
TCP Maintenance and Minor Extensions R. Scheffenegger
(tcpm) NetApp, Inc.
Internet-Draft M. Kuehlewind
Updates: 1323 (if approved) University of Stuttgart
Intended status: Experimental B. Trammell
Expires: April 25, 2013 ETH Zurich
 October 22, 2012

Additional negotiation in the TCP Timestamp Option field
during the TCP handshake

draft-scheffenegger-tcpm-timestamp-negotiation-05

Abstract

 A number of TCP enhancements in diverse fields as congestion control,
 loss recovery or side-band signaling could be improved by allowing
 both ends of a TCP session to interpret the value carried in the
 Timestamp option. Further enhancements are enabled by changing the
 receiver side processing of timestamps in the presence of Selective
 Acknowledgements.

 This document updates RFC1323 and specifies a backward-compatible
 method for negotiating for additional capabilities for the Timestamp
 option, and lists a number of benefits and drawbacks of this
 approach.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Scheffenegger, et al. Expires April 25, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Timestamp Negotiation October 2012

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 6
3. Overview of the TCP Timestamp Option 7
4. Extended Timestamp Capabilities 8
4.1. Description . 8
4.2. Timestamp echo update for Selective Acknowledgments . . . 9

5. Timestamp capability signaling and negotiation 10
5.1. Capability Flags . 10
5.2. Timestamp clock interval encoding 12
5.3. Negotiation error detection and recovery 12
5.4. Interaction with Selective Acknowledgment 14
5.4.1. Interaction with the Retransmission Timer 15
5.4.2. Interaction with the PAWS test 16

5.5. Discussion . 16
6. Acknowledgements . 17
7. Updates to Existing RFCs 17
8. IANA Considerations . 18
9. Security Considerations 19
10. References . 19
10.1. Normative References 19
10.2. Informative References 19

Appendix A. Possible use cases 21
A.1. Timestamp clock rate exposure 21
A.2. Early spurious retransmit detection 22
A.3. Early lost retransmission detection 23
A.4. Integrity of the Timestamp value 24
A.5. Disambiguation with slow Timestamp clock 25
A.6. Masked timestamps as segment digest 26

Appendix B. Open Issues . 27
Appendix C. Revision history 27

 Authors' Addresses . 29

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Scheffenegger, et al. Expires April 25, 2013 [Page 2]

Internet-Draft Timestamp Negotiation October 2012

1. Introduction

 The Timestamp option originally introduced in [RFC1323] was designed
 to support only two very specific mechanisms, round trip time
 measurement (RTTM), and protection against wrapped sequence numbers
 (PAWS), assuming a particular TCP algorithm (Reno). The current
 semantics inhibit the use of the Timestamp option for other uses.
 Taking advantage of developments since TCP Reno, in particular
 Selective Acknowledgements (SACK) [RFC2018] allow different
 semantics, which in turn enable new uses for the Timestamp option,
 either for timing purposes (e.g. one-way delay variation measurement
 in the context of congestion control), or as unique token (e.g. for
 improved loss recovery).

 This specification defines a protocol for the two ends of a TCP
 session to negotiate alternative semantics of the Timestamp option
 fields they will exchange during the rest of the session. It updates

RFC1323 but it is backwards compatible with implementations of
RFC1323 Timestamp options, and allows gradual deployment.

 The RFC1323 timestamp protocol presents the following problems when
 trying to extend it for alternative uses:

 a. Unclear meaning of the value in a timestamp.

 * A timestamp value (TSval) as defined in [RFC1323] is
 deliberately only meaningful to the end that sends it. The
 other end is merely meant to echo the value without
 understanding it. This is fine if one end is trying to
 measure two-way delay (round trip time). However, to measure
 one-way delay variation, timestamps from both ends need to be
 compared by one end, which needs to relate the values in
 timestamps from both ends to a notion of the passage of time
 that both ends share.

 b. No control over which timestamp to echo.

 * A host implementing [RFC1323] is meant to echo the timestamp
 value of the most recent in-order segment received. This was
 fine for TCP Reno, but it is not the best choice for TCP
 sessions using selective acknowledgement (SACK) [RFC2018].

 * A [RFC1323] host is meant to echo the timestamp value of the
 earliest unacknowledged segment, e.g. if a host delays ACKs
 for one segment, it echoes the first timestamp not the second.
 It is desirable to include delay due to ACK withholding when a
 host is conservatively measuring RTT. However, is not useful
 to include the delay due to ACK withholding when measuring

https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc1323

Scheffenegger, et al. Expires April 25, 2013 [Page 3]

Internet-Draft Timestamp Negotiation October 2012

 one-way delay variation.

 c. Alternative protection against wrapped sequence numbers.

 * [RFC1323] also points out that the timestamps it specifies
 will always strictly monotonically increase in each window so
 they can be used to protect against wrapped sequence numbers
 (PAWS). If the endpoints negotiate an alternative timestamp
 scheme in which timestamps may not monotonically increase per
 window, then it needs to be possible to negotiate alternative
 protection against wrapped sequence numbers.

 To solve these problems this specification changes the wire protocol
 of the TCP timestamp option in two main ways:

 1. It updates [RFC1323] to add the ability to negotiate the
 semantics of timestamp options. The initiator of a TCP session
 starts the negotiation in the TSecr field in the first <SYN>,
 which is currently unused. This specification defines the
 semantics of the TSecr field in a segment with the SYN flag set.
 A version number is included to allow further extension of
 capability negotiation in future.

 2. A version independent ability to mask a specified number of the
 lower significant bits of the timestamp values is present. These
 masked bits are not considered for timestamp calculations, or in
 an algorithm to protect against wrapped sequence numbers. Future
 extensions can thereby change the timestamp signaling without
 changing the modified treatment on the receiver side.

 3. It updates [RFC1323] to define version 0 of timestamp
 capabilities to include:

 * the duration in seconds of a tick of the timestamp clock using
 a time interval representation defined in
 [I-D.trammell-tcpm-timestamp-interval].

 * agreement that both ends will echo the timestamp on the most
 recently received segment, rather than the one that would be
 echoed by an [RFC1323] host. There is no specific option to
 request this behavior, however it is implied by successful
 negotiation of both SACK and timestamp capabilities.

 With this new wire protocol, a number of new use-cases for the TCP
 timestamp option become possible. Appendix A gives some examples.
 Further extensions might be required in future. Two possible ways to
 extend the negotiation capabilities are mentioned, one maintaining
 some of the semantics specified herein, and a incompatible extension

https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323

Scheffenegger, et al. Expires April 25, 2013 [Page 4]

Internet-Draft Timestamp Negotiation October 2012

 to allow for other semantics.

