |

| User | | Zone |----------------|->| Storage | |

| | | Master | | | |/

+-----------+ +---------+ | +---------+

 | A |

 | | Zone records |

 | | grouped by label |

 | | |

 | +---------+ |

 |Create / Delete / | /| |

 |and Update +---------+ | |

 |Local Zones | | | |

 | | Local | | |

 +-------------->| Zones | | |

 | |/ |

 +---------+ |

¶

label

zk

q

Figure 19: Storage key and records block creation overview.

6.1. The Storage Key

Given a label, the storage key q is derived as follows:

is a UTF-8 string under which the resource records are

published.

is the zone key.

Is the 512-bit storage key under which the resource records block

is published. It is the SHA-512 hash [RFC6234] over the derived

zone key.

6.2. The Records Block

GNS records are grouped by their labels and published as a single

block in the storage. The grouped record sets MAY be paired with any

number of supplemental records. Supplemental records MUST have the

supplemental flag set (See Section 5). The contained resource

records are encrypted using a symmetric encryption scheme. A GNS

implementation publishes RRBLOCKs in accordance to the properties

and recommendations of the underlying storage. This can include a

+----------+ +-------+ +------------+ +-------------+

| Zone Key | | Label | | Record Set | | Private Key |

+----------+ +-------+ +------------+ +-------------+

 | | | |

 | | v |

 | | +-----------+ |

 | +---------->| S-Encrypt | |

 +----------|---------->+-----------+ |

 | | | | |

 | | | v v

 | | | +-------------+

 | +---------------|-->| SignDerived |

 | | | +-------------+

 | | | |

 | v v v

 | +------+ +---------------+

 +----->| ZKDF |------->| Records Block |

 +------+ +---------------+

 |

 v

 +------+ +-------------+

 | Hash |------->| Storage Key |

 +------+ +-------------+

¶

q := SHA-512 (ZKDF(zk, label))¶

¶

¶

¶

SIZE

ZONE TYPE

ZONE KEY

SIGNATURE

EXPIRATION

periodic refresh operation to ensure the availability of the

published RRBLOCKs. The GNS RRBLOCK wire format is illustrated in

Figure 20.

Figure 20: The RRBLOCK Wire Format.

A 32-bit value containing the length of the block in bytes. In

network byte order. While a 32-bit value is used, implementations

MAY refuse to publish blocks beyond a certain size significantly

below 4 GB.

is the 32-bit ztype. In network byte order.

is the blinded zone key "ZKDF(zk, label)" to be used to

verify SIGNATURE. The length and format of the public key depends

on the ztype.

The signature is computed over the EXPIRATION and BDATA

fields as detailed in Figure 21. The length and format of the

signature depends on the ztype. The signature is created using

the SignDerived() function of the cryptosystem of the zone (see

Section 4).

Specifies when the RRBLOCK expires and the encrypted

block SHOULD be removed from the storage and caches as it is

likely stale. However, applications MAY continue to use non-

expired individual records until they expire. The value MUST be

set to the expiration time of the resource record contained

within this block with the smallest expiration time. If a records

¶

0 8 16 24 32 40 48 56

+-----+-----+-----+-----+-----+-----+-----+-----+

| SIZE | ZONE TYPE |

+-----+-----+-----+-----+-----+-----+-----+-----+

/ ZONE KEY /

/ (BLINDED) /

| |

+-----+-----+-----+-----+-----+-----+-----+-----+

| SIGNATURE |

/ /

/ /

| |

+-----+-----+-----+-----+-----+-----+-----+-----+

| EXPIRATION |

+-----+-----+-----+-----+-----+-----+-----+-----+

| BDATA /

/ /

/ |

+-----+-----+-----+-----+-----+-----+-----+-----+

¶

¶

¶

¶

BDATA

SIZE

PURPOSE

EXPIRATION

BDATA

block includes shadow records, then the maximum expiration time

of all shadow records with matching type and the expiration times

of the non-shadow records is considered. This is a 64-bit

absolute date in microseconds since midnight (0 hour), January 1,

1970 UTC in network byte order.

The encrypted RDATA. Its size is determined by the S-

Encrypt() function of the ztype.

The signature over the public key covers a 32-bit pseudo header

conceptually prefixed to the EXPIRATION and the BDATA fields. The

wire format is illustrated in Figure 21.

Figure 21: The Wire Format used for creating the signature of the

RRBLOCK.

A 32-bit value containing the length of the signed data in

bytes in network byte order.

A 32-bit signature purpose flag. The value of this field

MUST be 15. The value is encoded in network byte order. It

defines the context in which the signature is created so that it

cannot be reused in other parts of the protocol including

possible future extensions. The value of this field corresponds

to an entry in the GANA "GNUnet Signature Purpose" registry

Section 10.

Field as defined in the RRBLOCK message above.

Field as defined in the RRBLOCK message above.

A symmetric encryption scheme is used to encrypt the resource

records set RDATA into the BDATA field of a GNS RRBLOCK. The wire

format of the RDATA is illustrated in Figure 22.

¶

¶

¶

0 8 16 24 32 40 48 56

+-----+-----+-----+-----+-----+-----+-----+-----+

| SIZE | PURPOSE (0x0F) |

+-----+-----+-----+-----+-----+-----+-----+-----+

| EXPIRATION |

+-----+-----+-----+-----+-----+-----+-----+-----+

| BDATA |

/ /

/ /

+-----+-----+-----+-----+-----+-----+-----+-----+

¶

¶

¶

¶

¶

EXPIRATION, SIZE, TYPE, FLAGS and DATA

PADDING

Figure 22: The RDATA Wire Format.

These fields were defined in

the resource record format in Section 5.

When publishing an RDATA block, the implementation MUST

ensure that the size of the RDATA is a power of two using the

padding field. The field MUST be set to zero and MUST be ignored

on receipt. As a special exception, record sets with (only) a

zone delegation record type are never padded. Note that a record

set with a delegation record MUST NOT contain other records. If

other records are encountered, the whole record block MUST be

discarded.

7. Name Resolution

Names in GNS are resolved by recursively querying the record

storage. Recursive in this context means that a resolver does not

provide intermediate results for a query to the application.

Instead, it MUST respond to a resolution request with either the

requested resource record or an error message in case the resolution

fails. Figure 23 illustrates how an application requests the lookup

of a GNS name (1). The application MAY provide a desired record type

to the resolver. Subsequently, the Start Zone is determined (2) and

the recursive resolution process started. This is where the desired

record type is used to guide processing. For example, if a zone

delegation record type is requested, the resolution of the apex

label in that zone must be skipped, as the desired record is already

found. Details on how the resolution process is initiated and each

0 8 16 24 32 40 48 56

+-----+-----+-----+-----+-----+-----+-----+-----+

| EXPIRATION |

+-----+-----+-----+-----+-----+-----+-----+-----+

| SIZE | FLAGS | TYPE |

+-----+-----+-----+-----+-----+-----+-----+-----+

| DATA /

/ /

/ /

+-----+-----+-----+-----+-----+-----+-----+-----+

| EXPIRATION |

+-----+-----+-----+-----+-----+-----+-----+-----+

| SIZE | FLAGS | TYPE |

+-----+-----+-----+-----+-----+-----+-----+-----+

| DATA /

/ /

+-----+-----+-----+-----+-----+-----+-----+-----+

/ PADDING /

/ /

¶

¶

iterative result (3a,3b) in the resolution is processed are provided

in the sections below. The results of the lookup are eventually

returned to the application (4). The implementation MUST NOT filter

results according to the desired record type. Filtering of record

sets is typically done by the application.

Figure 23: The recursive GNS resolution process.

7.1. Start Zones

The resolution of a GNS name starts by identifying the start zone

suffix. Once the start zone suffix is identified, recursive

resolution of the remainder of the name is initiated (Section 7.2).

There are two types of start zone suffixes: zTLDs and local suffix-

to-zone mappings. The choice of available suffix-to-zone mappings is

at the sole discretion of the local system administrator or user.

This property addresses the issue of a single hierarchy with a

centrally controlled root and the related issue of distribution and

management of root servers in DNS (see [RFC8324], Section 3.10 and

3.12).

For names ending with a zTLD the start zone is explicitly given in

the suffix of the name to resolve. In order to ensure uniqueness of

¶

 Local Host | Remote

 | Storage

 |

 | +---------+

 | / /|

 | +---------+ |

+-----------+ (1) Name +----------+ | | | |

| | Lookup | | (3a) GET(q) | | Record | |

|Application|----------| Resolver |---------------|->| Storage | |

| |<---------| |<--------------|--| |/

+-----------+ (4) +----------+ (3b) RRBLOCK | +---------+

 Records A |

 | |

 (2) Determination of | |

 Start Zone | |

 | |

 +---------+ |

 / | /| |

 +---------+ | |

 | | | |

 | Start | | |

 | Zones | | |

 | |/ |

 +---------+ |

¶

names with zTLDs any implementation MUST use the given zone as start

zone. An implementation MUST first try to interpret the rightmost

label of the given name as the beginning of a zTLD (Section 4.1). If

the rightmost label cannot be (partially) decoded or if it does not

indicate a supported ztype, the name is treated as a normal name and

start zone discovery MUST continue with finding a local suffix-to-

zone mapping. If a valid ztype can be found in the rightmost label,

the implementation MUST try to synthesize and decode the zTLD to

retrieve the start zone key according to Section 4.1. If the zTLD

cannot be synthesized or decoded, the resolution of the name fails

and an error is returned to the application. Otherwise, the zone key

MUST be used as the start zone:

For names not ending with a zTLD the resolver MUST determine the

start zone through a local suffix-to-zone mapping. Suffix-to-zone

mappings MUST be configurable through a local configuration file or

database by the user or system administrator. A suffix MAY consist

of multiple GNS labels concatenated with a label separator. If

multiple suffixes match the name to resolve, the longest matching

suffix MUST be used. The suffix length of two results MUST NOT be

equal. This indicates a misconfiguration and the implementation MUST

return an error. The following is a non-normative example mapping of

start zones:

The process given above MAY be supplemented with other mechanisms if

the particular application requires a different process. If no start

zone can be discovered, resolution MUST fail and an error MUST be

returned to the application.

