
TCPM R. Scheffenegger
Internet-Draft NetApp
Intended status: Experimental March 12, 2021
Expires: September 13, 2021

Simple Lost Retransmission Detection with SACK TCP
draft-scheffenegger-tcpm-lrd-00

Abstract

 Lost Retransmissions are a major source of latency for TCP transfers.
 This note specifies how selective acknowledgment (SACK) information
 can be used to timely recover from lost retransmissions. In
 addition, it codifies the congestion control reaction on lost
 retransmissions.

Note to Readers

 Discussion of this draft takes place on the TCPM working group
 mailing list [1], which is archived at
 <https://mailarchive.ietf.org/arch/browse/tcpm/>.

 Working Group information can be found at
 <https://datatracker.ietf.org/wg/tcpm/>;

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 13, 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Scheffenegger Expires September 13, 2021 [Page 1]

https://mailarchive.ietf.org/arch/browse/tcpm/
https://datatracker.ietf.org/wg/tcpm/
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft LRD March 2021

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Conventions . 3
3. Overview . 3
4. Definitions . 4
5. Design Considerations . 4
5.1. Recovery Initiation 4
5.2. Detection of lost retransmissions 4
5.3. Reordering . 5
5.4. Ordering of retransmitted segments 6

6. Algorithm . 7
6.1. Lost Retransmission Detection 7
6.2. LRD Algorithm Detail 8

7. Security Considerations 8
8. IANA Considerations . 8
9. Acknowledgements . 8
10. References . 9
10.1. Normative References 9
10.2. Informative References 10
10.3. URIs . 11

Appendix A. Lost Retransmission Detection Example 12
A.1. Lost Retransmission, Mid-Stream 12

 Author's Address . 13

1. Introduction

 Selective Acknowledgement (SACK) is widely used to identify exactly
 which TCP segment was lost and only send these missing segments
 during a recovery episode. This helps improve the effectiveness of
 loss recovery and aligns with the principle of packet conservation.
 In addition, SACK information can also be used to infer about lost
 retransmissions. When this information is not used, TCP senders
 revert to the retransmission timeout (RTO) scheme to recover from
 lost retransmissions.

 Current SACK implementations, with one widely deployed exception, do
 not perform lost retransmission detection. Lost retransmission

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Scheffenegger Expires September 13, 2021 [Page 2]

Internet-Draft LRD March 2021

 detection (LRD) in the one implementation that performs it was
 described as an emergent feature due to the way the sender is
 handling SACK. Therefore, LRD is handled in that stack within the
 current regime of loss recovery, but without any additional
 congestion control reaction.

 This note specifies the use of SACK to detect and recover from lost
 retransmissions. Using this scheme, a RTO is only required to
 recover from excessive loss of segments, or ACKs. The intention of
 this note is to enhance SACK loss recovery so that most RTO events
 can be mitigated. Only during episodes of pathological network
 impediments, RTO are still necessary to achieve forward progress.

 The mechanism described adheres strictly to the principle of packet
 conservation. It also requires the use of the forward
 acknowledgement (FACK) mechanism, described in more detail in [MM96a]
 and [TLP].

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Overview

 TCP Selective Acknowledgement [RFC2018] was designed to provide
 detailed information to the sender about the segements already
 received. Based on this information, a sender can reduce the number
 of unnecessary retransmissions to close to zero and also recover from
 a loss of multiple segments within a single round trip time (RTT),
 and without reverting to a retransmission timeout (RTO).

 To that end, [RFC6675] describes the necessary data structures a
 sender has to maintain to keep track of incoming SACK information.
 However, no explicit attempt was made to specify how to use the
 information gained during the recovery episode to detect lost
 retransmissions.

 In addition, [RFC2018] specifically stipulated up to which point a
 SACK enabled sender may promote segments to become eligible for
 retransmission under the SACK scheme. This heuristic works very well
 during bulk transfers, where the sender always has additional data to
 send. Close to the end of a stream, when there is no more data in
 the socket to send, current SACK implementations fail to promote
 still outstanding and never acknowledged segments to become eligible

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc2018

Scheffenegger Expires September 13, 2021 [Page 3]

Internet-Draft LRD March 2021

 for retransmission. When this happens, the performance of a TCP SACK
 implementation adhereing to [RFC3517] degrades and is lower than the
 performance of TCP NewReno [RFC3782], which can recovery this
 particular event without an RTO.