Scheffenegger, et al. Expires April 25, 2013 [Page 5]

Internet-Draft Timestamp Negotiation October 2012

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The reader is expected to be familiar with the definitions given in
 [RFC1323].

 Further terminology used within this document:

 Timestamp option
 This refers to the entire TCP timestamp option, including both
 TSval and TSecr fields.

 Timestamp capabilities
 Refers only to the values and bits carried in the TSecr field of
 <SYN> and <SYN,ACK> segments during a TCP handshake. For
 signaling purposes, the timestamp capabilities are sent in clear
 with the <SYN> segment, and in an encoded form (see Section 5 for
 details) in the <SYN,ACK> segment.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1323

Scheffenegger, et al. Expires April 25, 2013 [Page 6]

Internet-Draft Timestamp Negotiation October 2012

3. Overview of the TCP Timestamp Option

 The TCP Timestamp option (TSopt) provides timestamp echoing for
 round-trip time (RTT) measurements. TSopt is widely deployed and
 activated by default in many systems. [RFC1323] specifies TSopt the
 following way:

 Kind: 8

 Length: 10 bytes

 +-------+-------+---------------------+---------------------+
 |Kind=8 | 10 | TS Value (TSval) |TS Echo Reply (TSecr)|
 +-------+-------+---------------------+---------------------+
 1 1 4 4

 Figure 1: RFC1323 TSopt

 "The Timestamps option carries two four-byte timestamp fields.
 The Timestamp Value field (TSval) contains the current value of
 the timestamp clock of the TCP sending the option.

 The Timestamp Echo Reply field (TSecr) is only valid if the ACK
 bit is set in the TCP header; if it is valid, it echos a times-
 tamp value that was sent by the remote TCP in the TSval field of a
 Timestamps option. When TSecr is not valid, its value must be
 zero. The TSecr value will generally be from the most recent
 Timestamp option that was received; however, there are exceptions
 that are explained below.

 A TCP may send the Timestamps option (TSopt) in an initial <SYN>
 segment (i.e., segment containing a SYN bit and no ACK bit), and
 may send a TSopt in other segments only if it received a TSopt in
 the initial <SYN> segment for the connection."

 The comparison of the timestamp in the TSecr field to the current
 timestamp clock gives an estimation of the two-way delay (RTT). With
 [RFC1323] the receiver is not supposed to interpret the TSval field
 for timing purposes, e.g. one-way delay variation measurements, but
 only to echo the content in the TSecr field. [RFC1323] specifies
 various cases when more than one timestamp is available to echo. The
 only property exposed to a receiver is a strict monotonic increase in
 value, for use with the protection against wrapped sequence numbers
 (PAWS) test. The approach taken by [RFC1323] is not always be the
 best choice, i.e. when the TCP Selective Acknowledgment option (SACK)
 is used in conjunction on the same session.

https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323

Scheffenegger, et al. Expires April 25, 2013 [Page 7]

Internet-Draft Timestamp Negotiation October 2012

4. Extended Timestamp Capabilities

4.1. Description

 Timestamp values are carried in each segment if negotiated for.
 However, the content of these values is to be treated as an unmutable
 and largely uninterpreted entity by the receiver. The timestamp
 negotiation should allow for following criteria:

 o Allow to state timing information explicitly during the initial
 handshake, avoiding the proliferation of ad-hoc heuristics to
 determine this information via some other means. Heuristics that
 simply assume a specific timestamp clock intervals, or try to
 learn the clock interval used by the partner during a training
 phase extending beyond the initial handshake can thereby avoided.
 This is discussed further in
 [I-D.trammell-tcpm-timestamp-interval].

 o Indicate the (approximate) timestamp clock interval used by the
 sender in a wide range. The longest interval should be around 10
 seconds, while the shorted interval should allow unique timestamps
 per segment, even at extremely high link speeds. A negotiation-
 method-independent representation for timestamp intervals is given
 in [I-D.trammell-tcpm-timestamp-interval].

 o Allow for timestamps that are not directly related to real time
 (i.e. segment counting, or use of the timestamp value as a true
 extension of sequence numbers).

 o Provide means to prevent or at least detect tampering with the
 echoed timestamp value, allowing for basic integrity and
 consistency checks.

 o Allow for future extensions that may use some of the timestamp
 value bits for other signaling purposes during the remainder of
 the session.

 o Signaling must be backwards compatible with existing TCP stacks
 implementing basic [RFC1323] timestamps. Current methods for
 timestamp value generation must be supported.

 o Allow for a means to disambiguate between retransmitted and
 delayed <SYN> segments.

 o Cater for broken implementations of [RFC1323], that either send a
 non-zero TSecr value in the initial <SYN>, or a zero TSecr value
 in <SYN,ACK>.

https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323

Scheffenegger, et al. Expires April 25, 2013 [Page 8]

Internet-Draft Timestamp Negotiation October 2012

 o Provide flexibility to extend the negotiation protocol.
 Backwards-compatible and incompatible extensions of using
 timestamps should be available.

4.2. Timestamp echo update for Selective Acknowledgments

 In [RFC1323], timing information is only considered in relation to
 calculating a (conservative) estimate of the round trip time, in
 order to arrive at a reasonable retransmission timeout (RTO). A
 retransmission timeout is a very expensive event in TCP, in terms of
 lost throughput and other metrics. For this reason, a receiver had
 to follow special rules in what timestamp to echo. This was to never
 underestimate the actual RTT, even during periods of loss or
 reordering on either the forward or return path. No other explicit
 signal could convey the presence of such events back to the sender at
 the time [RFC1323] was defined. Therefore a receiver had to make
 sure than at best, the timestamp of the last in-sequence segment
 would be echoed to the sender.

 Receivers conforming to [RFC1323] are required to only reflect the
 timestamp of the last segment that was received in order, or the
 timestamp of the last not yet acknowledged segment in the case of
 delayed acknowledgments.

 When selective acknowledgment (SACK) is enabled on a session, the
 presence of a SACK option will explicitly signal reordering or loss
 to the sender. This information can be used to suspend the
 calculation of updated RTT estimates. As the SACK option will be
 present in multiple ACKs, this also prevents increasing RTT
 artificially when some of the ACKs, indicating loss, are dropped on
 the return path.

 A receiver supporting the timestamp negotiation mechanism defined in
 this document MUST immediately reflect the value of TSval in the
 segment triggering an ACK, when the same session also supports SACK.

 The rules to update the state variable TS.recent remain the identical
 to [RFC1323], and TS.recent must be evaluated when performing the
 PAWS test on the receiver side.