7.2. Recursion

In each step of the recursive name resolution, there is an

authoritative zone zk and a name to resolve. The name MAY be empty.

If the name is empty, it is interpreted as the apex label "@".

Initially, the authoritative zone is the start zone.

¶

Example name: www.example.<zTLD>

=> Start zone: zk of type ztype

=> Name to resolve from start zone: www.example

¶

¶

Example name: www.example.org

Local suffix mappings:

org = zTLD0 := Base32GNS(ztype0||zk0)

example.org = zTLD1 := Base32GNS(ztype1||zk1)

example.com = zTLD2 := Base32GNS(ztype2||zk2)

...

=> Start zone: zk1

=> Name to resolve from start zone: www

¶

¶

¶

From here, the following steps are recursively executed, in order:

Extract the right-most label from the name to look up.

Calculate q using the label and zk as defined in Section 6.1.

Perform a storage query GET(q) to retrieve the RRBLOCK.

Verify and process the RRBLOCK and decrypt the BDATA contained

in it as defined in Section 6.2.

Upon receiving the RRBLOCK from the storage, as part of verifying

the provided signature, the resolver MUST check that the SHA-512

hash of the derived authoritative zone key zk' from the RRBLOCK

matches the query q and that the block is not yet expired. If the

signature does not match or the block is expired, the RRBLOCK MUST

be ignored and, if applicable, the storage lookup GET(q) MUST

continue to look for other RRBLOCKs.

7.3. Record Processing

Record processing occurs once a well-formed block has been

decrypted. In record processing, only the valid records obtained are

considered. To filter records by validity, the resolver MUST at

least check the expiration time and the FLAGS field of the

respective record. In particular, SHADOW and SUPPLEMENTAL flags can

exclude the record from being considered. If the resolver encounters

a record with the CRITICAL flag set and does not support the record

type the resolution MUST be aborted and an error MUST be returned.

The information that the critical record could not be processed

SHOULD be returned in the error description. The implementation MAY

choose not to return the reason for the failure, merely complicating

troubleshooting for the user.

The next steps depend on the context of the name that is being

resolved:

Case 1: If the filtered record set consists of a single REDIRECT

record, the remainder of the name is prepended to the REDIRECT

data and the recursion is started again from the resulting name.

Details are described in Section 7.3.1.

Case 2: If the filtered record set consists exclusively of one or

more GNS2DNS records resolution continues with DNS. Details are

described in Section 7.3.2.

Case 3: If the remainder of the name to be resolved is of the

format "_SERVICE._PROTO" and the record set contains one or more

matching BOX records, the records in the BOX records are the

¶

1. ¶

2. ¶

3. ¶

4.

¶

¶

¶

¶

*

¶

*

¶

*

final result and the recursion is concluded as described in

Section 7.3.3.

Case 4: If the current record set consist of a single delegation

record, resolution of the remainder of the name is delegated to

the target zone as described in Section 7.3.4.

Case 5: If the remainder of the name to resolve is empty the

record set is the final result. If any NICK records are in the

final result set, it MUST be processed according to Section

7.3.5. Otherwise, the final result set is returned.

Finally, if none of the above is applicable resolution fails and

the resolver MUST return an empty record set.

7.3.1. REDIRECT

If the remaining name is empty and the desired record type is

REDIRECT, in which case the resolution concludes with the REDIRECT

record. If the rightmost label of the redirect name is the extension

label (U+002B, "+"), resolution continues in GNS with the new name

in the current zone. Otherwise, the resulting name is resolved via

the default operating system name resolution process. This can in

turn trigger a GNS name resolution process depending on the system

configuration. In case resolution continues in DNS, the name MUST

first be converted to an IDNA compliant representation [RFC5890].

In order to prevent infinite loops, the resolver MUST implement loop

detection or limit the number of recursive resolution steps. The

loop detection MUST be effective even if a REDIRECT found in GNS

triggers subsequent GNS lookups via the default operating system

name resolution process.

7.3.2. GNS2DNS

When a resolver encounters one or more GNS2DNS records and the

remaining name is empty and the desired record type is GNS2DNS, the

GNS2DNS records are returned.

Otherwise, it is expected that the resolver first resolves the IP

addresses of the specified DNS name servers. The DNS name MUST be

converted to an IDNA compliant representation [RFC5890] for

resolution in DNS. GNS2DNS records MAY contain numeric IPv4 or IPv6

addresses, allowing the resolver to skip this step. The DNS server

names might themselves be names in GNS or DNS. If the rightmost

label of the DNS server name is the extension label (U+002B, "+"),

the rest of the name is to be interpreted relative to the zone of

the GNS2DNS record. If the DNS server name ends in a label

representation of a zone key, the DNS server name is to be resolved

against the GNS zone zk.

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

Multiple GNS2DNS records can be stored under the same label, in

which case the resolver MUST try all of them. The resolver MAY try

them in any order or even in parallel. If multiple GNS2DNS records

are present, the DNS name MUST be identical for all of them.

Otherwise, it is not clear which name the resolver is supposed to

follow. If multiple DNS names are present the resolution fails and

an appropriate error is SHOULD be returned to the application.

If there are DNSSEC DS records or any other records used to secure

the connection with the DNS servers stored under the label, the DNS

resolver SHOULD use them to secure the connection with the DNS

server.

Once the IP addresses of the DNS servers have been determined, the

DNS name from the GNS2DNS record is appended to the remainder of the

name to be resolved, and resolved by querying the DNS name

server(s). The synthesized name has to be converted to an IDNA

compliant representation [RFC5890] for resolution in DNS. If such a

conversion is not possible, the resolution MUST be aborted and an

error MUST be returned. The information that the critical record

could not be processed SHOULD be returned in the error description.

The implementation MAY choose not to return the reason for the

failure, merely complicating troubleshooting for the user.

As the DNS servers specified are possibly authoritative DNS servers,

the GNS resolver MUST support recursive DNS resolution and MUST NOT

delegate this to the authoritative DNS servers. The first successful

recursive name resolution result is returned to the application. In

addition, the resolver SHOULD return the queried DNS name as a

supplemental LEHO record (see Section 5.3.1) with a relative

expiration time of one hour.

Once the transition from GNS into DNS is made through a GNS2DNS

record, there is no "going back". The (possibly recursive)

resolution of the DNS name MUST NOT delegate back into GNS and

should only follow the DNS specifications. For example, names

contained in DNS CNAME records MUST NOT be interpreted by resolvers

that support both DNS and GNS as GNS names.

GNS resolvers SHOULD offer a configuration option to disable DNS

processing to avoid information leakage and provide a consistent

security profile for all name resolutions. Such resolvers would

return an empty record set upon encountering a GNS2DNS record during

the recursion. However, if GNS2DNS records are encountered in the

record set for the apex label and a GNS2DNS record is explicitly

requested by the application, such records MUST still be returned,

even if DNS support is disabled by the GNS resolver configuration.

¶

¶

¶

¶

¶

¶

7.3.3. BOX

When a BOX record is received, a GNS resolver must unbox it if the

name to be resolved continues with "_SERVICE._PROTO". Otherwise, the

BOX record is to be left untouched. This way, TLSA (and SRV) records

do not require a separate network request, and TLSA records become

inseparable from the corresponding address records.

7.3.4. Zone Delegation Records

When the resolver encounters a record of a supported zone delegation

record type (such as PKEY or EDKEY) and the remainder of the name is

not empty, resolution continues recursively with the remainder of

the name in the GNS zone specified in the delegation record.

Whenever a resolver encounters a new GNS zone, it MUST check against

the local revocation list whether the respective zone key has been

revoked. If the zone key was revoked, the resolution MUST fail with

an empty result set.

Implementations MUST NOT allow multiple different zone delegations

under a single label. Implementations MAY support any subset of

ztypes. Handling of Implementations MUST NOT process zone delegation

for the apex label "@". Upon encountering a zone delegation record

under this label, resolution fails and an error MUST be returned.

The implementation MAY choose not to return the reason for the

failure, merely impacting troubleshooting information for the user.

If the remainder of the name to resolve is empty and a record set

was received containing only a single delegation record, the

recursion is continued with the record value as authoritative zone

and the apex label "@" as remaining name. Except in the case where

the desired record type as specified by the application is equal to

the ztype, in which case the delegation record is returned.

7.3.5. NICK

NICK records are only relevant to the recursive resolver if the

record set in question is the final result which is to be returned

to the application. The encountered NICK records can either be

supplemental (see Section 5) or non-supplemental. If the NICK record

is supplemental, the resolver only returns the record set if one of

the non-supplemental records matches the queried record type. It is

possible that one record set contains both supplemental and non-

supplemental NICK records.

The differentiation between a supplemental and non-supplemental NICK

record allows the application to match the record to the

authoritative zone. Consider the following example:

¶

¶

¶

¶

¶

¶

¶

In this example, the returned NICK record is non-supplemental. For

the application, this means that the NICK belongs to the zone

"alice.example" and is published under the apex label along with an

A record. The NICK record is interpreted as: The zone defined by

"alice.example" wants to be referred to as "eve". In contrast,

consider the following:

In this case, the NICK record is marked as supplemental. This means

that the NICK record belongs to the zone "example" and is published

under the label "alice" along with an A record. The NICK record

should be interpreted as: The zone defined by "example" wants to be

referred to as "john". This distinction is likely useful for other

records published as supplemental.

