
IKEv2 Mobility and Multihoming U. Schilcher
(mobike) H. Tschofenig
Internet-Draft F. Muenz
Expires: January 18, 2006 Siemens AG
 July 17, 2005

MOBIKE Extensions for PF_KEY
draft-schilcher-mobike-pfkey-extension-01.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 18, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 PF_KEY is a generic key management API used for communication between
 a trusted user level key management daemon and a key engine within
 the operating system. With the extension of IKEv2 for mobility and
 multihoming (MOBIKE) the existing capabilities of PF_KEY with regard
 to the creation, maintenance and deletion of security associations
 became insufficient. This document defines an extension to update an
 entity in the security association database. Additionally, it is

Schilcher, et al. Expires January 18, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft MOBIKE Extensions for PF_KEY July 2005

 necessary to reflect the newly offered integrity and encryption
 algorithms with IKEv2 in PF_KEY.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. IPsec SA Update . 5
4. SA Extension . 7
5. SPD Update . 9
6. Algorithm Types . 13
7. Traffic Selector Extensions 15
8. IANA Considerations . 16
9. Security Considerations 17
10. Acknowledgments . 18
11. References . 19
11.1 Normative References 19
11.2 Informative References 19

 Authors' Addresses . 20
 Intellectual Property and Copyright Statements 21

Schilcher, et al. Expires January 18, 2006 [Page 2]

Internet-Draft MOBIKE Extensions for PF_KEY July 2005

1. Introduction

 PF_KEY [1] is a generic key management API used for communication
 between a trusted user level key management daemon and a key engine
 within the operating system. With the extension of IKEv2 for
 mobility and multihoming (MOBIKE) [12] the existing capabilities of
 PF_KEY with regard to the creation, maintenance and deletion of
 security associations became insufficient. If an IKEv2
 implementation [13] supports MOBIKE, some additional interaction with
 the SAD and the SPD has to be provided. This includes additional
 operations on the security policy database (SPD), such as creation,
 update and deletion of SPD entries, and the possibility to update
 addresses for already existing SAs in the security association
 database (SAD). Since the PF_KEY interface in the current version
 does not support this operations, some extensions have to be defined.

 This document is partially based on PF_KEY extensions provided the
 KAME stack (see also [14]), which go beyond those described in [1].
 The authors think that it is necessary to update the original RFC

2367 PF_KEY version to reflect the state-of-the-art implementations.

https://datatracker.ietf.org/doc/html/rfc2367
https://datatracker.ietf.org/doc/html/rfc2367

Schilcher, et al. Expires January 18, 2006 [Page 3]

Internet-Draft MOBIKE Extensions for PF_KEY July 2005

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [2].

Schilcher, et al. Expires January 18, 2006 [Page 4]

Internet-Draft MOBIKE Extensions for PF_KEY July 2005

3. IPsec SA Update

 The first extension allows an IKEv2 implementation to update the
 addresses of an existing security association (SA) dynamically.
 Updating IPsec SAs is one of the side-effect of the IKE-SA update, a
 feature provided by MOBIKE [12]. PF_KEY defines a number of
 messages, namely SADB_GETSPI, SADB_UPDATE, SADB_ADD, SADB_DELETE,
 SADB_GET, SADB_ACQUIRE, SADB_REGISTER, SADB_EXPIRE, SADB_FLUSH and
 SADB_DUMP, for interaction between the key management daemon and the
 key engine in the operating system.

 In Section 3.1.2 of [1] an SADB_UPDATE message is described for
 updating all data stored for an existing SA. The only parameters,
 which cannot be updated using an SADB_UPDATE message, are the
 Security Parameter Index (SPI), the source and destination IP
 addresses. The reason for this design decision might be based on the
 IPsec SA identification, which included these parameters to uniquely
 select a given security association. This aspect can, however, be
 seen as historic. In IKEv2, without the use of MOBIKE, theses
 parameters would not change.