 The introduction of a rescue retransmission, as described in
 [RFC6675], addresses this particular issue.

 This document is concerned with the behavior of a TCP SACK sender,
 when after retransmission of all ourstanding segments, and the
 transmission of new data, the recovery state persists (SND.UNA does
 not advance to SND.MAX at the time of loss recovery initiation, also
 known as Recovery Point).

4. Definitions

 This document uses the terms SND.UNA, SND.NXT, SND.MAX as defined in
 [RFC5681].

 SND.FACK (forward acknowledgment) is used to describe the highest
 sequence number that has been SACKed by the receiver and subsequently
 seen by the sender. The full definition can be found in [MM96a] and
 [MM96b]. The FACK mechanism is further described in [TLP].

5. Design Considerations

 The algorithm described in this document has to adhere to the
 principle of packet conservation. Detection and recovery from lost
 retransmissions is plagued with the same set of problems that can
 become worrysome during regular loss detection and loss recovery.
 Especially heavy reordering and recovery at the end-of-stream can
 make it hard to achive good efficiency during loss recovery.

5.1. Recovery Initiation

 The algorithm outlined does not speak about the engagement of the
 loss recovery state by the sender TCP. It is assumed, that the
 methods outlined in Congestion Control [RFC5681], Early Retransmit
 [RFC5827] and [SRE], now incorporated into [RFC6675] are used to
 engage in loss recovery. This leaves only the case where all
 segments between SND.UNA and SND.MAX are lost to be recovered from by
 means of retransmission timeout.

5.2. Detection of lost retransmissions

 The intuition behind the scheme is that if a retransmission succeeds,
 then the cumulative ack should increase one round trip time after the
 retransmission was sent. Otherwise, the retransmission must have

https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc3782
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc6675

Scheffenegger Expires September 13, 2021 [Page 4]

Internet-Draft LRD March 2021

 been lost. The key is to have a unambiguous signal which indicates
 that at least one RTT has passed after a retransmission was sent out.

 As long as the sending TCP has still unsent data available, an
 unabigious signal can be deducted by using the FACK mechanism. After
 the first round of sending retransmissions, the sender MAY send
 previously unsent data. Once SND.FACK advances and encompasses this
 newly sent data, the sender can deduct with high probability, that
 any still outstanding packets have been dropped by the network. The
 sender MAY start retransmitting all still outstanding packets. If
 the sender chooses to do so, it MUST take an appropriate congestion
 control action. This action is prudent, as the loss of retransmitted
 packets can be a signal of persistent congestion in the network, that
 lasts even after the initial congestion control reaction at least one
 RTT before.

 Note that the one popular stack performing LRD already does not react
 by reducing the congestion window before starting the next cycle of
 retransmissions. It is therefore more aggressive that the mechanism
 described herein. Nevertheless, no network instabilities have been
 reported since that stack started using LRD more than two decades
 ago.

5.3. Reordering

 Without making use of additional information not contained in the
 SACK entries, only reordered ACKs can be discriminated.

 If a single data segment is delayed, and later resent, it is not
 possible by using only information available within SACK entries to
 distinguish if the original or retransmitted segment was SACKed.
 Thus lost retransmission detection can fall victim to reordered data
 segments, if it were to use retransmitted segments as signal to
 detemine lost retransmissions.

 The use of an SACK acknowledging data that was not sent at the
 initiation of the recovery episode prevents this issue.

 On the return path, reordered ACKs may be recognized, by comparing
 the SACK entries contained in the ACK. The original ACK from the in-
 sequence, original transmission does not contain any SACK entries
 beyond SND.FACK, while the ACK for a retransmitted segment would
 likely contain SACK blocks of segments higher than the newly SACKed
 segment.

 Also, if an ACK does not contain any newly SACKed segments than
 already known in the senders scoreboard, ACK reordering is likely to
 have occured. For example, the SACK entry may contain only a part of

Scheffenegger Expires September 13, 2021 [Page 5]

Internet-Draft LRD March 2021

 an entry already in the scoreboard. However, such a simple heuristic
 is not enough to discriminate properly the ACK for a retransmitted
 data segment from the ACK of the original data segment.