8. Internationalization and Character Encoding

All names in GNS are encoded in UTF-8 [RFC3629]. Labels MUST be

canonicalized using Normalization Form C (NFC) [Unicode-UAX15]. This

does not include any DNS names found in DNS records, such as CNAME

record data, which is internationalized through the IDNA

specifications [RFC5890].

9. Security and Privacy Considerations

9.1. Availability

In order to ensure availability of records beyond their absolute

expiration times, implementations MAY allow to locally define

relative expiration time values of records. Records can then be

published recurringly with updated absolute expiration times by the

implementation.

Implementations MAY allow users to manage private records in their

zones that are not published in the storage. Private records are

considered just like regular records when resolving labels in local

zones, but their data is completely unavailable to non-local users.

Query: alice.example (type=A)

Result:

A: 192.0.2.1

NICK: eve (non-Supplemental)

¶

¶

Query: alice.example (type=AAAA)

Result:

AAAA: 2001:DB8::1

NICK: john (Supplemental)

¶

¶

¶

¶

¶

9.2. Agility

The security of cryptographic systems depends on both the strength

of the cryptographic algorithms chosen and the strength of the keys

used with those algorithms. The security also depends on the

engineering of the protocol used by the system to ensure that there

are no non-cryptographic ways to bypass the security of the overall

system. This is why developers of applications managing GNS zones

SHOULD select a default ztype considered secure at the time of

releasing the software. For applications targeting end users that

are not expected to understand cryptography, the application

developer MUST NOT leave the ztype selection of new zones to end

users.

This document concerns itself with the selection of cryptographic

algorithms used in GNS. The algorithms identified in this document

are not known to be broken (in the cryptographic sense) at the

current time, and cryptographic research so far leads us to believe

that they are likely to remain secure into the foreseeable future.

However, this is not necessarily forever, and it is expected that

new revisions of this document will be issued from time to time to

reflect the current best practices in this area.

In terms of crypto-agility, whenever the need for an updated

cryptographic scheme arises to, for example, replace ECDSA over

Ed25519 for PKEY records it can simply be introduced through a new

record type. Zone administrators can then replace the delegation

record type for future records. The old record type remains and

zones can iteratively migrate to the updated zone keys. To ensure

that implementations correctly generate an error message when

encountering a ztype that they do not support, current and future

delegation records must always have the CRITICAL flag set.

9.3. Cryptography

The following considerations provide background on the design

choices of the ztypes specified in this document. When specifying

new ztypes as per Section 4, the same considerations apply.

GNS PKEY zone keys use ECDSA over Ed25519. This is an unconventional

choice, as ECDSA is usually used with other curves. However,

standardized ECDSA curves are problematic for a range of reasons

described in the Curve25519 and EdDSA papers [ed25519]. Using EdDSA

directly is also not possible, as a hash function is used on the

private key which destroys the linearity that the key blinding in

GNS depends upon. We are not aware of anyone suggesting that using

Ed25519 instead of another common curve of similar size would lower

the security of ECDSA. GNS uses 256-bit curves because that way the

¶

¶

¶

¶

encoded (public) keys fit into a single DNS label, which is good for

usability.

In order to ensure ciphertext indistinguishability, care must be

taken with respect to the initialization vector in the counter

block. In our design, the IV always includes the expiration time of

the record block. When applications store records with relative

expiration times, monotonicity is implicitly ensured because each

time a block is published into the storage, its IV is unique as the

expiration time is calculated dynamically and increases

monotonically with the system time. Still, an implementation MUST

ensure that when relative expiration times are decreased, the

expiration time of the next record block MUST be after the last

published block. For records where an absolute expiration time is

used, the implementation MUST ensure that the expiration time is

always increased when the record data changes. For example, the

expiration time on the wire could be increased by a single

microsecond even if the user did not request a change. In case of

deletion of all resource records under a label, the implementation

MUST keep track of the last absolute expiration time of the last

published resource block. Implementations MAY define and use a

special record type as a tombstone that preserves the last absolute

expiration time, but then MUST take care to not publish a block with

this record. When new records are added under this label later, the

implementation MUST ensure that the expiration times are after the

last published block. Finally, in order to ensure monotonically

increasing expiration times the implementation MUST keep a local

record of the last time obtained from the system clock, so as to

construct a monotonic clock in case the system clock jumps

backwards.

9.4. Abuse Mitigation

GNS names are UTF-8 strings. Consequently, GNS faces similar issues

with respect to name spoofing as DNS does for internationalized

domain names. In DNS, attackers can register similar sounding or

looking names (see above) in order to execute phishing attacks. GNS

zone administrators must take into account this attack vector and

incorporate rules in order to mitigate it.

Further, DNS can be used to combat illegal content on the internet

by having the respective domains seized by authorities. However, the

same mechanisms can also be abused in order to impose state

censorship. Avoiding that possibility is one of the motivations

behind GNS. In GNS, TLDs are not enumerable. By design, the start

zone of the resolver is defined locally and hence such a seizure is

difficult and ineffective in GNS.

¶

¶

¶

¶

9.5. Zone Management

In GNS, zone administrators need to manage and protect their zone

keys. Once a zone key is lost, it cannot be recovered or revoked.

Revocation messages can be pre-calculated if revocation is required

in case a zone key is lost. Zone administrators, and for GNS this

includes end-users, are required to responsibly and diligently

protect their cryptographic keys. GNS supports signing records in

advance ("offline") in order to support processes which aim to

protect private keys such as air gaps.

Similarly, users are required to manage their local start zone

configuration. In order to ensure integrity and availability or

names, users must ensure that their local start zone information is

not compromised or outdated. It can be expected that the processing

of zone revocations and an initial start zone is provided with a GNS

implementation ("drop shipping"). Shipping an initial start zone

configuration effectively establishes a root zone. Extension and

customization of the zone is at the full discretion of the user.

While implementations following this specification will be

interoperable, if two implementations connect to different storages

they are mutually unreachable. This can lead to a state where a

record exists in the global namespace for a particular name, but the

implementation is not communicating with the storage and is hence

unable to resolve it. This situation is similar to a split-horizon

DNS configuration. Which storages are implemented usually depends on

the application it is built for. The storage used will most likely

depend on the specific application context using GNS resolution. For

example, one application is the resolution of hidden services within

the Tor network, which would suggest using Tor routers for storage.

Implementations of "aggregated" storages are conceivable, but are

expected to be the exception.

9.6. DHTs as Storage

This document does not specify the properties of the underlying

storage which is required by any GNS implementation. It is important

to note that the properties of the underlying storage are directly

inherited by the GNS implementation. This includes both security as

well as other non-functional properties such as scalability and

performance. Implementers should take great care when selecting or

implementing a DHT for use as storage in a GNS implementation. DHTs

with reasonable security and performance properties exist [R5N]. It

should also be taken into consideration that GNS implementations

which build upon different DHT overlays are unlikely to be

interoperable with each other.

¶

¶

¶

¶

9.7. Revocations

Zone administrators are advised to pre-generate zone revocations and

to securely store the revocation information in case the zone key is

lost, compromised or replaced in the future. Pre-calculated

revocations can cease to be valid due to expirations or protocol

changes such as epoch adjustments. Consequently, implementers and

users must take precautions in order to manage revocations

accordingly.

Revocation payloads do not include a 'new' key for key replacement.

Inclusion of such a key would have two major disadvantages:

If a revocation is published after a private key was

compromised, allowing key replacement would be dangerous: if an

adversary took over the private key, the adversary could then

broadcast a revocation with a key replacement. For the

replacement, the compromised owner would have no chance to

issue even a revocation. Thus, allowing a revocation message to

replace a private key makes dealing with key compromise

situations worse.

Sometimes, key revocations are used with the objective of

changing cryptosystems. Migration to another cryptosystem by

replacing keys via a revocation message would only be secure as

long as both cryptosystems are still secure against forgery.

Such a planned, non-emergency migration to another cryptosystem

should be done by running zones for both cipher systems in

parallel for a while. The migration would conclude by revoking

the legacy zone key only once it is deemed no longer secure,

and hopefully after most users have migrated to the

replacement.

9.8. Zone Privacy

GNS does not support authenticated denial of existence of names

within a zone. Record blocks are published in encrypted form using

keys derived from the zone key and record label. Zone administrators

should carefully consider if the label and zone key is public or if

those should be used and considered as a shared secret. Unlike zone

keys, labels can also be guessed by an attacker in the network

observing queries and responses. Given a known and targeted zone

key, the use of well known or easily guessable labels effectively

results in general disclosure of the records to the public. If the

labels and hence the records should be kept secret except to those

knowing a secret label and the zone in which to look, the label must

be chosen accordingly. It is recommended to then use a label with

sufficient entropy as to prevent guessing attacks.

¶

¶

1.

¶

2.

¶

¶

It should be noted that this attack on labels only applies if the

zone key is somehow disclosed to the adversary. GNS itself does not

disclose it during a lookup or when resource records are published

as the zone keys are blinded beforehand. However, zone keys do

become public during revocation.

9.9. Zone Governance

While DNS is distributed, in practice it relies on centralized,

trusted registrars to provide globally unique names. As the

awareness of the central role DNS plays on the Internet rises,

various institutions are using their power (including legal means)

to engage in attacks on the DNS, thus threatening the global

availability and integrity of information on the Internet. While a

wider discussion of this issue is out of scope for this document,

analyses and investigations can be found in recent academic research

works including [SecureNS].

GNS is designed to provide a secure, privacy-enhancing alternative

to the DNS name resolution protocol, especially when censorship or

manipulation is encountered. In particular, it directly addresses

concerns in DNS with respect to query privacy. However, depending on

the governance of the root zone, any deployment will likely suffer

from the issues of a "Single Hierarchy with a Centrally Controlled

Root" and "Distribution and Management of Root Servers" as raised in

[RFC8324]. In DNS, those issues are a direct result from the

centralized root zone governance at the Internet Corporation for

Assigned Names and Numbers (ICANN) which allows it to provide

globally unique names.