 By this change of semantics when using the timestamps and selective
 acknowledgments [RFC2018] in the same session, enhancements in loss
 recovery are possible by removing any remaining retransmission and
 acknowledgment ambiguity. See Appendix A for a more detailed
 discussion. Through the modification to the handling of which
 timestamp to echo in the receiver, timestamps fulfill the properties
 of the "token", as described in [I-D.sabatini-tcp-sack].

https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2018

Scheffenegger, et al. Expires April 25, 2013 [Page 9]

Internet-Draft Timestamp Negotiation October 2012

5. Timestamp capability signaling and negotiation

 In order to signal the supported capabilities, both the sender and
 the receiver will independently generate a timestamp capability
 negotiation field, as indicated below. The TSecr value field of the
 [RFC1323] TSopt is overloaded with the following flags and fields
 during the initial <SYN> and <SYN,ACK> segments. The connection
 initiator will send the timestamp capabilities in plain, as with
 [RFC1323] the TSecr is not used in the initial <SYN>. The receiver
 will XOR the local timestamp capabilities with the TSval received
 from the sender and send the result in the TSecr field. The
 initiating host of a session with timestamp capability negotiation
 has to keep minimal state to decode the returned capabilities XOR'ed
 with the sent TSval.

5.1. Capability Flags

 Kind: 8

 Length: 10 bytes

 +-------+-------+---------------------+---------------------+
 |Kind=8 | 10 | TS Value (TSval) |TS Echo Reply (TSecr)|
 +-------+-------+---------------------+---------------------+
 1 1 4 | 4 |
 / |
 .-----------------------------------' |
 / \
 | |
 +-+
 |E| | # |
 |X|VER| MSK # version specific contents |
 |O| | # |
 +-+

 Figure 2: Timestamp Capability flags

 Common fields to all versions:

 EXO - Extended Options (1 bit)
 Indicates that the sender supports extended timestamp
 capabilities as defined by this document, and MUST be set to one
 by a compliant implementation. This flag also enables the
 immediate echoing of the TSval with the next ACK, if both
 timestamp capabilities and selective acknowledgement [RFC2018]
 are successful negotiated during the initial handshake (see

Section 4.2, and Section 5.4). This change in semantics is
 independent of the version in the signaled timestamp

https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2018

Scheffenegger, et al. Expires April 25, 2013 [Page 10]

Internet-Draft Timestamp Negotiation October 2012

 capabilities.

 VER - Version (2 bits)
 Version of the capabilities fields definition. This document
 specifies codepoint 0 (00b). With the exception of the immediate
 mirroring - simplifying the receiver side processing - and the
 masking of some LSB bits before performing the Protection Against
 Wrapped Sequence Numbers (PAWS) test, hosts must not interpret
 the received timestamps and not use a timestamp value as input
 into advanced heuristics, if the version received is not
 supported. This is an identical requirement as with current
 [RFC1323] compliant implementations.
 The lower 3 octets of the timestamp capability flags MUST be
 ignored if an unsupported version is received. It is expected,
 that a host will implement at least version 0. A receiver MUST
 respond with the appropriate (equal or version 0) version when
 responding to a new session request.

 MSK - Mask Timestamps (5 bits)
 The MaSK field indicates how many least significant bits should
 be excluded by the receiver, before further processing the
 timestamp (i.e. PAWS, or for timing purposes). The unmasked
 portion of a TSval has to comply with the constraints imposed by
 [RFC1323] on the generation of valid timestamps, e.g. must be
 monotone increasing between segments, and strict monotone
 increasing for each TCP window.
 Note that this does not impact the reflected timestamp in any way
 - TSecr will always be equal to an appropriate TSval. This field
 MUST be present in all future version of timestamp capability
 fields. A value of 31 (all bits set) MUST be interpreted by a
 receiver that the full TSval is to be ignored by any legacy
 heuristics, e.g. disabling PAWS. For PAWS to be effective, at
 least two not masked bits are required to discriminate between an
 increase (and roll-over) versus outdated segments.

https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323

Scheffenegger, et al. Expires April 25, 2013 [Page 11]

Internet-Draft Timestamp Negotiation October 2012

5.2. Timestamp clock interval encoding

 Kind: 8

 Length: 10 bytes

 +-------+-------+---------------------+---------------------+
 |Kind=8 | 10 | TS Value (TSval) |TS Echo Reply (TSecr)|
 +-------+-------+---------------------+---------------------+
 1 1 4 | 4 |
 / |
 .-----------------------------------' |
 / \
 | |
 +-+
 |E| | # | |
 |X|VER| MSK # reserved (0) | interval |
 |O| | # | |
 +-+

 Figure 3: Timestamp Capability flags - version 0

 reserved (8 bits)
 Reserved for future use, and MUST be zero ("0") with version 0.
 If timestamp capabilities are received with version set to 0, but
 some of these bits set, the receiver MUST ignore the extended
 options field and react as if the TSecr was zero (compatibility
 mode).

 interval (16 bits)
 The interval of the timestamp clock, as defined in
 [I-D.trammell-tcpm-timestamp-interval].

5.3. Negotiation error detection and recovery

 During the initial TCP three-way handshake, timestamp capabilities
 are negotiated using the TSecr field. Timestamp capabilities MAY
 only be negotiated in TSecr when the SYN bit is set. A host detects
 the presence of timestamp capability flags when the EXO bit is set in
 the TSecr field of the received <SYN> segment. When receiving a
 session request (<SYN> segment with timestamp capabilities), a
 compliant TCP receiver is required to XOR the received TSval with the
 receivers timestamp capabilities. The resulting value is then sent
 in the <SYN,ACK> response.

 To support these design goals stated in Section 4, only the TSecr
 field in the initial <SYN> can be used directly. The response from

Scheffenegger, et al. Expires April 25, 2013 [Page 12]

Internet-Draft Timestamp Negotiation October 2012

 the receiver has to be encoded, since no unused field is available in
 the <SYN,ACK>. The most straightforward encoding is a XOR with a
 value that is known to the sender. Therefore, the receiver also uses
 TSecr to indicate its capabilities, but calculates the XOR sum with
 the received TSval. This allows the receiver to remain stateless and
 functionality like SYN Cache (see [RFC4987]) can be maintained with
 no change.

 If a sender has to retransmit the <SYN>, this encoding also allows to
 detect which segment was received and responded to. This is possible
 by changing the timestamp clock offset between retransmissions in
 such a way, that the decoding on the sender side would result in an
 invalid timestamp capability negotiation field (e.g. some RES bits
 are set). If the sender does not require the capability to
 differentiate which <SYN> was received, the timestamp clock offset
 for each new <SYN> can be set in such a way, that the TSopt of the
 <SYN> is identical for each retransmission.

 As a receiver MAY report back a zero value at any time, in particular
 during the <SYN,ACK>, the sender is slightly constrained in its
 selection of an initial Timestamp value. The Timestamp value sent in
 the <SYN> should be selected in such a way, that it does not resemble
 a valid Timestamp capabilities field. One approach to ensure this
 property is that the sender makes sure that at least one bit of the
 RES field is set. This prevents a compliant sender to erroneously
 detect a compliant receiver, if the returned TSecr value is zero.