5.4. Ordering of retransmitted segments

 There are a number of choices when it comes to deciding which packet
 to transmit at what time and also in what order. With TCP SACK, the
 decision of what to send has been decoupled from the decision when
 (and how much) to send.

 In the context of lost retransmission detection, there are at least
 four broad approaches, each of which has a different figure of merit:

 o Stricty enqueue all known lost segments first in the range
 [SND.UNA ... SND.FACK]. Only when the last enqueued segment has
 been retransmitted at least once, segments which are found to be
 still missing may be enqueued for a 2nd cycle, again from the
 newer [SND.UNA ... SND.FACK]. This is the most conservative
 approach, and would ensure the least amount of spurious
 (unnecessary) retransmissions.

 o A second approach would be for the sender to re-enqueue an already
 retransmitted segment as soon as it receives positive proof that
 at least 3 segments have been received, which were sent after the
 segment in question. This is the approach choosen by one popular
 stack. However, it assumes a continous data stream so that at any
 later time, there will still be enough data segments around that
 the criteria can be matched for a lost retransmission. The delay
 on the receiver side, before some new data can be delivered up the
 stack to the application can be reduced somewhat over option 1.
 This approach still maintains nearly optimal efficiency and very
 few spurious retransmissions.

 o Third, a slightly more relaxed criteria for detection of lost
 retransmissions can be applied. As soon as any data segment is
 positively acknowledged (SACKed), that was sent at least dupthresh
 segments later, a retransmitted segment can be considered lost.
 Note that dupthresh is not necessarily constant in this approach,
 as the same guidelines as defined in Early Retransmit [RFC5827]
 may be applied once the retransmitted segment closes in on
 SND.FACK.

 o Last, a sender could assume strictly in-sequence delivery of
 retransmitted segments. During loss recovery, the transmission
 rate of the sent segments is slower than just prior to the
 detection of the loss, in particular when PRR [RFC6937] is in use.
 This may reduce load-induced reordering to some extent. This

https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc6937

Scheffenegger Expires September 13, 2021 [Page 6]

Internet-Draft LRD March 2021

 approach would allow the most timely delivery of data only blocked
 by a few lost segments on the receiver side, but would also have
 the least efficiency in terms of packet conversation.

 Furthermore, the senders congestion window might not allow for many
 re-retransmissions before a stall. Therefore, additional steps would
 be necessary on the sender side, to ensure continous, paced
 transmission even after the ACK clock has stopped. This limits the
 usefulness of this approach, and addressing congestion control and
 timing related issues are outside the scope of this note. However,
 this is effectively implemented when using RACK [RFC8985].

6. Algorithm

Section 5 in [RFC2018] seems to have been interpreted as an exlusive
 list of which segments may become elegible for retransmission, but
 can also be interpreted as an inclusive list:

 After the SACKed bit is turned on (as the result of processing a
 received SACK option), the data sender will skip that segment
 during any later retransmission. Any segment that has the SACKed
 bit turned off and is less than the highest SACKed segment is
 available for retransmission.

6.1. Lost Retransmission Detection

 In order to track if a retransmitted segment might have been lost,
 the sender requires additional state while in the recovery state.

 Once TCP has established that genuine loss exists in the network, it
 enters loss recovery. At this point, the current value of SND.MAX is
 stored ("Recover" in NewReno [RFC6582]). Thus it is enough to check
 if SND.FACK advances beyond "Recover". Once that becomes true, some
 previously unsent data was acknowledged by the receiver. By that
 time, any outstanding retransmissions should have been received as
 well. Thus the sender MAY retransmit the outstanding data from the
 SACK scoreboard again, after taking appropriate congestion control
 action (i.e. reducing the congestion window).

 The retransmission SHOULD proceed in order of ascending sequence
 numbers across the unfilled holes of the SACK scoreboard, to maximize
 the chance that a delayed segment closes still outstanding holes.