In GNS, start zones give users local authority over their preferred

root zone governance. It enables users to replace or enhance a

trusted root zone configuration provided by a third party (e.g. the

implementer or a multi-stakeholder governance body like ICANN) with

secure delegation of authority using local petnames while operating

under a very strong adversary model. In combination with zTLDs, this

provides users of GNS with a global, secure and memorable mapping

without a trusted authority.

Any GNS implementation MAY provide a default governance model in the

form of an initial start zone mapping.

9.10. Namespace Ambiguity

Technically, the GNS protocol can be used to resolve names in the

namespace of the global DNS. However, this would require the

respective governance bodies and stakeholders (e.g. IETF and ICANN)

to standardize the use of GNS for this particular use case.

¶

¶

¶

¶

¶

¶

However, this capability implies that GNS names may be

indistinguishable from DNS names in their respective common display

format [RFC8499] or other special-use domain names [RFC6761] if a

local start zone configuration maps suffixes from the global DNS to

GNS zones. For applications, it is then ambiguous which name system

should be used in order to resolve a given name. This poses a risk

when trying to resolve a name through DNS when it is actually a GNS

name. In such a case, the GNS name is likely to be leaked as part of

the DNS resolution.

In order to prevent disclosure of queried GNS names it is

RECOMMENDED that GNS-aware applications try to resolve a given name

in GNS before any other method taking into account potential suffix-

to-zone mappings and zTLDs. Suffix-to-zone mappings are expected to

be configured by the user or local administrator and as such the

resolution in GNS is in line with user expectations even if the name

could also be resolved through DNS. If no suffix-to-zone mapping for

the name exists and no zTLD is found, resolution MAY continue with

other methods such as DNS. If a suffix-to-zone mapping for the name

exists or the name ends with a zTLD, it MUST be resolved using GNS

and resolution MUST NOT continue by any other means independent of

the GNS resolution result.

Mechanisms such as the Name Service Switch (NSS) of Unix-like

operating systems are an example of how such a resolution process

can be implemented and used. It allows system administrators to

configure host name resolution precedence and is integrated with the

system resolver implementation.

The user or system administrator MAY configure one or more unique

suffixes for all suffix-to-zone mappings. If this suffix is a

special-use domain name for GNS or an unreserved DNS TLD, this

prevents namespace ambiguity through local configuration.

10. GANA Considerations

GANA [GANA] manages the "GNU Name System Record Types" registry.

Each entry has the following format:

Name: The name of the record type (case-insensitive ASCII string,

restricted to alphanumeric characters. For zone delegation

records, the assigned number represents the ztype value of the

zone.

Number: 32-bit, above 65535

Comment: Optionally, a brief English text describing the purpose

of the record type (in UTF-8)

¶

¶

¶

¶

¶

*

¶

* ¶

*

¶

Contact: Optionally, the contact information of a person to

contact for further information.

References: Optionally, references describing the record type

(such as an RFC)

The registration policy for this registry is "First Come First

Served". This policy is modeled on that described in [RFC8126], and

describes the actions taken by GANA:

Adding new records is possible after expert review, using a first-

come-first-served policy for unique name allocation. Experts are

responsible to ensure that the chosen "Name" is appropriate for the

record type. The registry will assign a unique number for the entry.

The current contact(s) for expert review are reachable at gns-

registry@gnunet.org.

Any request MUST contain a unique name and a point of contact. The

contact information MAY be added to the registry given the consent

of the requester. The request MAY optionally also contain relevant

references as well as a descriptive comment as defined above.

GANA has assigned numbers for the record types defined in this

specification in the "GNU Name System Record Types" registry as

listed in Figure 24.

Figure 24: The GANA Resource Record Registry.

GANA has assigned signature purposes in its "GNUnet Signature

Purpose" registry as listed in Figure 25.

*

¶

*

¶

¶

¶

¶

¶

¶

Number | Name | Contact | References | Comment

-------+---------+---------+------------+-------------------------

65536 | PKEY | N/A | [This.I-D] | GNS zone delegation (PKEY)

65537 | NICK | N/A | [This.I-D] | GNS zone nickname

65538 | LEHO | N/A | [This.I-D] | GNS legacy hostname

65540 | GNS2DNS | N/A | [This.I-D] | Delegation to DNS

65541 | BOX | N/A | [This.I-D] | Boxed records

65551 | REDIRECT| N/A | [This.I-D] | Redirection record.

65556 | EDKEY | N/A | [This.I-D] | GNS zone delegation (EDKEY)

¶

Purpose | Name | References | Comment

--------+-----------------+------------+--------------------------

 3 | GNS_REVOCATION | [This.I-D] | GNS zone key revocation

 15 | GNS_RECORD_SIGN | [This.I-D] | GNS record set signature

[RFC1034]

[RFC1035]

Figure 25: Requested Changes in the GANA GNUnet Signature Purpose

Registry.

11. IANA Considerations

This document makes no requests for IANA action. This section may be

removed on publication as an RFC.

12. Implementation and Deployment Status

There are two implementations conforming to this specification

written in C and Go, respectively. The C implementation as part of

GNUnet [GNUnetGNS] represents the original and reference

implementation. The Go implementation [GoGNS] demonstrates how two

implementations of GNS are interoperable if they are built on top of

the same underlying DHT storage.

Currently, the GNUnet peer-to-peer network [GNUnet] is an active

deployment of GNS on top of its [R5N] DHT. The [GoGNS]

implementation uses this deployment by building on top of the GNUnet

DHT services available on any GNUnet peer. It shows how GNS

implementations can attach to this existing deployment and

participate in name resolution as well as zone publication.

The self-sovereign identity system re:claimID [reclaim] is using GNS

in order to selectively share identity attributes and attestations

with third parties.

The Ascension tool [Ascension] facilitates the migration of DNS

zones to GNS zones by translating information retrieved from a DNS

zone transfer into a GNS zone.

13. Acknowledgements

The authors thank all reviewers for their comments. In particular,

we thank D. J. Bernstein, S. Bortzmeyer, A. Farrel, E. Lear and R.

Salz for their insightful and detailed technical reviews. We thank

J. Yao and J. Klensin for the internationalization reviews. We thank

NLnet and NGI DISCOVERY for funding work on the GNU Name System.

14. Normative References

Mockapetris, P V., "Domain names - concepts and

facilities", STD 13, RFC 1034, DOI 10.17487/RFC1034,

November 1987, <https://www.rfc-editor.org/info/rfc1034>.

Mockapetris, P V., "Domain names - implementation and

specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,

November 1987, <https://www.rfc-editor.org/info/rfc1035>.

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc1034
https://www.rfc-editor.org/info/rfc1035

[RFC2782]

[RFC2119]

[RFC3629]

[RFC3686]

[RFC3826]

[RFC5237]

[RFC5869]

[RFC5890]

[RFC5895]

[RFC6234]

Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for

specifying the location of services (DNS SRV)", RFC 2782,

DOI 10.17487/RFC2782, February 2000, <https://www.rfc-

editor.org/info/rfc2782>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Yergeau, F., "UTF-8, a transformation format of ISO

10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November

2003, <https://www.rfc-editor.org/info/rfc3629>.

Housley, R., "Using Advanced Encryption Standard (AES)

Counter Mode With IPsec Encapsulating Security Payload

(ESP)", RFC 3686, DOI 10.17487/RFC3686, January 2004,

<https://www.rfc-editor.org/info/rfc3686>.

Blumenthal, U., Maino, F., and K. McCloghrie, "The

Advanced Encryption Standard (AES) Cipher Algorithm in

the SNMP User-based Security Model", RFC 3826, DOI

10.17487/RFC3826, June 2004, <https://www.rfc-editor.org/

info/rfc3826>.

Arkko, J. and S. Bradner, "IANA Allocation Guidelines for

the Protocol Field", BCP 37, RFC 5237, DOI 10.17487/

RFC5237, February 2008, <https://www.rfc-editor.org/info/

rfc5237>.

Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-

Expand Key Derivation Function (HKDF)", RFC 5869, DOI

10.17487/RFC5869, May 2010, <https://www.rfc-editor.org/

info/rfc5869>.

Klensin, J., "Internationalized Domain Names for

Applications (IDNA): Definitions and Document Framework",

RFC 5890, DOI 10.17487/RFC5890, August 2010, <https://

www.rfc-editor.org/info/rfc5890>.

Resnick, P. and P. Hoffman, "Mapping Characters for

Internationalized Domain Names in Applications (IDNA)

2008", RFC 5895, DOI 10.17487/RFC5895, September 2010,

<https://www.rfc-editor.org/info/rfc5895>.

Eastlake 3rd, D. and T. Hansen, "US Secure Hash

Algorithms (SHA and SHA-based HMAC and HKDF)", RFC 6234,

DOI 10.17487/RFC6234, May 2011, <https://www.rfc-

editor.org/info/rfc6234>.

https://www.rfc-editor.org/info/rfc2782
https://www.rfc-editor.org/info/rfc2782
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3686
https://www.rfc-editor.org/info/rfc3826
https://www.rfc-editor.org/info/rfc3826
https://www.rfc-editor.org/info/rfc5237
https://www.rfc-editor.org/info/rfc5237
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5890
https://www.rfc-editor.org/info/rfc5890
https://www.rfc-editor.org/info/rfc5895
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc6234

[RFC6895]

[RFC6979]

[RFC7748]

[RFC8032]

[RFC8126]

[RFC8174]

[RFC8499]

[RFC9106]

[GANA]

[MODES]

[CrockfordB32]

[XSalsa20]

Eastlake 3rd, D., "Domain Name System (DNS) IANA

Considerations", BCP 42, RFC 6895, DOI 10.17487/RFC6895,

April 2013, <https://www.rfc-editor.org/info/rfc6895>.