 A host initiating a TCP session must verify if the partner also
 supports timestamp capability negotiation and a supported version,
 before using enhanced algorithms. Note that this change in semantics
 does not necessarily change the signaling of timestamps on the wire
 after initial negotiation.

 To mitigate the effect from misbehaving TCP senders appearing to
 negotiate for timestamp capabilities, a receiver MUST verify that one
 specific bit (EXO) is set, and any reserved bits (currently 8, RES
 field) are cleared. This limits the chance for a receiver to
 mistakenly negotiate for version 0 capabilities in the presence of a
 misbehaving sender to around 0.05%. The prevalence of misbehaving
 senders, and distribution of observed TSecr values, limits this to
 less than 1 in 6 million. The modifications described in
 [I-D.ietf-tcpm-1323bis] and implemented in a receiver would further
 decrease the false negotiation to less then 10^-7.

 However, as a receiver has to use changed semantics when reflecting
 TSval also for higher values in the version field, a misbehaving
 sender negotiating for SACK, but not properly clearing TSecr, may
 have a 37.5% chance of receiving timestamp values with modified

https://datatracker.ietf.org/doc/html/rfc4987

Scheffenegger, et al. Expires April 25, 2013 [Page 13]

Internet-Draft Timestamp Negotiation October 2012

 receiver behavior (from an approximate population of 0.00036% of
 sessions being started without a cleared TSecr). This may lead to an
 increased number of spurious retransmission timeouts, putting such a
 session from a misbehaving TCP sender to a disadvantage.

 Once timestamp capabilities are successfully negotiated, the receiver
 MUST ignore an indicated number of masked, low-order bits, before
 applying the heuristics defined in [RFC1323]. The monotonic increase
 of the timestamp value for each new segment could be violated if the
 full 32 bit field, including the masked bits, are used. This
 conflicts with the constraints imposed by PAWS.

 The presented distribution of the common three fields, EXO, VER and
 MASK, that MUST be present regardless of which version is implemented
 in a compliant TCP stack, is a result of the previously mentioned
 design goals. The lower three octets MAY be redefined freely with
 subsequent versions of the timestamp capability negotiation protocol.
 This allows a future version to be implemented in such a way, that a
 receiver can still operate with the modified behavior, and a minimum
 amount of processing (PAWS)

5.4. Interaction with Selective Acknowledgment

 If both Timestamp capabilities and Selective Acknowledgement options
 [RFC2018] are negotiated (both hosts send these options in their
 respective handshake segments), both hosts MUST echo the timestamp
 value of the last received segment, irrespective of the order of
 delivery. Note that this is in conflict with [RFC1323], where only
 the timestamp of the last segment received in sequence is mirrored.
 As SACK allows discrimination of reordered or lost segments, the
 reflected timestamp is not required to convey the most conservative
 information. If SACK indicates lost or reordered packets at the
 receiver, the sender MUST take appropriate action such as ignoring
 the received timestamps for calculating the round trip time, or
 assuming a delayed packet (with appropriate handling). An updated
 algorithm to calculate the retransmission timeout timer (RTO) is
 beyond the scope of this document.

 The immediate echoing of the last received timestamp value allowed by
 the simultaneous use of the timestamp option with the SACK option
 enables enhancements to improve loss recovery, round trip time (RTT)
 and one-way delay (OWD) variation measurements (see Appendix A) even
 during loss or reordering episodes. This is enabled by removing any
 retransmission ambiguity using unique timestamps for every
 retransmission, while simultaneously the SACK option indicates the
 ordering of received segments even in the presence of ACK loss or
 reordering.

https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc1323

Scheffenegger, et al. Expires April 25, 2013 [Page 14]

Internet-Draft Timestamp Negotiation October 2012

 For legacy applications of the timestamp option such as RTTM and
 PAWS, the presence of the SACK option gives a clear indication of
 loss or reordering. Under these circumstances, RTTM should not be
 invoked even under [RFC1323], but often is, due to separate handling
 of timestamp and SACK options).

 The use of RTT and OWD measurements during loss episodes is an open
 research topic. A sender has to accommodate for the changed
 timestamp semantics in order to maintain a conservative estimate of
 the Retransmission Timer as defined in [RFC6298], when a TCP sender
 has negotiated for an immediate reflection of the timestamp
 triggering an ACK (i.e. both timestamp capability negotiation and
 Selective Acknowledgements are enabled for the session). As the
 presence of a SACK option in an ACK signals an ongoing reordering or
 loss episode, timestamps conveyed in such segments MUST NOT be used
 to update the retransmission timeout. Also note that the presence of
 a SACK option alleviates the need of the receiver to reflect the last
 in-order timestamp, as lost ACKs can no longer cause erroneous
 updates of the retransmission timeout.

5.4.1. Interaction with the Retransmission Timer

 The above stated rule, to ignore timestamps as soon as a SACK option
 is present, is fully consistent with the guidance given in [RFC1323],
 even though most implementations skip over such an additional
 verification step in the presence of the SACK option.

 To address the additional delay imposed by delayed ACKs, a compliant
 sender SHOULD modify the update procedure when receiving normal, in-
 sequence ACKs that acknowledge more than SMSS bytes, so that the
 input (denoted R in [RFC6298]) is calculated as

 R = RTT * (1 + 1/(cwnd/smss))

 If RTT (as measured in units of the timestamp clock) is smaller than
 the congestion window measured in full sized segments, the above
 heuristic MAY be bypassed before updating the retransmission timeout
 value.

https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc6298

Scheffenegger, et al. Expires April 25, 2013 [Page 15]

Internet-Draft Timestamp Negotiation October 2012

5.4.2. Interaction with the PAWS test

 The PAWS test as defined in [RFC1323] requires constant monotonic
 increasing values at the receiver side. As TS.Recent is no longer
 used to track which timestamp to echo, this variable can be reused.
 Instead of tracking the timestamp sent in the most recent ACK, a more
 strict update rule could be used:

 "For example, we might save the timestamp from the segment that
 last advanced the left edge of the receive window, i.e., the most
 recent in-sequence segment."

 TS.Recent is only to be updated whenever the left window advances,
 but no longer has to consider delayed ACKs.

5.5. Discussion

 RTT and OWD variation during loss episodes is not deeply researched.
 Current heuristics ([RFC1122], [RFC1323], Karn's algorithm [RFC2988])
 explicitly exclude (and prevent) the use of RTT samples when loss
 occurs. However, solving the retransmission ambiguity problem - and
 the related reliable ACK delivery problem - would enable new
 functionality to improve TCP processing. Also, having an immediate
 echo of the last received timestamp value would enable new research
 to distinguish between corruption loss (assumed to have no RTT / OWD
 impact) and congestion loss (assumed to have RTT / OWD impact).
 Research into this field appears to be rather neglected, especially
 when it comes to large scale, public internet investigations. Due to
 the very nature of this, passive investigations without signals
 contained within the headers are only of limited use in empirical
 research.