 To allow an IKEv2 key management daemon to change the addresses of an
 existing SA, a new message type has to be introduced:
 SADB_X_ADDRUPDATE. The notation of SADB_X is intended to outline an
 extention to the current API defined in [1]. Required symbols or
 structures in the PF_KEYv2 name space that are not described in [1]
 should therefore start with "SADB_X_" or "sadb_x_".

 The format of the SADB_X_ADDRUPDATE message is:

 <base, SA(*), address(SD), new_address(SD)>

 The kernel responds with a message of the form:

 <base, SA(*), address(SD), new_address(SD)>

 The meaning of the payloads of the message is the following: "base"
 defines the default message header, "SA(*)" identifies the security
 association to be updated, where (*) indicates that the SA payload
 contains only the SPI of it, "address(SD)" contains the source and
 the destination addresses of the existing SA and "new_address(SD)"
 the new source and destination addresses. For a more detailed
 description of the payloads see [1]. For the new_address(SD)
 attribute new payload types SADB_X_EXT_NEW_ADDRESS_SRC and
 SADB_X_EXT_NEW_ADDRESS_DST are needed. These payloads have the same
 content as the SADB_EXT_ADDRESS_SRC and SADB_EXT_ADDRESS_DST
 payloads.

Schilcher, et al. Expires January 18, 2006 [Page 5]

Internet-Draft MOBIKE Extensions for PF_KEY July 2005

 If the kernel receives a SADB_X_ADDRUPDATE message it immediately
 updates the SA identified by the SPI in the message. If more than
 one SA has to be updated, several SADB_X_ADDRUPDATE messages have to
 be sent since each SA payload can only contain one SPI.

 In an error case, like for instance a malformed message, the kernel
 will respond with:

 <base>

 The "errno" field of the message will provide further information
 about the error.

Schilcher, et al. Expires January 18, 2006 [Page 6]

Internet-Draft MOBIKE Extensions for PF_KEY July 2005

4. SA Extension

 In case a protected packet arrives with an unknown SPI value, for
 which no corresponding SA exists, the kernel actively sends a
 SADB_ACQUIRE to all listening applications. Using the information
 given in the SADB_ACQUIRE, the applications are able to quickly
 create a SA, while the triggering packet is still in the kernel
 buffer. The important information that are missing, are the traffic
 selector (TS) addresses, which are negotiated by IKEv2 using the TS
 payloads.

 Since the TS addresses are only stored inside the SPD, they have to
 be read from there (see section Section 5). For that purpose the ID,
 which identifies the SPD entry, to which the new SA corresponds, has
 to be known. The proposed way to pass that ID from the kernel to the
 IKEv2 implementation is in using the following extension of the
 PF_KEY interface.

 An SA2 payload has to be included in the SADB_ACQUIRE message, which
 has to following content:

 struct sadb_x_sa2 {
 uint16_t sadb_x_sa2_len;
 uint16_t sadb_x_sa2_exttype;
 uint8_t sadb_x_sa2_mode;
 uint8_t sadb_x_sa2_reserved1;
 uint16_t sadb_x_sa2_reserved2;
 uint32_t sadb_x_sa2_sequence;
 uint32_t sadb_x_sa2_reqid;
 } __attribute__((packed));
 /* sizeof(struct sadb_x_sa2) == 16 */

 sadb_x_sa2_len:

 The sadb_x_sa2_len contains the length of the structure in 8 Byte
 blocks.

 sadb_x_sa2_exttype:

 This field contains the value identifying the SADB_X_SA2 payload.

 sadb_x_sa2_mode:

 The sadb_x_sa2_mode field identifies the IPsec mode (i.e., tunnel
 or transport mode).

Schilcher, et al. Expires January 18, 2006 [Page 7]

Internet-Draft MOBIKE Extensions for PF_KEY July 2005

 sadb_x_sa2_sequence:

 The sadb_x_sa2_sequence field contains the ID of the corresponding
 SPD entry.

 sadb_x_sa2_reqid:

 The request ID for that message.