Pornin, T., "Deterministic Usage of the Digital Signature

Algorithm (DSA) and Elliptic Curve Digital Signature

Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979,

August 2013, <https://www.rfc-editor.org/info/rfc6979>.

Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves

for Security", RFC 7748, DOI 10.17487/RFC7748, January

2016, <https://www.rfc-editor.org/info/rfc7748>.

Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital

Signature Algorithm (EdDSA)", RFC 8032, DOI 10.17487/

RFC8032, January 2017, <https://www.rfc-editor.org/info/

rfc8032>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/info/rfc8126>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS

Terminology", BCP 219, RFC 8499, DOI 10.17487/RFC8499,

January 2019, <https://www.rfc-editor.org/info/rfc8499>.

Biryukov, A., Dinu, D., Khovratovich, D., and S.

Josefsson, "Argon2 Memory-Hard Function for Password

Hashing and Proof-of-Work Applications", RFC 9106, DOI

10.17487/RFC9106, September 2021, <https://www.rfc-

editor.org/info/rfc9106>.

GNUnet e.V., "GNUnet Assigned Numbers Authority (GANA)",

April 2020, <https://gana.gnunet.org/>.

Dworkin, M., "Recommendation for Block Cipher Modes of

Operation: Methods and Techniques", December 2001,

<https://doi.org/10.6028/NIST.SP.800-38A>.

Douglas, D., "Base32", March 2019, <https://

www.crockford.com/base32.html>.

Bernstein, D., "Extending the Salsa20 nonce", 2011,

<https://cr.yp.to/snuffle/xsalsa-20110204.pdf>.

https://www.rfc-editor.org/info/rfc6895
https://www.rfc-editor.org/info/rfc6979
https://www.rfc-editor.org/info/rfc7748
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8499
https://www.rfc-editor.org/info/rfc9106
https://www.rfc-editor.org/info/rfc9106
https://gana.gnunet.org/
https://doi.org/10.6028/NIST.SP.800-38A
https://www.crockford.com/base32.html
https://www.crockford.com/base32.html
https://cr.yp.to/snuffle/xsalsa-20110204.pdf

[Unicode-UAX15]

[Unicode-UTS46]

[RFC1928]

[RFC4033]

[RFC6066]

[RFC7363]

[RFC8324]

[RFC8806]

[RFC6761]

[Tor224]

The Unicode Consortium, "Unicode Standard Annex #15:

Unicode Normalization Forms, Revision 31", September

2009, <http://www.unicode.org/reports/tr15/tr15-31.html>.

The Unicode Consortium, "Unicode Technical Standard

#46: Unicode IDNA Compatibility Processing, Revision 27",

August 2021, <https://www.unicode.org/reports/tr46>.

15. Informative References

Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D.,

and L. Jones, "SOCKS Protocol Version 5", RFC 1928, DOI

10.17487/RFC1928, March 1996, <https://www.rfc-

editor.org/info/rfc1928>.

Arends, R., Austein, R., Larson, M., Massey, D., and S.

Rose, "DNS Security Introduction and Requirements", RFC

4033, DOI 10.17487/RFC4033, March 2005, <https://www.rfc-

editor.org/info/rfc4033>.

Eastlake 3rd, D., "Transport Layer Security (TLS)

Extensions: Extension Definitions", RFC 6066, DOI

10.17487/RFC6066, January 2011, <https://www.rfc-

editor.org/info/rfc6066>.

Maenpaa, J. and G. Camarillo, "Self-Tuning Distributed

Hash Table (DHT) for REsource LOcation And Discovery

(RELOAD)", RFC 7363, DOI 10.17487/RFC7363, September

2014, <https://www.rfc-editor.org/info/rfc7363>.

Klensin, J., "DNS Privacy, Authorization, Special Uses,

Encoding, Characters, Matching, and Root Structure: Time

for Another Look?", RFC 8324, DOI 10.17487/RFC8324,

February 2018, <https://www.rfc-editor.org/info/rfc8324>.

Kumari, W. and P. Hoffman, "Running a Root Server Local

to a Resolver", RFC 8806, DOI 10.17487/RFC8806, June

2020, <https://www.rfc-editor.org/info/rfc8806>.

Cheshire, S. and M. Krochmal, "Special-Use Domain Names",

RFC 6761, DOI 10.17487/RFC6761, February 2013, <https://

www.rfc-editor.org/info/rfc6761>.

Goulet, D., Kadianakis, G., and N. Mathewson, "Next-

Generation Hidden Services in Tor", November 2013,

http://www.unicode.org/reports/tr15/tr15-31.html
https://www.unicode.org/reports/tr46
https://www.rfc-editor.org/info/rfc1928
https://www.rfc-editor.org/info/rfc1928
https://www.rfc-editor.org/info/rfc4033
https://www.rfc-editor.org/info/rfc4033
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc7363
https://www.rfc-editor.org/info/rfc8324
https://www.rfc-editor.org/info/rfc8806
https://www.rfc-editor.org/info/rfc6761
https://www.rfc-editor.org/info/rfc6761

[SDSI]

[Kademlia]

[ed25519]

[GNS]

[R5N]

[SecureNS]

[GNUnetGNS]

[Ascension]

[GNUnet]

[reclaim]

[GoGNS]

[nsswitch]

<https://gitweb.torproject.org/torspec.git/tree/

proposals/224-rend-spec-ng.txt#n2135>.

Rivest, R. and B. Lampson, "SDSI - A Simple Distributed

Security Infrastructure", April 1996, <http://

people.csail.mit.edu/rivest/Sdsi10.ps>.

Maymounkov, P. and D. Mazieres, "Kademlia: A peer-to-peer

information system based on the xor metric.", 2002,

<http://css.csail.mit.edu/6.824/2014/papers/

kademlia.pdf>.

Bernstein, D., Duif, N., Lange, T., Schwabe, P., and B.

Yang, "High-Speed High-Security Signatures", 2011,

<https://ed25519.cr.yp.to/ed25519-20110926.pdf>.

Wachs, M., Schanzenbach, M., and C. Grothoff, "A

Censorship-Resistant, Privacy-Enhancing and Fully

Decentralized Name System", 2014, <https://sci-hub.st/

10.1007/978-3-319-12280-9_9>.

Evans, N. S. and C. Grothoff, "R5N: Randomized recursive

routing for restricted-route networks", 2011, <https://

sci-hub.st/10.1109/ICNSS.2011.6060022>.

Grothoff, C., Wachs, M., Ermert, M., and J. Appelbaum,

"Towards secure name resolution on the Internet", 2018,

<https://sci-hub.st/https://doi.org/10.1016/j.cose.

2018.01.018>.

GNUnet e.V., "The GNUnet GNS Implementation", <https://

git.gnunet.org/gnunet.git/tree/src/gns>.

GNUnet e.V., "The Ascension Implementation", <https://

git.gnunet.org/ascension.git>.

GNUnet e.V., "The GNUnet Project", <https://gnunet.org>.

GNUnet e.V., "The GNUnet Project", <https://

reclaim.gnunet.org>.

Fix, B., "The Go GNS Implementation", <https://

github.com/bfix/gnunet-go/tree/master/src/gnunet/service/

gns>.

GNU Project, "System Databases and Name Service Switch",

<https://www.gnu.org/software/libc/manual/html_node/Name-

Service-Switch.html>.

https://gitweb.torproject.org/torspec.git/tree/proposals/224-rend-spec-ng.txt#n2135
https://gitweb.torproject.org/torspec.git/tree/proposals/224-rend-spec-ng.txt#n2135
http://people.csail.mit.edu/rivest/Sdsi10.ps
http://people.csail.mit.edu/rivest/Sdsi10.ps
http://css.csail.mit.edu/6.824/2014/papers/kademlia.pdf
http://css.csail.mit.edu/6.824/2014/papers/kademlia.pdf
https://ed25519.cr.yp.to/ed25519-20110926.pdf
https://sci-hub.st/10.1007/978-3-319-12280-9_9
https://sci-hub.st/10.1007/978-3-319-12280-9_9
https://sci-hub.st/10.1109/ICNSS.2011.6060022
https://sci-hub.st/10.1109/ICNSS.2011.6060022
https://sci-hub.st/https://doi.org/10.1016/j.cose.2018.01.018
https://sci-hub.st/https://doi.org/10.1016/j.cose.2018.01.018
https://git.gnunet.org/gnunet.git/tree/src/gns
https://git.gnunet.org/gnunet.git/tree/src/gns
https://git.gnunet.org/ascension.git
https://git.gnunet.org/ascension.git
https://gnunet.org
https://reclaim.gnunet.org
https://reclaim.gnunet.org
https://github.com/bfix/gnunet-go/tree/master/src/gnunet/service/gns
https://github.com/bfix/gnunet-go/tree/master/src/gnunet/service/gns
https://github.com/bfix/gnunet-go/tree/master/src/gnunet/service/gns
https://www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html
https://www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html

Appendix A. Usage and Migration

This section outlines a number of specific use cases which may help

readers of the technical specification to understand the protocol

better. The considerations below are not meant to be normative for

the GNS protocol in any way. Instead, they are provided in order to

give context and to provide some background on what the intended use

of the protocol is by its designers. Further, this section contains

pointers to migration paths.

A.1. Zone Dissemination

In order to become a zone owner, it is sufficient to generate a zone

key and a corresponding secret key using a GNS implementation. At

this point, the zone owner can manage GNS resource records in a

local zone database. The resource records can then be published by a

GNS implementation as defined in Section 6. For other users to

resolve the resource records, respective zone information must be

disseminated first. The zone owner may decide to make the zone key

and labels known to a selected set of users only or to make this

information available to the general public.