 Retransmission ambiguity detection during loss recovery would allow
 an additional level of loss recovery control without reverting to
 timer-based methods. As with the deployment of SACK, separating
 "what" to send from "when" to send it could be driven one step
 further. In particular, less conservative loss recovery schemes
 which do not trade principles of packet conservation against
 timeliness, require a reliable way of prompt and best possible
 feedback from the receiver about any delivered segment and their
 ordering. [RFC2018] SACK alone goes quite a long way, but using
 timestamp information in addition could remove any ambiguity.
 However, the current specs in [RFC1323] make that use impossible,
 thus a modified semantic (receiver behavior) is a necessity.

 A change in signaling with immediate timestamp value echoes would
 however break some legacy, per-packet RTT measurements. The reason
 is, that delayed ACKs would not be covered. Research has shown, that

https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc1323

Scheffenegger, et al. Expires April 25, 2013 [Page 16]

Internet-Draft Timestamp Negotiation October 2012

 per-packet updates of the RTT estimation (for the purpose of
 calculating a reasonable RTO value) are only of limited benefit (see
 [Path99], and [PH04]). This is the most serious implication of the
 proposed signaling scheme with directly echoing the timestamp value
 of the segment triggering the ACK, when the SACK options is also
 negotiated for. Even when using the directly reflected timestamp
 values in an unmodified RTT estimator, the immediate impact would be
 limited to causing premature RTOs when the sending rate suddenly
 drops below two segments per RTT. That is, assuming the receiver
 implements delayed ACK and sending one ACK for every other data
 segment received. If the receiver has also D-SACK [RFC2883] enabled,
 such premature RTOs can be detected and mitigated by the sender (for
 example, by increasing minRTO for low bandwidth flows).

 Allowing timestamps to play a more important role in TCP signaling
 also gives rise to concerns. When the timestamp is used for
 congestion control purposes, this gives an incentive for malicious
 receivers to reflect tampered timestamps. During the early phases of
 the introduction of Cubic, such modifications where shown to result
 in unfair advantages to malicious receivers, that selectively alter
 the reflected timestamp values (see [CUBIC]). For that very reason,
 this document introduces the explicit possibility to include a signal
 in the timestamp values that is excluded from any processing by the
 receiver. A sender can then decide how to make use of this
 capability, e.g. for use as additional security information,
 improvements of loss recovery or other, yet unknown, means.

6. Acknowledgements

 The authors would like to thank Dragana Damjanovic for some initial
 thoughts around Timestamps and their extended potential use.

 We would like to thank Bob Briscoe for his insightful comments, and
 the gratuitous donation of text, that have resulted in a
 substantially improved document.

 We further want to thank Michael Welzl for his input and discussion.

7. Updates to Existing RFCs

 Care has been taken to make sure the updates in this specification
 can be deployed incrementally.

 Updates to existing [RFC1323] implementations are only REQUIRED if
 they do not clear the TSecr value in the initial <SYN> segment. This
 is a misinterpretation of [RFC1323] and may leak data anyway (see

https://datatracker.ietf.org/doc/html/rfc2883
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323

Scheffenegger, et al. Expires April 25, 2013 [Page 17]

Internet-Draft Timestamp Negotiation October 2012

 [I-D.ietf-tcpm-tcp-security]). Also see [I-D.ietf-tcpm-1323bis], as
 this stipulates, that the TSval sent in a <RST> should be zeroed,
 further reducing the chance for a false positive. It is expected,
 that these changes are implemented in stacks making use of timestamp
 negotiation. Otherwise, there will be no need to update an RFC1323-
 compliant TCP stack unless the timestamp capabilities negotiation is
 to be used.

 Implementations compliant with the definitions in this document shall
 be prepared to encounter misbehaving senders, that don't clear TSecr
 in their initial <SYN>. It is believed, that checking the reserved
 bits to be all zero provides enough protection against misbehaving
 senders.

 In the unlikely case of an erroneous negotiation of timestamp
 capabilities between a compliant receiver, and a misbehaving sender,
 the proposed semantic changes will trigger a higher rate of spurious
 retransmissions, while time-based heuristics on the receiver side may
 further negatively impact congestion control decisions. Overall,
 misbehaving receivers will suffer from self-inflicted reductions in
 TCP performance.

8. IANA Considerations

 With this document, the IANA is requested to establish a new registry
 to record the timestamp capability flags defined with future versions
 (codepoints 1, 2 and 3).

 The lower 24 bits (3 octets) of the timestamp capabilities field may
 be freely assigned in future versions. The first octet must always
 contain the EXO, VER and MASK fields for compatibility, and the MASK
 field MUST be set to allow interoperation with a version 0 receiver.

 This document specifies version 0 and the use of the last three
 octets to signal the senders timestamp clock interval to the
 receiver.

https://datatracker.ietf.org/doc/html/rfc1323

Scheffenegger, et al. Expires April 25, 2013 [Page 18]

Internet-Draft Timestamp Negotiation October 2012

9. Security Considerations

 The algorithm presented in this paper shares security considerations
 with [RFC1323] (see [I-D.ietf-tcpm-tcp-security]).

 An implementation can address the vulnerabilities of [RFC1323], by
 dedicating a few low-order bits of the timestamp fields for use with
 a (secure) hash, that protects against malicious modification of
 returned timestamp value by the receiver. A MASK field has been
 provided to explicitly notify the receiver about that alternate use
 of low-order bits. This allows the use of timestamps for purposes
 requiring higher integrity and security while allowing the receiver
 to extract useful information nevertheless.

10. References

10.1. Normative References

 [I-D.trammell-tcpm-timestamp-interval]
 Scheffenegger, R., Kuehlewind, M., and B. Trammell,
 "Exposure of Time Intervals for the TCP Timestamp Option",

draft-trammell-tcpm-timestamp-interval-00 (work in
 progress), October 2012.

 [RFC1323] Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

10.2. Informative References

 [BSD10] Hayes, D., "Timing enhancements to the FreeBSD kernel to
 support delay and rate based TCP mechanisms", Feb 2010, <h
 ttp://caia.swin.edu.au/reports/100219A/
 CAIA-TR-100219A.pdf>.

 [CUBIC] Rhee, I., Ha, S., and L. Xu, "CUBIC: A New TCP-Friendly
 High-Speed TCP Variant", Feb 2005, <http://

citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.153.3152&rep=rep1&type=pdf>.