 This payload can also be added to SADB_ADD and SADB_UPDATE messages
 to tell the kernel whether the SA to be generated is a transport or a
 tunnel mode SA. If no SADB_X_SA2 payload is present, all SAs created
 will only support tunnel mode.

Schilcher, et al. Expires January 18, 2006 [Page 8]

Internet-Draft MOBIKE Extensions for PF_KEY July 2005

5. SPD Update

 For manipulating SPD entries, new PF_KEY messages have to be
 introduced (see also the KAME IPsec implementation).

 Note that specifying SPD updates is problematic since the KAME IPsec
 extensions have never been standardized. As a consequence, this text
 does not extend PF_KEY [1] itself.

 These message types are quite similar to the message types used to
 manipulate the entries in the SAD. The following new message types
 are needed:

 SADB_X_SPDADD:

 To add a new entry to the SPD, the key management daemon needs to
 send a SADB_X_SPDADD message to the kernel. The format of the
 message is:

 <base, policy, address(SD), [lifetime(HS)]>

 The kernel responds with a message of the form:

 <base, policy, address(SD), [lifetime(HSC)]>

 The meaning of the payloads, except for the policy payload, can be
 found in [1]. The policy payload contains all specific
 information about the new entry:

 struct sadb_x_policy {
 uint16_t sadb_x_policy_len;
 uint16_t sadb_x_policy_exttype;
 uint16_t sadb_x_policy_type;
 uint8_t sadb_x_policy_dir;
 uint8_t sadb_x_policy_reserved;
 uint32_t sadb_x_policy_id;
 uint32_t sadb_x_policy_reserved2;
 } __attribute__((packed));
 /* sizeof(struct sadb_x_policy) == 16 */

 The sadb_x_policy_len field contains the length of the payload in
 8 Byte blocks and sadb_x_policy_exttype contains the value
 SADB_X_SPDADD. The type of the SA is indicated by the
 sadb_x_policy_type field (e.g., IPsec SA) and the
 sadb_x_policy_dir field indicates the direction of the SA (the
 possibilities are IPSEC_DIR_INBOUND, IPSEC_DIR_OUTBOUND and
 IPSEC_DIR_FWD). The sadb_x_policy_id field contains a value which

Schilcher, et al. Expires January 18, 2006 [Page 9]

Internet-Draft MOBIKE Extensions for PF_KEY July 2005

 is unique for each SPD entry. It should be set to zero for a
 SADB_X_SPDADD message, since the kernel is going to fill this
 value in. This structure is followed by one or more ipsecrequest
 structures, one for each protocol used by the new SPD entry:

 struct sadb_x_ipsecrequest {
 uint16_t sadb_x_ipsecrequest_len;
 uint16_t sadb_x_ipsecrequest_proto;
 uint8_t sadb_x_ipsecrequest_mode;
 uint8_t sadb_x_ipsecrequest_level;
 uint16_t sadb_x_ipsecrequest_reserved1;
 uint32_t sadb_x_ipsecrequest_reqid;
 uint32_t sadb_x_ipsecrequest_reserved2;
 } __attribute__((packed));
 /* sizeof(struct sadb_x_ipsecrequest) == 16 */

 sadb_x_ipsecrequest_len:

 The sadb_x_ipsecrequest_len again contains the length of the
 structure including optional extensions, but this time in
 bytes.

 sadb_x_ipsecrequest_proto:

 The sadb_x_ipsecrequest_proto field identifies the protocol
 used for the current structure (e.g., ESP or AH).

 sadb_x_ipsecrequest_mode:

 The sadb_x_ipsecrequest_mode field identifies the IPsec mode
 (i.e., tunnel or transport mode), which can be different for
 each protocol.

 sadb_x_ipsecrequest_level:

 The sadb_x_ipsecrequest_level field contains one of the
 following values: 'default', 'use', 'require' or 'unique'. It
 defines how and when a corresponding SA is used. The value
 'use' means that an SA is used if available, otherwise the
 kernel keeps its normal operation. If 'require' is specified,
 it means that an SA is required for each packet matching to the
 policy entry. The value 'unique' has the same meaning as
 require except that the policy entry is bound to exactly one
 outbound SA.