Sharing zone information directly with specific users not only

allows to potentially preserve zone and record privacy, but also

allows the zone owner and the user to establish strong trust

relationships. For example, a bank may send a customer letter with a

QR code which contains the GNS zone of the bank. This allows the

user to scan the QR code and establish a strong link to the zone of

the bank and with it, for example, the IP address of the online

banking web site.

Most Internet services likely want to make their zones available to

the general public as efficiently as possible. First, it is

reasonable to assume that zones which are commanding high levels of

reputation and trust are likely included in the default suffix-to-

zone mappings of implementations. Hence dissemination of a zone

through delegation under such zones can be a viable path in order to

disseminate a zone publicly. For example, it is conceivable that

organizations such as ICANN or country-code top-level domain

registrars also manage GNS zones and offer registration or

delegation services.

Following best practices in particularly those relating to security

and abuse mitigation are methods which allow zone owners and

aspiring registrars to gain a good reputation and eventually trust.

This includes, of course, diligent protection of private zone key

material. Formalizing such best practices is out of scope of this

specification and should be addressed in a separate document and

take Section 9 into account.

¶

¶

¶

¶

¶

A.2. Start Zone Configuration

A user is expected to install a GNS implementation if it is not

already provided through other means such as the operating system or

the browser. It is likely that the implementation ships with a

default start zone configuration. This means that the user is able

to resolve GNS names ending on a zTLD or ending on any suffix-to-

name mapping that is part of the default start zone configuration.

At this point the user may delete or otherwise modify the

implementation's default configuration:

Deletion of suffix-to-zone mappings may become necessary of the zone

owner referenced by the mapping has lost the trust of the user. For

example, this could be due to lax registration policies resulting in

phishing activities. Modification and addition of new mappings are

means to heal the namespace perforation which would occur in the

case of a deletion or to simply establish a strong direct trust

relationship. However, this requires the user's knowledge of the

respective zone keys. This information must be retrieved out of

band, as illustrated in Appendix A.1: A bank may send the user a

letter with a QR code which contains the GNS zone of the bank. The

user scans the QR code and adds a new suffix-to-name mapping using a

chosen local name for his bank. Other examples include scanning zone

information off the device of a friend, from a storefront, or an

advertisement. The level of trust in the respective zone is

contextual and likely varies from user to user. Trust in a zone

provided through a letter from a bank which may also include a

credit card is certainly different from a zone found on a random

advertisement in the streets. However, this trust is immediately

tangible to the user and can be reflected in the local naming as

well.

User clients should facilitate the modification of the start zone

configuration, for example by providing a QR code reader or other

import mechanisms. Implementations are ideally implemented according

to best practices and addressing applicable points from Section 9.

Formalizing such best practices is out of scope of this

specification.

A.3. Globally Unique Names and the Web

HTTP virtual hosting and TLS Server Name Indication are common use

cases on the Web. HTTP clients supply a DNS name in the HTTP "Host"-

header or as part of the TLS handshake, respectively. This allows

the HTTP server to serve the indicated virtual host with a matching

TLS certificate. The global uniqueness of DNS names are a

prerequisite of those use cases.

¶

¶

¶

¶

Not all GNS names are globally unique. But, any resource record in

GNS can be represented as a concatenation of of a GNS label and the

zTLD of the zone. While not human-readable, this globally unique GNS

name can be leveraged in order to facilitate the same use cases.

Consider the GNS name "www.example.gns" entered in a GNS-aware HTTP

client. At first, "www.example.gns" is resolved using GNS yielding a

record set. Then, the HTTP client determines the virtual host as

follows:

If there is a LEHO record (Section 5.3.1) containing

"www.example.com" in the record set, then the HTTP client uses this

as the value of the "Host"-header field of the HTTP request:

If there is no LEHO record in the record set, then the HTTP client

tries to find the zone of the record and translates the GNS name

into a globally unique zTLD-representation before using it in the

"Host"-header field of the HTTP request:

In order to determine the canonical representation of the record

with a zTLD, at most two queries are required: First, it must be

checked whether "www.example.gns" itself points to a zone delegation

record which would imply that the record set which was originally

resolved is published under the apex label. If it does, the unique

GNS name is simply the zTLD representation of the delegated zone:

If it does not, the unique GNS name is the concatenation of the

label "www" and the zTLD representation of the zone as given in the

example above. In any case, this representation is globally unique.

As such, it can be configured by the HTTP server administrator as a

virtual host name and respective certificates may be issued.

If the HTTP client is a browser, the use of a unique GNS name for

virtual hosting or TLS SNI does not necessarily have to be shown to

the user. For example, the name in the URL bar may remain as

"www.example.gnu" even if the used unique name differs.

A.4. Migration Paths

DNS resolution is built into a variety of existing software

components. Most significantly operating systems and HTTP clients.

¶

¶

GET / HTTP/1.1

Host: www.example.com

¶

¶

GET / HTTP/1.1

Host: www.000G0037FH3QTBCK15Y8BCCNRVWPV17ZC7TSGB1C9ZG2TPGHZVFV1GMG3W

¶

¶

GET / HTTP/1.1

Host: 000G0037FH3QTBCK15Y8BCCNRVWPV17ZC7TSGB1C9ZG2TPGHZVFV1GMG3W

¶

¶

¶

This section illustrates possible migration paths for both in order

to enable "legacy" applications to resolve GNS names.

One way to efficiently facilitate the resolution of GNS names are

GNS-enabled DNS server implementations. Local DNS queries are

thereby either rerouted or explicitly configured to be resolved by a

"DNS-to-GNS" server that runs locally. This DNS server tries to

interpret any incoming query for a name as a GNS resolution request.

If no start zone can be found for the name and it does not end in a

zTLD, the server tries to resolve the name in DNS. Otherwise, the

name is resolved in GNS. In the latter case, the resulting record

set is converted to a DNS answer packet and is returned accordingly.

An implementation of a DNS-to-GNS server can be found in [GNUnet].

A similar approach is to use operating systems extensions such as

the name service switch [nsswitch]. It allows the system

administrator to configure plugins which are used for hostname

resolution. A GNS name service switch plugin can be used in a

similar fashion as the "DNS-to-GNS" server. An implementation of a

glibc-compatible nsswitch plugin for GNS can be found in [GNUnet].

The methods above are usually also effective for HTTP client

software. However, HTTP clients are commonly used in combination

with TLS. TLS certificate validation and in particular server name

indication (SNI) requires additional logic in HTTP clients when GNS

names are in play (Appendix A.3). In order to transparently enable

this functionality for migration purposes, a local GNS-aware SOCKS5

proxy [RFC1928] can be configured to resolve domain names. The

SOCKS5 proxy, similar to the DNS-to-GNS server, is capable of

resolving both GNS and DNS names. In the event of a TLS connection

request with a GNS name, the SOCKS5 proxy can act as a man-in-the-

middle, terminating the TLS connection and establishing a secure

connection against the requested host. In order to establish a

secure connection, the proxy may use LEHO and TLSA records stored in

the record set under the GNS name. The proxy must provide a locally

trusted certificate for the GNS name to the HTTP client which

usually requires the generation and configuration of a local trust

anchor in the browser. An implementation of this SOCKS5 proxy can be

found in [GNUnet].

Appendix B. Example flows

B.1. AAAA Example Resolution

¶

¶

¶

¶

Figure 26: Example resolution of an IPv6 address.

Lookup AAAA record for name: www.example.gns.

Determine start zone for www.example.gns.

Start zone: zk0 - Remainder: www.example.

Calculate q0=SHA512(ZKDF(zk0, "example")) and initiate GET(q0).

Retrieve and decrypt RRBLOCK consisting of a single PKEY record

containing zk1.

Calculate q1=SHA512(ZKDF(zk1, "www")) and initiate GET(q1).

Retrieve RRBLOCK consisting of a single AAAA record containing

the IPv6 address 2001:db8::1.

Return record set to application

B.2. REDIRECT Example Resolution

 Local Host | Remote

 | Storage

 |

 | +---------+

 | / /|

 | +---------+ |

+-----------+ (1) +----------+ | | | |

| | | | (4,6) | | Record | |

|Application|----------| Resolver |---------------|->| Storage | |

| |<---------| |<--------------|--| |/

+-----------+ (8) +----------+ (5,7) | +---------+

 A |

 | |

 (2,3) | |

 | |

 | |

 +---------+ |

 / v /| |

 +---------+ | |

 | | | |

 | Start | | |

 | Zones | | |

 | |/ |

 +---------+ |

1. ¶

2. ¶

3. ¶

4. ¶

5.

¶

6. ¶

7.

¶

8. ¶

Figure 27: Example resolution of an IPv6 address with redirect.

Lookup AAAA record for name: www.example.tld.

Determine start zone for www.example.tld.

Start zone: zk0 - Remainder: www.example.

Calculate q0=SHA512(ZKDF(zk0, "example")) and initiate GET(q0).

Retrieve and decrypt RRBLOCK consisting of a single REDIRECT

record containing zk1.

Calculate q1=SHA512(ZKDF(zk1, "www")) and initiate GET(q1).

Retrieve and decrypt RRBLOCK consisting of a single REDIRECT

record containing www2.+.

Calculate q2=SHA512(ZKDF(zk1, "www2")) and initiate GET(q2).

Retrieve and decrypt RRBLOCK consisting of a single AAAA record

containing the IPv6 address 2001:db8::1.

Return record set to application.

 Local Host | Remote

 | Storage

 |

 | +---------+

 | / /|

 | +---------+ |

+-----------+ (1) +----------+ | | | |

| | | | (4,6,8) | | Record | |

|Application|----------| Resolver |----------------|->| Storage | |

| |<---------| |<---------------|--| |/

+-----------+ (10) +----------+ (5,7,9) | +---------+

 A |

 | |

 (2,3) | |

 | |

 | |

 +---------+ |

 / v /| |

 +---------+ | |

 | | | |

 | Start | | |

 | Zones | | |

 | |/ |

 +---------+ |

1. ¶

2. ¶

3. ¶

4. ¶

5.