 Note that implementations tracking sequence-number ranges in their
 scoreboard only need to track a single sequence number per recovery
 episode. Multiple cycles of SACK loss recover, without leaving loss
 recovery in between, are possible by tracking the relevant "Recovery"
 in the scoreboard data structure.

https://datatracker.ietf.org/doc/html/rfc8985
https://datatracker.ietf.org/doc/html/rfc2018#section-5
https://datatracker.ietf.org/doc/html/rfc6582

Scheffenegger Expires September 13, 2021 [Page 7]

Internet-Draft LRD March 2021

 Implicitly, this rule will also make sure, that all the segments
 which had become elegible for retransmission will have been sent at
 least one time, before any additional round of retransmissions is
 initiated. If the entire flight of data except a small number of
 segments at the end were lost, it takes at least one RTT for the
 information about successfully received segments to reach the sender.
 By that time, the first round of retransmissions is already completed
 (and additional data segments with sequence numbers higher than
 SND.MAX at the start of the recovery episode start may have been
 already been sent.)

 In order to guarantee a timely delivery at end-of-stream, a TCP
 sender implementing LRD SHOULD also make use of the "Rescue
 Retransmission" as defined in [RFC6675].

6.2. LRD Algorithm Detail

 1.: On entering Loss Recovery, store SND.MAX to Recover

 2.: After retransmission of the last segment of a hole in the
 scoreboard, store Recover to Hole.Rxmit

 3.: Once SND.FACK advances beyond Recover, while there are holes in
 the scoreboard:

 3.1.: store SND.MAX to Recover

 3.2.: perform adequate congestion control reaction (i.e. reduce the
 congestion window)

 3.3.: retransmit each hole in the scoreboard, where Hole.Rxmit <
 Recover, when appropriate to do so.

7. Security Considerations

 The algorithm presented in this paper shares security considerations
 with [RFC2018] and [RFC6675].

8. IANA Considerations

 This document does not require any IANA actions.

9. Acknowledgements

 The author would like to thank Matt Mathis for the insightful
 discussions about SACK and it's intended behavior and the spirit
 driving the design of SACK.

https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc6675

Scheffenegger Expires September 13, 2021 [Page 8]

Internet-Draft LRD March 2021

 Dragana Damjanovic was very helpful in reviewing an earlier version
 of this text and point out numerous clarifications.

 Furthermore, valuable feedback was received from John Heffner, Jeff
 Prem and Anumita Biswas.

10. References

10.1. Normative References

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018,
 DOI 10.17487/RFC2018, October 1996,
 <https://www.rfc-editor.org/info/rfc2018>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <https://www.rfc-editor.org/info/rfc5681>.

 [RFC5827] Allman, M., Avrachenkov, K., Ayesta, U., Blanton, J., and
 P. Hurtig, "Early Retransmit for TCP and Stream Control
 Transmission Protocol (SCTP)", RFC 5827,
 DOI 10.17487/RFC5827, May 2010,
 <https://www.rfc-editor.org/info/rfc5827>.

 [RFC6582] Henderson, T., Floyd, S., Gurtov, A., and Y. Nishida, "The
 NewReno Modification to TCP's Fast Recovery Algorithm",

RFC 6582, DOI 10.17487/RFC6582, April 2012,
 <https://www.rfc-editor.org/info/rfc6582>.

 [RFC6675] Blanton, E., Allman, M., Wang, L., Jarvinen, I., Kojo, M.,
 and Y. Nishida, "A Conservative Loss Recovery Algorithm
 Based on Selective Acknowledgment (SACK) for TCP",

RFC 6675, DOI 10.17487/RFC6675, August 2012,
 <https://www.rfc-editor.org/info/rfc6675>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

https://datatracker.ietf.org/doc/html/rfc2018
https://www.rfc-editor.org/info/rfc2018
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5681
https://www.rfc-editor.org/info/rfc5681
https://datatracker.ietf.org/doc/html/rfc5827
https://www.rfc-editor.org/info/rfc5827
https://datatracker.ietf.org/doc/html/rfc6582
https://www.rfc-editor.org/info/rfc6582
https://datatracker.ietf.org/doc/html/rfc6675
https://www.rfc-editor.org/info/rfc6675
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174

Scheffenegger Expires September 13, 2021 [Page 9]

Internet-Draft LRD March 2021

10.2. Informative References

 [DAC] Beomjoon Kim, . and . Jaiyong Lee, "Retransmission Loss
 Recovery by Duplicate Acknowledgement Counting", IEEE
 Communications Letters, vol. 8, no. 1, pp. 69-71 , January
 2004.

 [LRD] Beomjoon Kim, ., Dongmin Kim, ., and . Jaiyong Lee, "Lost
 Retransmission Detection for TCP SACK", IEEE
 Communications Letters, vol. 8, no. 9, pp. 600-602 ,
 September 2004.