Schilcher, et al. Expires January 18, 2006 [Page 10]

Internet-Draft MOBIKE Extensions for PF_KEY July 2005

 sadb_x_ipsecrequest_reqid:

 An ID for that SA can be passed to the kernel in the
 sadb_x_ipsecrequest_reqid field.

 If tunnel mode is specified, the sadb_x_ipsecrequest structure is
 followed by two sockaddr structures that define the tunnel
 endpoint addresses. In the case that transport mode is used, no
 additional addresses are specified. The next payloads of the
 message are the source and destination addresses of the
 communication to be protected. In tunnel mode it is possible to
 use address ranges instead of single address pairs to protect the
 traffic of whole subnets with one SPD entry. It is also possible
 to specify hard and soft lifetimes for policy entries, but these
 payloads are optional. In the response from the kernel a hard, a
 soft and a current lifetime are always present. The semantics are
 the same as for SAD entries (see [1]).

 SADB_X_SPDUPDATE:

 If an existing SPD entry should be updated, the IKEv2
 implementation sends a SADB_X_SPDUPDATE message to the kernel.
 This massage has the following format:

 <base, policy, address(SD),[lifetime(HS)]>

 The kernel responds with a message of the form:

 <base, policy, address(SD), [lifetime(HSC)]>

 The meaning of the payloads is the same as for the SADB_X_SPDADD
 message. All the content of a SPD entry can be changed except the
 sadb_x_policy_id field and the source/destination addresses, which
 are the inner addresses in tunnel mode. However, the tunnel
 endpoint addresses, which only exist in tunnel mode, can be
 changed using a SADB_X_SPDUPDATE message.

 SADB_X_SPDDELETE:

 A SADB_X_SPDDELETE message is sent to the kernel in the case that
 an existing SPD entry should be deleted. The entry is identified
 by the policy data and the source and destination address. The
 message has the following format:

Schilcher, et al. Expires January 18, 2006 [Page 11]

Internet-Draft MOBIKE Extensions for PF_KEY July 2005

 <base, policy, address(SD)>

 The kernel responds with a message of the form:

 <base, policy, address(SD), [lifetime(HSC)]>

 If no corresponding entry can be found, the kernel returns a
 message containing only the base header with the errno value set
 appropriately.

 SADB_X_SPDGET:

 If the content of an existing SPD entry is needed, a SADB_X_SPDGET
 message has to be sent to the kernel. The entry is identified by
 the sadb_x_policy_id entry in the sadb_x_policy structure. This
 id can obtained for example from a SADB_ACQUIRE message. The
 format of a SADB_X_SPDGET message is:

 <base, policy>

 The kernel responds with a message of the form:

 <base, policy, address(SD), [lifetime(HSC)]>

 If no entry has been found, the kernel returns an errno value in
 the base header.

 SADB_X_SPDDUMP:

 If the kernel receives a SADB_X_SPDDUMP message, it prints out all
 existing SPD entries on the console. The message format is:

 <base>

 SADB_X_SPDFLUSH:

 To delete all SPD entries a SADB_X_SPDFLUSH message has to be sent
 to the kernel. The format of the message is:

 <base>

Schilcher, et al. Expires January 18, 2006 [Page 12]

Internet-Draft MOBIKE Extensions for PF_KEY July 2005

6. Algorithm Types

 This document defines an IANA registry for the IKEv2 defined
 cryptographic algorithms and thereby extends the algorithms defined
 by PF_KEY (see Section 3.5 of [1]). The same set of algorithms is
 available to MOBIKE.