 [Cho08] Cho, I., Han, J., and J. Lee, "Enhanced Response Algorithm
 for Spurious TCP Timeout (ER-SRTO)", Jan 2008, <http://

https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/draft-trammell-tcpm-timestamp-interval-00
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.153.3152&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.153.3152&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.153.3152&rep=rep1&type=pdf

Scheffenegger, et al. Expires April 25, 2013 [Page 19]

Internet-Draft Timestamp Negotiation October 2012

 ubinet.yonsei.ac.kr/v2/publication/hpmn_papaers/ic/
 2008_Enhanced%20Response%20Algorithm%20for%20Spurious%
 20TCP.pdf>.

 [I-D.blanton-tcp-reordering]
 Blanton, E., Dimond, R., and M. Allman, "Practices for TCP
 Senders in the Face of Segment Reordering",

draft-blanton-tcp-reordering-00 (work in progress),
 February 2003.

 [I-D.ietf-tcpm-1323bis]
 Borman, D., Braden, R., Jacobson, V., and R.
 Scheffenegger, "TCP Extensions for High Performance",

draft-ietf-tcpm-1323bis-04 (work in progress),
 August 2012.

 [I-D.ietf-tcpm-anumita-tcp-stronger-checksum]
 Biswas, A., "Support for Stronger Error Detection Codes in
 TCP for Jumbo Frames",

draft-ietf-tcpm-anumita-tcp-stronger-checksum-00 (work in
 progress), May 2010.

 [I-D.ietf-tcpm-tcp-security]
 Gont, F., "Survey of Security Hardening Methods for
 Transmission Control Protocol (TCP) Implementations",

draft-ietf-tcpm-tcp-security-03 (work in progress),
 March 2012.

 [I-D.sabatini-tcp-sack]
 Sabatini, A., "Highly Efficient Selective Acknowledgement
 (SACK) for TCP", draft-sabatini-tcp-sack-01 (work in
 progress), August 2012.

 [Linux] Sarolahti, P., "Linux TCP", Apr 2007,
 <http://www.cs.clemson.edu/~westall/853/linuxtcp.pdf>.

 [PH04] Eckstroem, H. and R. Ludwig, "The Peak-Hopper: A New End-
 to-End Retransmission Timer for Reliable Unicast
 Transport", Apr 2004, <citeseerx.ist.psu.edu/viewdoc/
 download?doi=10.1.1.76.2748&rep=rep1&type=pdf>.

 [Path99] Allman, M. and V. Paxson, "On Estimating End-to-End
 Network Path Properties", Sep 1999,
 <http://www.icir.org/mallman/papers/estimation.ps>.

 [RFC1122] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

https://datatracker.ietf.org/doc/html/draft-blanton-tcp-reordering-00
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-1323bis-04
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-anumita-tcp-stronger-checksum-00
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-tcp-security-03
https://datatracker.ietf.org/doc/html/draft-sabatini-tcp-sack-01
http://www.cs.clemson.edu/~westall/853/linuxtcp.pdf
http://www.icir.org/mallman/papers/estimation.ps
https://datatracker.ietf.org/doc/html/rfc1122

Scheffenegger, et al. Expires April 25, 2013 [Page 20]

Internet-Draft Timestamp Negotiation October 2012

 [RFC2883] Floyd, S., Mahdavi, J., Mathis, M., and M. Podolsky, "An
 Extension to the Selective Acknowledgement (SACK) Option
 for TCP", RFC 2883, July 2000.

 [RFC2988] Paxson, V. and M. Allman, "Computing TCP's Retransmission
 Timer", RFC 2988, November 2000.

 [RFC3522] Ludwig, R. and M. Meyer, "The Eifel Detection Algorithm
 for TCP", RFC 3522, April 2003.

 [RFC4015] Ludwig, R. and A. Gurtov, "The Eifel Response Algorithm
 for TCP", RFC 4015, February 2005.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, August 2007.

 [RFC6013] Simpson, W., "TCP Cookie Transactions (TCPCT)", RFC 6013,
 January 2011.

 [RFC6247] Eggert, L., "Moving the Undeployed TCP Extensions RFC
1072, RFC 1106, RFC 1110, RFC 1145, RFC 1146, RFC 1379,
RFC 1644, and RFC 1693 to Historic Status", RFC 6247,

 May 2011.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298,
 June 2011.

Appendix A. Possible use cases

A.1. Timestamp clock rate exposure

 Today, each TCP host may use an arbitrary, locally defined clock
 source to derive the timestamp value from. Even though only a
 handful of typically used clock rates are implemented in common TCP
 stacks, this does not guarantee that any future stack will choose the
 same clock rate. This poses a problem for current state of the art
 heuristics, which try to determine the senders timestamp clock rate
 by pure passive observation of the TCP stream, and affects both
 advanced heuristics in the partner host of a TCP session, or
 arbitrarily located passive observation points to estimate TCP
 session parameters.

 The proposed mechanism would reveal this information explicitly, even
 though other environmental factors, such as the operation of a TCP
 stack in a virtualized environment, may result in some deviations in
 the actually used clock rate.

https://datatracker.ietf.org/doc/html/rfc2883
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc3522
https://datatracker.ietf.org/doc/html/rfc4015
https://datatracker.ietf.org/doc/html/rfc4987
https://datatracker.ietf.org/doc/html/rfc6013
https://datatracker.ietf.org/doc/html/rfc1072
https://datatracker.ietf.org/doc/html/rfc1072
https://datatracker.ietf.org/doc/html/rfc1106
https://datatracker.ietf.org/doc/html/rfc1110
https://datatracker.ietf.org/doc/html/rfc1145
https://datatracker.ietf.org/doc/html/rfc1146
https://datatracker.ietf.org/doc/html/rfc1379
https://datatracker.ietf.org/doc/html/rfc1644
https://datatracker.ietf.org/doc/html/rfc1693
https://datatracker.ietf.org/doc/html/rfc6247
https://datatracker.ietf.org/doc/html/rfc6298

Scheffenegger, et al. Expires April 25, 2013 [Page 21]

Internet-Draft Timestamp Negotiation October 2012

 High-speed and real-time stacks would be expected to operate with
 higher clock rates, while the observed variance in (known) timestamp
 clock vs. reference clock could help in determining between physical
 and virtual end hosts, for example.