 [LRD2] Beomjoon Kim, ., Yong-Hoon Choi, ., Jaiyong Lee, ., Min-
 Seok Oh, ., and . Jin-Sung Choi, "["Lost Retransmission
 Detection for TCP Part 2", "TCP using SACK option"]",
 Proceedings of IFIP-TC6 Networking 2004, LNCS 3042,
 Springer-Verlag, vol. 3042, pp. 88-99 , May 2004.

 [LRSF] Hurtig, P, ., Garcia, J, ., and A. Brunstrom, "Loss
 Recovery in Short TCP/SCTP Flows", Karlstad University
 Studies 2006:71 , December 2006.

 [MM96a] Mathis, M, . and J. Mahdavi, "["Forward Acknowledgment",
 "Refining TCP Congestion Control"]", Proceedings of
 SIGCOMM 1996 , August 1996.

 [MM96b] Mathis, M, . and J. Mahdavi, "TCP Rate-Halving with
 Bounding Parameters", September 2004,
 <http://www.psc.edu/networking/papers/FACKnotes/current>.

 [RFC3517] Blanton, E., Allman, M., Fall, K., and L. Wang, "A
 Conservative Selective Acknowledgment (SACK)-based Loss
 Recovery Algorithm for TCP", RFC 3517,
 DOI 10.17487/RFC3517, April 2003,
 <https://www.rfc-editor.org/info/rfc3517>.

 [RFC3782] Floyd, S., Henderson, T., and A. Gurtov, "The NewReno
 Modification to TCP's Fast Recovery Algorithm", RFC 3782,
 DOI 10.17487/RFC3782, April 2004,
 <https://www.rfc-editor.org/info/rfc3782>.

 [RFC6937] Mathis, M., Dukkipati, N., and Y. Cheng, "Proportional
 Rate Reduction for TCP", RFC 6937, DOI 10.17487/RFC6937,
 May 2013, <https://www.rfc-editor.org/info/rfc6937>.

http://www.psc.edu/networking/papers/FACKnotes/current
https://datatracker.ietf.org/doc/html/rfc3517
https://www.rfc-editor.org/info/rfc3517
https://datatracker.ietf.org/doc/html/rfc3782
https://www.rfc-editor.org/info/rfc3782
https://datatracker.ietf.org/doc/html/rfc6937
https://www.rfc-editor.org/info/rfc6937

Scheffenegger Expires September 13, 2021 [Page 10]

Internet-Draft LRD March 2021

 [RFC7323] Borman, D., Braden, B., Jacobson, V., and R.
 Scheffenegger, Ed., "TCP Extensions for High Performance",

RFC 7323, DOI 10.17487/RFC7323, September 2014,
 <https://www.rfc-editor.org/info/rfc7323>.

 [RFC8312] Rhee, I., Xu, L., Ha, S., Zimmermann, A., Eggert, L., and
 R. Scheffenegger, "CUBIC for Fast Long-Distance Networks",

RFC 8312, DOI 10.17487/RFC8312, February 2018,
 <https://www.rfc-editor.org/info/rfc8312>.

 [RFC8985] Cheng, Y., Cardwell, N., Dukkipati, N., and P. Jha, "The
 RACK-TLP Loss Detection Algorithm for TCP", RFC 8985,
 DOI 10.17487/RFC8985, February 2021,
 <https://www.rfc-editor.org/info/rfc8985>.

 [sack-recovery-entry]
 Jarvinen, I, . and M. Kojo, "Using TCP Selective
 Acknowledgement (SACK) Information to Determine Duplicate
 Acknowledgements for Loss Recovery Initiation", March
 2010, <http://tools.ietf.org/html/draft-ietf-tcpm-sack-

recovery-entry-01>.

 [SACKPerf]
 Kodama, Y, ., Takano, R, ., Okazaki, F, ., and T. Kudoh,
 "Improvement of Communication Performance of Linux TCP/IP
 by Fixing a Problem in Detection of Loss of
 Retransmission", March 2008,
 <http://projects.itri.aist.go.jp/gnet/sack-bug.html>.