 The following algorithms have been defined already in PF_KEY, Section
3.5 of [1]):

 /* Integrity (Authentication) Algorithms */

 PF_KEY Algorithm Name Value Description
 ---------------------------+---------+-----------------------
 SADB_AALG_NONE | 0 | not used
 SADB_AALG_MD5HMAC | 2 | HMAC-MD5-96
 SADB_AALG_SHA1HMAC | 3 | HMAC-SHA-1-96

 /* Encryption Algorithms */

 PF_KEY Algorithm Name Value Description
 ---------------------------+---------+-----------------------
 SADB_EALG_NONE | 0 | not used
 SADB_EALG_DESCBC | 2 | DES in CBC mode
 SADB_EALG_3DESCBC | 3 | TripleDES in CBC mode
 SADB_EALG_NULL | 11 | NULL encryption

 The algorithm for SADB_AALG_MD5_HMAC is defined in [3]. The
 algorithm for SADB_AALG_SHA1HMAC is defined in [4]. The algorithm
 for SADB_EALG_DESCBC is defined in [5]. SADB_EALG_NULL is the NULL
 encryption algorithm, defined in [6]. The SADB_EALG_NONE value is
 not to be used in any security association except those which have no
 possible encryption algorithm in them (e.g. IPsec AH).

 This document enhances this list with the following algorithms:

Schilcher, et al. Expires January 18, 2006 [Page 13]

Internet-Draft MOBIKE Extensions for PF_KEY July 2005

 /* Integrity (Authentication) Algorithms */

 PF_KEY Algorithm Name Value Description
 ---------------------------+---------+-----------------------
 SADB_AALG_AESXCBCMAC | 4 | AES-XCBC-MAC-96
 SADB_X_AALG_SHA2_256HMAC | 5 | SHA2-HMAC-256
 SADB_X_AALG_SHA2_384HMAC | 6 | SHA2-HMAC-384
 SADB_X_AALG_SHA2_512HMAC | 7 | SHA2-HMAC-512
 SADB_X_AALG_RIPEMD160HMAC | 8 | HMAC-RIPEMD-160-96

 /* Encryption algorithms */

 PF_KEY Algorithm Name Value Description
 ---------------------------+---------+-----------------------
 SADB_EALG_AESCBC128 | 12 | AES with
 | | 128-bit keys in CBC mode
 SADB_X_EALG_CASTCBC | 6 | CAST in CBC mode
 SADB_X_EALG_BLOWFISHCBC | 7 | BLOWFISH in CBC mode
 SADB_X_EALG_AESCBC | 12 | AES in CBC mode
 SADB_X_EALG_AESCTR | 13 | AES Counter Mode

 AES-XCBC-MAC-96 is defined in [7] and AES with 128-bit keys in CBC
 mode is defined in [8]. AES counter mode has been defined for usage
 with IPsec ESP (see [9]). HMAC-RIPEMD-160-96 is defined in [10].

 Note that compression algorithms also need to be considered. This
 document does not list them, however.

Schilcher, et al. Expires January 18, 2006 [Page 14]

Internet-Draft MOBIKE Extensions for PF_KEY July 2005

7. Traffic Selector Extensions

 Information about Traffic Selectors should also be added to a updated
 version of PF_KEY [1]. This is left for future work.

Schilcher, et al. Expires January 18, 2006 [Page 15]

Internet-Draft MOBIKE Extensions for PF_KEY July 2005

8. IANA Considerations

 This document defines an IANA registry for the cryptographic
 algorithms used within PF_KEY:

 TBD

Schilcher, et al. Expires January 18, 2006 [Page 16]

Internet-Draft MOBIKE Extensions for PF_KEY July 2005

9. Security Considerations

 This document describes an extension to PF_KEY [1] and therefore
 inherits its security properties. Since this interface allows
 existing entries in the security association database (and the
 security policy database) to be created, updated or deleted it needs
 to be ensured that only trusted and privileged processes are allowed
 to this interface.

Schilcher, et al. Expires January 18, 2006 [Page 17]

Internet-Draft MOBIKE Extensions for PF_KEY July 2005

10. Acknowledgments

 The authors would like to thank Bao G. Phan for his initial PF_KEY
 implementation at US Naval Research Lab and the developers of FreeBSD
 for providing their PF_KEY implementation and for extending it for
 policy support, as well as R.J. Atkinson and Dan McDonald.