A.2. Early spurious retransmit detection

 Using the provided timestamp negotiation scheme, clients utilizing
 slow running timestamp clocks can set aside a small number of least
 significant bits in the timestamps. These bits can be used to
 differentiate between original and retransmitted segments, even
 within the same timestamp clock tick (i.e. when RTT is shorter than
 the TCP timestamp clock interval). It is recommended to use only a
 single bit (mask = 1), unless the sender can also perform lost
 retransmission detection. Using more than 2 bits for this purpose is
 discouraged due to the diminishing probability of loosing
 retransmitted packets more than one time. A simple scheme could send
 out normal data segments with the so masked bits all cleared. Each
 advance of the timestamp clock also clears those bits again. When a
 segment is retransmitted without the timestamp clock increasing,
 these bits increased by one for each consecutive retry of the same
 segment, until the maximum value is reached. Newly sent segments
 (during the same clock interval) should maintain these bits, in order
 to maintain monotonically increasing values, even though compliant
 end hosts do not require this property. This scheme maintains
 monotonically increasing timestamp values - including the masked
 bits. Even without negotiating the immediate mirroring of timestamps
 (done by simultaneously doing timestamp capabilities negotiation, and
 selective acknowledgments), this extends the use of the Eifel
 Detection [RFC3522] and Eifel Response [RFC4015] algorithm to detect
 and react to spurious retransmissions under all circumstances. Also,
 currently experimental schemes such as ER-SRTO [Cho08] could be
 deployed without requiring the receiver to explicitly support that
 capability.

 Seg0 Seg1 Seg2 Seg3 Seg4
 TS00 TS00 TS00 TS00 TS00
 X

 Seg1 Seg5
 TS01 TS01

 Seg6 Seg7
 TS01 TS10

 Figure 4: timestamp for spurious retranmit detection

https://datatracker.ietf.org/doc/html/rfc3522
https://datatracker.ietf.org/doc/html/rfc4015

Scheffenegger, et al. Expires April 25, 2013 [Page 22]

Internet-Draft Timestamp Negotiation October 2012

 Masked bits are the 2nd digit, the timestamp value is represented by
 the first digit. The timestamp clock "ticks" between segment 6 and
 7.

A.3. Early lost retransmission detection

 During phases where multiple segments in short succession (but not
 necessarily successive segments) are lost, there is a high likelihood
 that at least one segment is retransmitted, while the cause of loss
 (i.e. congestion, fading) is still persisting. The best current
 algorithms can recover such a lost retransmission with a few
 constraints, for example, that the session has to have at least
 DupThresh more segments to send beyond the current recovery phase.
 During loss recovery, when a retransmission is lost again, currently
 the timestamp can also not be used as means of conveying additional
 information, to allow more rapid loss recovery while maintaining
 packet conservation principles. Only the timestamp of the last
 segment preceding the continuous loss will be reflected. Using the
 extended timestamp option negotiation together with selective
 acknowledgements, the receiver will immediately reflect the timestamp
 of the last seen segment. Using both SACK and TS information in
 conjunction with each other, a sender can infer the exact order in
 which original and retransmitted segments are received. This allows
 faster recovery from lost retransmissions while maintaining the
 principle of packet conservations and avoiding costly retransmission
 timeouts.

 The implementation can be done in combination with the masked bit
 approach described in the previous paragraph, or without. However,
 if the timestamp clock interval is lower than 1/2 RTT, both the
 original and the retransmitted segment may carry an identical
 timestamp. If the sender cannot discriminate between the original
 and the retransmitted segments, is must refrain from taking any
 action before such a determination can be made.

 In this example, masked bits are used, with a simple marking method.
 As the timestamp value of the retransmission itself is already
 different from the original segments, such an additional
 discrimination would not strictly be required here. The timestamp
 clock ticks in the first digit and the dupthresh value is 3.

Scheffenegger, et al. Expires April 25, 2013 [Page 23]

Internet-Draft Timestamp Negotiation October 2012

 Seg0 Seg1 Seg2 Seg3 Seg4 Seg5 Seg6 Seg7
 TS00 TS00 TS00 TS10 TS10 TS10 TS10 TS20
 X X X *

 Seg1 Seg2 Seg3 Seg4
 TS21 TS30 TS30 TS30
 X

 Seg1 Seg8 Seg9
 TS31 TS31 TS40

 Figure 5: timestamp under loss

 If Seg1,TS00 is lost twice, and Seg4,TS10 is also lost, the sender
 could resend Seg1 once more after observing dupthresh number of
 segments sent after the first retransmission of Seg1 being received
 (ie, when Seg4 is SACKed). However, there is an ambiguity between
 retransmitted segments and original segments, as the sender cannot
 know, if a SACK for one particular segment was due to the
 retransmitted segment, or a delayed original segment. The timestamp
 value will not help in this case, as per RFC1323 it will be held at
 TS00 for the entire loss recovery episode. Therefore, currently a
 sender has to assume that any SACKed segments may be due to delayed
 original sent segments, and can only resolve this conflict by
 injecting additional, previously unsent segments. Once dupthresh
 newly injected segments are SACKed, continuous loss (and not further
 delay) of Seg1 can safely be assumed, and that segment be resent.
 This approach is conservative but constrained by the requirement that
 additional segments can be sent, and thereby delayed in the response.

 With the simultaneous use of timestamp extended options together with
 selective acknowledgments, the receiver would immediately reflect
 back the timestamp of the last received segment. This allows the
 sender to discriminate between a SACK due to a delayed Seg4,TS10, or
 a SACK because of Seg4,TS30. Therefore, the appropriate decision
 (retransmission of Seg1 once more, or addressing the observed
 reordering/delay accordingly [I-D.blanton-tcp-reordering] can be
 taken with high confidence.

A.4. Integrity of the Timestamp value

 If the timestamp is used for congestion control purposes, an
 incentive exists for malicious receivers to reflect tampered
 timestamps, as demonstrated with some exploits [CUBIC].

 One way to address this is to not use timestamp information directly,
 but to keep state in the sender for each sent segment, and track the
 round trip time independent of sent timestamps. Such an approach has

https://datatracker.ietf.org/doc/html/rfc1323

Scheffenegger, et al. Expires April 25, 2013 [Page 24]

Internet-Draft Timestamp Negotiation October 2012

 the drawback, that it is not straightforward to make it work during
 loss recovery phases for those segments possibly lost (or reordered).
 In addition there is processing and memory overhead to maintain
 possibly extensive lists in the sender that need to be consulted with
 each ACK. Despite these drawbacks, this approach is currently
 implemented due to lack of alternatives (see [Linux], and [BSD10]).

 The preferred approach is that the sender MAY choose to protect
 timestamps from such modifications by including a fingerprint (secure
 hash of some kind) in some of the least significant bits. However,
 doing so prevents a receiver from using the timestamp for other
 purposes, unless the receiver has prior knowledge about this use of
 some bits in the timestamp value. Furthermore, strict monotonic
 increasing values are still to be maintained. That constraint
 restricts this approach somewhat and limits or inhibits the use of
 timestamp values for direct use by the receiver (i.e. for one-way
 delay variation measurement, as the hash bits would look like random
 noise in the delay measurement).