 [SRE] Jarvinen, I. and M. Kojo, "Using TCP Selective
 Acknowledgement (SACK) Information to Determine Duplicate
 Acknowledgements for Loss Recovery Initiation", draft-

ietf-tcpm-sack-recovery-entry-01 (work in progress), March
 2010.

 [TCPLat] Cardwell, N, ., Savage, S, ., and T. Anderson, "Modeling
 TCP Latency", Proceedings IEEE INFOCOM , March 2000.

 [TLP] Dukkipati, N., Cardwell, N., Cheng, Y., and M. Mathis,
 "Tail Loss Probe (TLP): An Algorithm for Fast Recovery of
 Tail Losses", draft-dukkipati-tcpm-tcp-loss-probe-01 (work
 in progress), February 2013.

10.3. URIs

 [1] mailto:tcpm@ietf.org

https://datatracker.ietf.org/doc/html/rfc7323
https://www.rfc-editor.org/info/rfc7323
https://datatracker.ietf.org/doc/html/rfc8312
https://www.rfc-editor.org/info/rfc8312
https://datatracker.ietf.org/doc/html/rfc8985
https://www.rfc-editor.org/info/rfc8985
http://tools.ietf.org/html/draft-ietf-tcpm-sack-recovery-entry-01
http://tools.ietf.org/html/draft-ietf-tcpm-sack-recovery-entry-01
http://projects.itri.aist.go.jp/gnet/sack-bug.html
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-sack-recovery-entry-01
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-sack-recovery-entry-01
https://datatracker.ietf.org/doc/html/draft-dukkipati-tcpm-tcp-loss-probe-01

Scheffenegger Expires September 13, 2021 [Page 11]

Internet-Draft LRD March 2021

Appendix A. Lost Retransmission Detection Example

 The following lengthy graph shows the intended behavior under
 pathological packet loss, where every third segment is lost. Note
 that SACK LRD will not be able to recover, if the loss ratio during
 recovery is higher than about 50%, due to the congestion window
 reduction.

 For clarity, each segment is denoted only via a single number. Note
 that the ACKs are also given with the segement they ack, not the next
 sequence number.

A.1. Lost Retransmission, Mid-Stream

 ACK Transmitted Received ACK Sent
 Received Segment Segment (Including SACK Blocks)

 1000
 5000-5499 5000-5499 (delayed ACK)
 5500-5999 5500-5999
 6000
 2000
 6000-6499 (dropped)
 6500-6999 (dropped)
 3000
 7000-7499 (dropped)
 7500-7999 (dropped)
 4000
 8000-8499 (dropped)
 8500-8999 (dropped)
 5000
 9000-9499 9000-9499
 6000; 9000-9500
 9500-9999 9500-9999
 6000; 9000-10000
 6000
 10000-10499 10000-10499
 6000; 9000-10500
 10500-10999 10000-10999
 6000; 9000-11000

 6000; 9000-9500
 (lim. tr.) 11000-11499 11000-11499
 6000; 9000-11500
 6000; 9000-10000
 (lim. tr.) 11500-11999 11500-11999 (end-of-stream)
 6000; 9000-12000

Scheffenegger Expires September 13, 2021 [Page 12]

Internet-Draft LRD March 2021

 6000; 9000-10500
 (fast retr.) 6000-6499 (dropped) [^1]

 6000; 9000-11000

 6000; 9000-11500
 6500-6999 6500-6999 [^2]
 6000; 6500-7000,9000-12000
 6000; 9000-12000

 6000; 6500-7000,9000-12000
 7000-7499 7000-7499 [^2]
 6000; 6500-7500,9000-12000
 6000; 6500-7500,9000-12000
 7500-7999 7500-7999 \[mark 8999*\]
 6000; 6500-8000,9000-12000
 6000; 6500-8000,9000-12000 (trigger 6000-6499)
 6000-6499 6000-6499 \[mark 8999*\]
 8000; 9000-12000
 8000; 9000-12000
 8000-8499 8000-8499 \[mark 8999*\]
 8500; 9000-12000
 8500; 9000-12000
 8500-8999 8500-8999 \[mark 12499**\]
 12000
 12000 (exit loss recovery)

 Figure 1

Author's Address

 Richard Scheffenegger
 NetApp
 Am Europlatz 2
 Vienna 1120
 AT

 Email: rs.ietf@gmx.at

Scheffenegger Expires September 13, 2021 [Page 13]