Schilcher, et al. Expires January 18, 2006 [Page 18]

Internet-Draft MOBIKE Extensions for PF_KEY July 2005

11. References

11.1 Normative References

 [1] McDonald, D., Metz, C., and B. Phan, "PF_KEY Key Management
 API, Version 2", RFC 2367, July 1998.

 [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", March 1997.

 [3] Madson, C. and R. Glenn, "The Use of HMAC-MD5-96 within ESP and
 AH", RFC 2403, November 1998.

 [4] Madson, C. and R. Glenn, "The Use of HMAC-SHA-1-96 within ESP
 and AH", RFC 2404, November 1998.

 [5] Madson, C. and N. Doraswamy, "The ESP DES-CBC Cipher Algorithm
 With Explicit IV", RFC 2405, November 1998.

 [6] Glenn, R. and S. Kent, "The NULL Encryption Algorithm and Its
 Use With IPsec", RFC 2410, November 1998.

 [7] Frankel, S. and H. Herbert, "The AES-XCBC-MAC-96 Algorithm and
 Its Use With IPsec", RFC 3566, September 2003.

 [8] Frankel, S., Glenn, R., and S. Kelly, "The AES-CBC Cipher
 Algorithm and Its Use with IPsec", RFC 3602, September 2003.

 [9] Housley, R., "Using Advanced Encryption Standard (AES) Counter
 Mode With IPsec Encapsulating Security Payload (ESP)",

RFC 3686, January 2004.

 [10] Keromytis, A. and N. Provos, "The Use of HMAC-RIPEMD-160-96
 within ESP and AH", RFC 2857, June 2000.

 [11] Hoffman, P., "Cryptographic Suites for IPsec",
draft-ietf-ipsec-ui-suites-06 (work in progress), April 2004.

11.2 Informative References

 [12] Kivinen, T. and H. Tschofenig, "Design of the MOBIKE protocol",
draft-ietf-mobike-design-02 (work in progress), February 2005.

 [13] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol",
draft-ietf-ipsec-ikev2-17 (work in progress), October 2004.

 [14] , ., "PF_KEY Extensions for IPsec Policy Management in KAME
 Stack, available at http://www.kame.net/newsletter/20021210/

https://datatracker.ietf.org/doc/html/rfc2367
https://datatracker.ietf.org/doc/html/rfc2403
https://datatracker.ietf.org/doc/html/rfc2404
https://datatracker.ietf.org/doc/html/rfc2405
https://datatracker.ietf.org/doc/html/rfc2410
https://datatracker.ietf.org/doc/html/rfc3566
https://datatracker.ietf.org/doc/html/rfc3602
https://datatracker.ietf.org/doc/html/rfc3686
https://datatracker.ietf.org/doc/html/rfc2857
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ui-suites-06
https://datatracker.ietf.org/doc/html/draft-ietf-mobike-design-02
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-17
http://www.kame.net/newsletter/20021210/

Schilcher, et al. Expires January 18, 2006 [Page 19]

Internet-Draft MOBIKE Extensions for PF_KEY July 2005

 (February 2005)", 12 2002.

Authors' Addresses

 Udo Schilcher
 Siemens AG
 Otto-Hahn-Ring 6
 Munich, Bayern 81739
 Germany

 Email: udo.schilcher@edu.uni-klu.ac.at

 Hannes Tschofenig
 Siemens AG
 Otto-Hahn-Ring 6
 Munich, Bayern 81739
 Germany

 Email: Hannes.Tschofenig@siemens.com

 Franz Muenz
 Siemens AG
 Otto-Hahn-Ring 6
 Munich, Bayern 81739
 Germany

 Email: Franz.Muenz@thirdwave.de

Schilcher, et al. Expires January 18, 2006 [Page 20]

Internet-Draft MOBIKE Extensions for PF_KEY July 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Schilcher, et al. Expires January 18, 2006 [Page 21]