A.5. Disambiguation with slow Timestamp clock

 In addition, but somewhat orthogonal to maintaining timestamp value
 integrity, there is a use case when the sender does not support a
 timestamp clock interval that can guarantee unique timestamps for
 retransmitted segments. This may happen whenever the TCP timestamp
 clock interval is higher than the round-trip time of the path. For
 unambiguously identifying regular from retransmitted segments, the
 timestamp must be unique for otherwise identical segments. Reserving
 the least significant bits for this purpose allows senders with slow
 running timestamp clocks to make use of this feature. However,
 without modifying the receiver behavior, only limited benefits can be
 extracted from such an approach. Furthermore the use of this option
 has implications in the protection against wrapped sequence numbers
 (PAWS - [RFC1323]), as the more bits are set aside for tamper
 prevention, the faster the timestamp number space cycles.

 Using Timestamp capabilities to explicitly negotiate mask bits, and
 set aside a (low) number of least significant bits for the above
 listed purposes, allows a sender to use more reliable integrity
 checks. These masked bits are not to be considered part of the
 timestamp value, for the purposes described in [RFC1323] (i.e. PAWS)
 and subsequent heuristics using timestamp values (i.e. Eifel
 Detection), thereby lifting the strict requirement of always
 monotonically increasing timestamp values. However, care should be
 taken to not mask too many bits, for the reasons outlined in
 [RFC1323]. Using a mask value higher than 8 is therefore
 discouraged.

https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323

Scheffenegger, et al. Expires April 25, 2013 [Page 25]

Internet-Draft Timestamp Negotiation October 2012

 The reason for having 5 bits for the mask field nevertheless is to
 allow the implementation of this protocol in conjunction with TCP
 cookie transaction (TCPCT) extended timestamps [RFC6013]. That
 allows for nearly a quarter of a 128 bit timestamp to be set aside.

A.6. Masked timestamps as segment digest

 After making TCP alternate checksums historic (see [RFC6247]), there
 still remains a need to address increased corruption probabilities
 when segment sizes are increased (see
 [I-D.ietf-tcpm-anumita-tcp-stronger-checksum]).

 Utilizing a completely masked TSval field allows the sender to
 include a stronger CRC32, with semantics independent of the fixed TCP
 header fields. However, such a use would again exclude the use of
 PAWS on the receiver side, and a receiver would need to know the
 specifics of the digest for processing. It is assumed, that such a
 digest would only cover the data payload of a TCP segment. In order
 to allow disambiguation of retransmissions, a special TSval can be
 defined (e.g. TSval=0) which bypasses regular CRC processing but
 allows the identification of retransmitted segments.

 The full semantics of such a data-only CRC scheme are beyond the
 scope of this document, but would require a different version of the
 timestamp capability. Nevertheless, allowing the full TSval to
 remain unprocessed by the receiver for the purpose of PAWS even in
 version 0 could still allow the successful negotiation of sender-side
 enhancements such as loss recovery improvements (see Appendix A.2,
 and Appendix A.3).

 In effect, the masked portion of the timestamp value represent an
 unreliable out of band signal channel, that could also be used for
 other purposes than solely performing timestamp integrity checks (for
 example, this would allow ER-SRTO algorithms [Cho08]).

https://datatracker.ietf.org/doc/html/rfc6013
https://datatracker.ietf.org/doc/html/rfc6247

Scheffenegger, et al. Expires April 25, 2013 [Page 26]

Internet-Draft Timestamp Negotiation October 2012

Appendix B. Open Issues

 o The split between this draft and
 [I-D.trammell-tcpm-timestamp-interval] is cursory; additional
 separation of timestamp interval export may be necessary.

 o [bht] suggest changing the "versioning" construct to a
 "capabilities" construct, especially since two bits of versioning
 might as well be none. The base specification would then define
 the alternate semantics WRT SACK and could use capabilities to
 define further semantics.

 o [bht] does it make sense to move masking out of the base spec and
 into the 8 "unused" bits in "version 0" (in order to get more
 capabilities bits / "magic bits" to reduce erroneous negotiation)?

 o [bht] does it make sense to define SACK-echo as version/capability
 independent?

Appendix C. Revision history

 This appendix should be removed by the RFC Editor before publishing
 this document as a RFC.

 00 ... initial draft, early submission to meet deadline.

 01 ... refined draft, focusing only on those capabilities that have
 an immediate use case. Also excluding flags that can be substituted
 by other means (MIR - synergistic with SACK option only, RNG moved to

appendix A, BIA removed and the exponent bias set to a fixed value.
 Also extended other paragraphs.

 02 ... updated document after IETF80 - referrals to "timestamp
 options" were seen to be ambiguous with "timestamp option", and
 therefore replaced by "timestamp capabilities". Also, the document
 was reworked to better align with RFC4101. Removed SGN and increased
 FRAC to allow higher precision.

 03 ... removed references to "opaque" and "transparent". substituted
 "timestamp clock interval" for all instances of rate. Changed signal
 encoding to resemble a scale/value approach like what is done with
 Window Scaling. As added benefit, clock quality can be implicitly
 signaled, since multiple representations can map to idential time
 intervals. Added discussion around resilience against broken RFC1323
 implementations (Win95, Linux 2.3.41+), which deviate from expected
 Timestamp signaling behavior.

https://datatracker.ietf.org/doc/html/rfc4101
https://datatracker.ietf.org/doc/html/rfc1323

Scheffenegger, et al. Expires April 25, 2013 [Page 27]

Internet-Draft Timestamp Negotiation October 2012

 04 ... removed previous appendix A (range negotiation); minor edit to
 improve wording; moved Section 6 to the Appendix, and removed covert
 channels from the potential uses; added some text to discuss future
 versioning (compatible and incompatible variants); changed document
 structure; added guidance around PAWS; added pseudo-code examples
 (probably to be removed again)

 05 ... added new Open Issues section, added reference to separate
 interval draft, removed content on timestamp interval exposure which
 now appears in the interval draft. Removed pseudocode examples until
 they can be reworked on finalization of the mechanism, as they refer
 to fields which have changed / moved to the interval draft.

Scheffenegger, et al. Expires April 25, 2013 [Page 28]

Internet-Draft Timestamp Negotiation October 2012

Authors' Addresses

 Richard Scheffenegger
 NetApp, Inc.
 Am Euro Platz 2
 Vienna, 1120
 Austria

 Phone: +43 1 3676811 3146
 Email: rs@netapp.com

 Mirja Kuehlewind
 University of Stuttgart
 Pfaffenwaldring 47
 Stuttgart 70569
 Germany

 Email: mirja.kuehlewind@ikr.uni-stuttgart.de

 Brian Trammell
 Swiss Federal Institute of Technology Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Phone: +41 44 632 70 13
 Email: trammell@tik.ee.ethz.ch

Scheffenegger, et al. Expires April 25, 2013 [Page 29]