¶

6. ¶

7.

¶

8. ¶

9.

¶

10. ¶

B.3. GNS2DNS Example Resolution

Figure 28: Example resolution of an IPv6 address with DNS handover.

Lookup AAAA record for name: www.example.gnu

Determine start zone for www.example.gnu.

Start zone: zk0 - Remainder: www.example.

Calculate q0=SHA512(ZKDF(zk0, "example")) and initiate GET(q0).

Retrieve and decrypt RRBLOCK consisting of a single GNS2DNS

record containing the name example.com and the DNS server IPv4

address 192.0.2.1.

Use system resolver to lookup an AAAA record for the DNS name

www.example.com.

Retrieve a DNS reply consisting of a single AAAA record

containing the IPv6 address 2001:db8::1.

Return record set to application.

 Local Host | Remote

 | Storage

 |

 | +---------+

 | / /|

 | +---------+ |

+-----------+ (1) +----------+ | | | |

| | | | (4) | | Record | |

|Application|----------| Resolver |------------------|->| Storage | |

| |<---------| |<-----------------|--| |/

+-----------+ (8) +----------+ (5) | +---------+

 A A |

 | | (6,7) |

 (2,3) | +----------+ |

 | | |

 | v |

 +---------+ +------------+ |

 / v /| | System DNS | |

 +---------+ | | resolver | |

 | | | +------------+ |

 | Start | | |

 | Zones | | |

 | |/ |

 +---------+ |

1. ¶

2. ¶

3. ¶

4. ¶

5.

¶

6.

¶

7.

¶

8. ¶

Appendix C. Base32GNS

This table defines the encode symbol and decode symbol for a given

symbol value. It can be used to implement the encoding by reading it

as: A character "A" or "a" is decoded to a 5 bit value 10 when

decoding. A 5 bit block with a value of 18 is encoded to the

character "J" when encoding. If the bit length of the byte string to

encode is not a multiple of 5 it is padded to the next multiple with

zeroes. In order to further increase tolerance for failures in

character recognition, the letter "U" MUST be decoded to the same

value as the letter "V" in Base32GNS.¶

Symbol Decode Encode

Value Symbol Symbol

0 0 O o 0

1 1 I i L l 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

10 A a A

11 B b B

12 C c C

13 D d D

14 E e E

15 F f F

16 G g G

17 H h H

18 J j J

19 K k K

20 M m M

21 N n N

22 P p P

23 Q q Q

24 R r R

25 S s S

26 T t T

27 V v U u V

28 W w W

29 X x X

30 Y y Y

31 Z z Z

Figure 29: The Base32GNS Alphabet Including the Additional U Encode

Symbol.

Appendix D. Test Vectors

The following are test vectors for the Base32GNS encoding used for

zTLDs. The strings are encoded without the zero terminator.

The following test vectors can be used by implementations to test

for conformance with this specification. The test vectors include

record sets with a variety of record types and flags for both PKEY

and EDKEY zones. Unless indicated otherwise, the test vectors are

provided as hex byte values. This includes labels as some test

vectors contain UTF-8 multibyte characters to demonstrate

internationalized labels.

¶

Base32GNS-Encode:

 Input string: "Hello World"

 Output string: "91JPRV3F41BPYWKCCG"

 Input bytes: 474e55204e616d652053797374656d

 Output string: "8X75A82EC5PPA82KF5SQ8SBD"

Base32GNS-Decode:

 Input string: "91JPRV3F41BPYWKCCG"

 Output string: "Hello World"

 Input string: "91JPRU3F41BPYWKCCG"

 Output string: "Hello World"

¶

¶

Zone private key (d, big-endian):

50d7b652a4efeadf

f37396909785e595

2171a02178c8e7d4

50fa907925fafd98

Zone identifier (ztype|zkey):

00010000677c477d

2d93097c85b195c6

f96d84ff61f5982c

2c4fe02d5a11fedf

b0c2901f

zTLD:

000G0037FH3QTBCK15Y8BCCNRVWPV17ZC7TSGB1C9ZG2TPGHZVFV1GMG3W

Label:

7465737464656c65

676174696f6e

Number of records (integer): 1

Record #0 := (

EXPIRATION:

0008c06fb9281580

DATA_SIZE:

0020

TYPE:

00010000

FLAGS: 0001

DATA:

21e3b30ff93bc6d3

5ac8c6e0e13afdff

794cb7b44bbbc748

d259d0a0284dbe84

)

RDATA:

0008c06fb9281580

0020000100010000

21e3b30ff93bc6d3

5ac8c6e0e13afdff

794cb7b44bbbc748

d259d0a0284dbe84

Encryption NONCE|EXPIRATION|BLOCK COUNTER:

e90a00610008c06f

b928158000000001

Encryption key (K):

864e7138eae7fd91

a30136899c132b23

acebdb2cef43cb19

f6bf55b67db9b3b3

Storage key (q):

4adc67c5ecee9f76

986abd71c2224a3d

ce2e917026c9a09d

fd44cef3d20f55a2

7332725a6c8afbbb

b0f7ec9af1cc4264

1299406b04fd9b5b

5791f86c4b08d5f4

BDATA:

41dc7b5f2176ba59

1998afb9e3c82579

5050afc4b53d68e4

1ed921da89de51e7

da35a295b59c2b8a

aea4399148d50cff

RRBLOCK:

000000a000010000

182bb636eda79f79

5711bc2708adbb24

2a60446ad3c30803

121d03d348b7ceb6

01beab944aff7ccc

51bffb212779c341

87660c625d1ceb59

d5a0a9a2dfe4072d

0f08cd2ab1e9ed63

d3898ff732521b57

317a6c4950e1984d

74df015f9eb72c4a

0008c06fb9281580

41dc7b5f2176ba59

1998afb9e3c82579

5050afc4b53d68e4

1ed921da89de51e7

da35a295b59c2b8a

aea4399148d50cff

Zone private key (d, big-endian):

50d7b652a4efeadf

f37396909785e595

2171a02178c8e7d4

50fa907925fafd98

Zone identifier (ztype|zkey):

00010000677c477d

2d93097c85b195c6

f96d84ff61f5982c

2c4fe02d5a11fedf

b0c2901f

zTLD:

000G0037FH3QTBCK15Y8BCCNRVWPV17ZC7TSGB1C9ZG2TPGHZVFV1GMG3W

Label:

e5a4a9e4b88be784

a1e695b5

Number of records (integer): 3

Record #0 := (

EXPIRATION:

0008c06fb9281580

DATA_SIZE:

0010

TYPE:

0000001c

FLAGS: 0000

DATA:

0000000000000000

00000000deadbeef

)

Record #1 := (

EXPIRATION:

00b00f81b7449b40

DATA_SIZE:

0006

TYPE:

00010001

FLAGS: 8000

DATA:

e6849be7a7b0

)

Record #2 := (

EXPIRATION:

000000016b597108

DATA_SIZE:

000b

TYPE:

00000010

FLAGS: 4004

DATA:

48656c6c6f20576f

726c64

)

RDATA:

0008c06fb9281580

001000000000001c

0000000000000000

00000000deadbeef

00b00f81b7449b40

0006800000010001

e6849be7a7b00000

00016b597108000b

4004000000104865

6c6c6f20576f726c

6400000000000000

0000000000000000

0000000000000000

0000000000000000

0000000000000000

0000000000000000

Encryption NONCE|EXPIRATION|BLOCK COUNTER:

ee9633c10005db3b

cdbd617c00000001

Encryption key (K):

fb3ab5de23bddae1

997aaf7b92c2d271

51408b77af7a41ac

79057c4df5383d01

Storage key (q):

aff0ad6a44097368

429ac476dfa1f34b

ee4c36e7476d07aa

6463ff20915b1005

c0991def91fc3e10

909f8702c0be4043

6778c711f2ca47d5

5cf0b54d235da977

BDATA:

f8c5e4badf1649d4

04da64df7d9d285f

4072a5f7a2547d56

74227e9b188eb2bb

6b34532f61e08ffb

d5bdea3741e60967

b687f8d8c44c8f6f

120a0f980f393b21

60407be128a74a51

51d6370be56a86ea

e32fdc217596b13f

6fea3fcfea0f4deb

881a25458f505a8f

cfca62d6da56073f

497698613475a1ad

14b7877f9455b0ec

RRBLOCK:

000000f000010000

a51296df757ee275

ca118d4f07fa7aae

5508bcf512aa4112

1429d4a0de9d057e

05c095040b10c7f8

187aa5da12287d1c

2910ff04d6f50af1

fa95382e9f007f75

098f620d1ff7c971

28f40d7458a2d3c7

f048ca3820064bdd

ee9413e9548ec994

0005db3bcdbd617c

f8c5e4badf1649d4

04da64df7d9d285f

4072a5f7a2547d56

74227e9b188eb2bb

6b34532f61e08ffb

d5bdea3741e60967

b687f8d8c44c8f6f

120a0f980f393b21

60407be128a74a51

51d6370be56a86ea

e32fdc217596b13f

6fea3fcfea0f4deb

881a25458f505a8f

cfca62d6da56073f

497698613475a1ad

14b7877f9455b0ec

Zone private key (d):

5af7020ee1916032

8832352bbc6a68a8

d71a7cbe1b929969

a7c66d415a0d8f65

Zone identifier (ztype|zkey):

000100143cf4b924

032022f0dc505814

53b85d93b047b63d

446c5845cb48445d

db96688f

zTLD:

000G051WYJWJ80S04BRDRM2R2H9VGQCKP13VCFA4DHC4BJT88HEXQ5K8HW

Label:

7465737464656c65

676174696f6e

Number of records (integer): 1

Record #0 := (

EXPIRATION:

0008c06fb9281580

DATA_SIZE:

0020

TYPE:

00010000

FLAGS: 0001

DATA:

21e3b30ff93bc6d3

5ac8c6e0e13afdff

794cb7b44bbbc748

d259d0a0284dbe84

)

RDATA:

0008c06fb9281580

0020000100010000

21e3b30ff93bc6d3

5ac8c6e0e13afdff

794cb7b44bbbc748

d259d0a0284dbe84

Encryption NONCE|EXPIRATION:

98132ea86859d35c

88bfd317fa991bcb

0008c06fb9281580

Encryption key (K):

85c429a9567aa633

411a9691e9094c45

281672be586034aa

e4a2a2cc716159e2

Storage key (q):

abaabac0e1249459

75988395aac0241e

5559c41c4074e255

7b9fe6d154b614fb

cdd47fc7f51d786d

c2e0b1ece76037c0

a1578c384ec61d44

5636a94e880329e9

BDATA:

9cc455a129331943

5993cb3d67179ec0

6ea8d8894e904a0c

35e91c5c2ff2ed93

9cc2f8301231f44e

592a4ac87e4998b9

4625c64af51686a2

b36a2b2892d44f2d

RRBLOCK:

000000b000010014

9bf233198c6d53bb

dbac495cabd91049

a684af3f4051baca

b0dcf21c8cf27a1a

44d240d07902f490

b7c43ef00758abce

8851c18c70ac6df9

7a88f79211cf875f

784885ca3e349ec4

ca892b9ff084c535

8965b8e74a231595

2d4c8c06521c2f0c

0008c06fb9281580

9cc455a129331943

5993cb3d67179ec0

6ea8d8894e904a0c

35e91c5c2ff2ed93

9cc2f8301231f44e

592a4ac87e4998b9

4625c64af51686a2

b36a2b2892d44f2d

Zone private key (d):

5af7020ee1916032

8832352bbc6a68a8

d71a7cbe1b929969

a7c66d415a0d8f65

Zone identifier (ztype|zkey):

000100143cf4b924

032022f0dc505814

53b85d93b047b63d

446c5845cb48445d

db96688f

zTLD:

000G051WYJWJ80S04BRDRM2R2H9VGQCKP13VCFA4DHC4BJT88HEXQ5K8HW

Label:

e5a4a9e4b88be784

a1e695b5

Number of records (integer): 3

Record #0 := (

EXPIRATION:

0008c06fb9281580

DATA_SIZE:

0010

TYPE:

0000001c

FLAGS: 0000

DATA:

0000000000000000

00000000deadbeef

)

Record #1 := (

EXPIRATION:

00b00f81b7449b40

DATA_SIZE:

0006

TYPE:

00010001

FLAGS: 8000

DATA:

e6849be7a7b0

)

Record #2 := (

EXPIRATION:

000000016b597108

DATA_SIZE:

000b

TYPE:

00000010

FLAGS: 4004

DATA:

48656c6c6f20576f

726c64

)

RDATA:

0008c06fb9281580

001000000000001c

0000000000000000

00000000deadbeef

00b00f81b7449b40

0006800000010001

e6849be7a7b00000

00016b597108000b

4004000000104865

6c6c6f20576f726c

6400000000000000

0000000000000000

0000000000000000

0000000000000000

0000000000000000

0000000000000000

Encryption NONCE|EXPIRATION:

bb0d3f0fbd224277

50da5d691216e6c9

0005db3bcdbd7769

Encryption key (K):

3df805bd6687aa14

209628c244b11191

88c3925637a41e5d

76496c2945dc377b

Storage key (q):

baf82177eec081e0

74a7da47ffc64877

58fb0df01a6c7fbb

52fc8a31bef029af

74aa0dc15ab8e2fa

7a54b4f5f637f615

8fa7f03c3fcebe78

d3f9d640aac0d1ed

BDATA:

6f79a9fd28bc5e38

2fc931ed22931797

326fdd698129fc47

8a639e902b411088

0a45037c667ff769

5f09c4a7f4f3471a

b2365bf3af79e953

697f1e35f93bd1ad

876971ce70527a3b

82c098d23fffd4a4

0057b694bec43416

4fb83c12b1f4570f

69a28f3bc3b7d838

b2619f6b8e1723ba

78c4b7ce19ef3f39

0405b63f7ce00216

1bdd7f5e9b3622bc

1af2d4ca84fd5fc5

RRBLOCK:

0000010000010014

74f90068f1676953

52a8a6c2eb984898

c53acca0980470c6

c81264cbdd78ad11

13b6b78358a88de7

3c5d22f73f1ad588

ee6f07d13410a2f5

15a074872608ec02

ef9020fdeb4266bf

1177c7e57e786059

97032a3f71f7216c

894e073ac77f2a0d

0005db3bcdbd7769

6f79a9fd28bc5e38

2fc931ed22931797

326fdd698129fc47

8a639e902b411088

0a45037c667ff769

5f09c4a7f4f3471a

b2365bf3af79e953

697f1e35f93bd1ad

876971ce70527a3b

82c098d23fffd4a4

0057b694bec43416

4fb83c12b1f4570f

69a28f3bc3b7d838

b2619f6b8e1723ba

78c4b7ce19ef3f39

0405b63f7ce00216

1bdd7f5e9b3622bc

1af2d4ca84fd5fc5

¶

The following is an example revocation for a zone:¶

Zone private key (d, big-endian scalar):

6fea32c05af58bfa

979553d188605fd5

7d8bf9cc263b78d5

f7478c07b998ed70

Zone identifier (ztype|zkey):

000100002ca223e8

79ecc4bbdeb5da17

319281d63b2e3b69

55f1c3775c804a98

d5f8ddaa

Encoded zone identifier (zTLD):

000G001CM8HYGYFCRJXXXDET2WRS50EP7CQ3PTANY71QEQ409ACDBY6XN8

Difficulty (5 base difficulty + 2 epochs): 7

Signed message:

0000003400000003

0005d66da3598127

000100002ca223e8

79ecc4bbdeb5da17

319281d63b2e3b69

55f1c3775c804a98

d5f8ddaa

Proof:

0005d66da3598127

0000395d1827c000

3ab877d07570f2b8

3ab877d07570f332

3ab877d07570f4f5

3ab877d07570f50f

3ab877d07570f537

3ab877d07570f599

3ab877d07570f5cd

3ab877d07570f5d9

3ab877d07570f66a

3ab877d07570f69b

3ab877d07570f72f

3ab877d07570f7c3

3ab877d07570f843

3ab877d07570f8d8

3ab877d07570f91b

3ab877d07570f93a

3ab877d07570f944

3ab877d07570f98a

3ab877d07570f9a7

3ab877d07570f9b0

3ab877d07570f9df

3ab877d07570fa05

3ab877d07570fa3e

3ab877d07570fa63

3ab877d07570fa84

3ab877d07570fa8f

3ab877d07570fa91

3ab877d07570fad6

3ab877d07570fb0a

3ab877d07570fc0f

3ab877d07570fc43

3ab877d07570fca5

000100002ca223e8

79ecc4bbdeb5da17

319281d63b2e3b69

55f1c3775c804a98

d5f8ddaa053b0259

700039187d1da461

3531502bc4a4eecc

c69900d24f8aac54

30f28fc509270133

1f178e290fe06e82

ce2498ce7b23a340

58e3d6a2f247e92b

c9d7b9ab

¶

Authors' Addresses

Martin Schanzenbach

Fraunhofer AISEC

Lichtenbergstrasse 11

85748 Garching

Germany

Email: martin.schanzenbach@aisec.fraunhofer.de

Christian Grothoff

Berner Fachhochschule

Hoeheweg 80

CH-2501 Biel/Bienne

Switzerland

Email: grothoff@gnunet.org

Bernd Fix

GNUnet e.V.

Boltzmannstrasse 3

85748 Garching

Germany

Email: fix@gnunet.org

mailto:martin.schanzenbach@aisec.fraunhofer.de
mailto:grothoff@gnunet.org
mailto:fix@gnunet.org

	The GNU Name System
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Notation

	2. Terminology
	3. Overview
	4. Zones
	4.1. Zone Top-Level Domain
	4.2. Zone Revocation

	5. Resource Records
	5.1. Zone Delegation Records
	5.1.1. PKEY
	5.1.2. EDKEY

	5.2. Redirection Records
	5.2.1. REDIRECT
	5.2.2. GNS2DNS

	5.3. Auxiliary Records
	5.3.1. LEHO
	5.3.2. NICK
	5.3.3. BOX

	6. Record Encoding
	6.1. The Storage Key
	6.2. The Records Block

	7. Name Resolution
	7.1. Start Zones
	7.2. Recursion
	7.3. Record Processing
	7.3.1. REDIRECT
	7.3.2. GNS2DNS
	7.3.3. BOX
	7.3.4. Zone Delegation Records
	7.3.5. NICK

	8. Internationalization and Character Encoding
	9. Security and Privacy Considerations
	9.1. Availability
	9.2. Agility
	9.3. Cryptography
	9.4. Abuse Mitigation
	9.5. Zone Management
	9.6. DHTs as Storage
	9.7. Revocations
	9.8. Zone Privacy
	9.9. Zone Governance
	9.10. Namespace Ambiguity

	10. GANA Considerations
	11. IANA Considerations
	12. Implementation and Deployment Status
	13. Acknowledgements
	14. Normative References
	15. Informative References
	Appendix A. Usage and Migration
	A.1. Zone Dissemination
	A.2. Start Zone Configuration
	A.3. Globally Unique Names and the Web
	A.4. Migration Paths

	Appendix B. Example flows
	B.1. AAAA Example Resolution
	B.2. REDIRECT Example Resolution
	B.3. GNS2DNS Example Resolution

	Appendix C. Base32GNS
	Appendix D. Test Vectors
	Authors' Addresses

