
Workgroup: Network Working Group

Internet-Draft:

draft-schinazi-masque-obfuscation-04

Published: 12 March 2021

Intended Status: Experimental

Expires: 13 September 2021

Authors: D. Schinazi

Google LLC

MASQUE Obfuscation

Abstract

This document describes MASQUE Obfuscation. MASQUE Obfuscation is a

mechanism that allows co-locating and obfuscating networking

applications behind an HTTPS web server. The currently prevalent

use-case is to allow running a proxy or VPN server that is

indistinguishable from an HTTPS server to any unauthenticated

observer. We do not expect major providers and CDNs to deploy this

behind their main TLS certificate, as they are not willing to take

the risk of getting blocked, as shown when domain fronting was

blocked. An expected use would be for individuals to enable this

behind their personal websites via easy to configure open-source

software.

This document is a straw-man proposal. It does not contain enough

details to implement the protocol, and is currently intended to

spark discussions on the approach it is taking. Discussion of this

work is encouraged to happen on the MASQUE IETF mailing list

masque@ietf.org or on the GitHub repository which contains the

draft: https://github.com/DavidSchinazi/masque-drafts.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 13 September 2021.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/masque@ietf.org
https://github.com/DavidSchinazi/masque-drafts
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Conventions and Definitions

2. Usage Scenarios

2.1. Protection from Network Providers

2.2. Protection from Web Servers

2.3. Onion Routing

3. Requirements

3.1. Invisibility of Usage

3.2. Invisibility of the Server

3.3. Fallback to HTTP/2 over TLS over TCP

4. Overview of the Mechanism

5. Connection Resumption

6. Path MTU Discovery

7. Operation over HTTP/2

8. Security Considerations

8.1. Traffic Analysis

8.2. Untrusted Servers

9. IANA Considerations

10. References

10.1. Normative References

10.2. Informative References

Acknowledgments

Design Justifications

Author's Address

1. Introduction

This document describes MASQUE Obfuscation. MASQUE Obfuscation is a

mechanism that allows co-locating and obfuscating networking

applications behind an HTTPS web server. The currently prevalent

use-case is to allow running a proxy or VPN server that is

indistinguishable from an HTTPS server to any unauthenticated

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

observer. We do not expect major providers and CDNs to deploy this

behind their main TLS certificate, as they are not willing to take

the risk of getting blocked, as shown when domain fronting was

blocked. An expected use would be for individuals to enable this

behind their personal websites via easy to configure open-source

software.

This document is a straw-man proposal. It does not contain enough

details to implement the protocol, and is currently intended to

spark discussions on the approach it is taking. Discussion of this

work is encouraged to happen on the MASQUE IETF mailing list

masque@ietf.org or on the GitHub repository which contains the

draft: https://github.com/DavidSchinazi/masque-drafts.

MASQUE Obfuscation is built upon the MASQUE protocol [MASQUE].

MASQUE Obfuscation leverages the efficient head-of-line blocking

prevention features of the QUIC transport protocol [QUIC] when

MASQUE Obfuscation is used in an HTTP/3 [HTTP3] server. MASQUE

Obfuscation can also run in an HTTP/2 server [HTTP2] but at a

performance cost.

1.1. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Usage Scenarios

There are currently multiple usage scenarios that can benefit from

MASQUE Obfuscation.

2.1. Protection from Network Providers

Some users may wish to obfuscate the destination of their network

traffic from their network provider. This prevents network providers

from using data harvested from this network traffic in ways the user

did not intend.

2.2. Protection from Web Servers

There are many clients who would rather not establish a direct

connection to web servers, for example to avoid location tracking.

The clients can do that by running their traffic through a MASQUE

Obfuscation server. The web server will only see the IP address of

the MASQUE Obfuscation server, not that of the client.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/masque@ietf.org
https://github.com/DavidSchinazi/masque-drafts

2.3. Onion Routing

Routing traffic through a MASQUE Obfuscation server only provides

partial protection against tracking, because the MASQUE Obfuscation

server knows the address of the client. Onion routing as it exists

today mitigates this issue for TCP/TLS. A MASQUE Obfuscation server

could allow onion routing over QUIC.

In this scenario, the client establishes a connection to the MASQUE

Obfuscation server, then through that to another MASQUE Obfuscation

server, etc. This creates a tree of MASQUE servers rooted at the

client. QUIC connections are mapped to a specific branch of the

tree. The first MASQUE Obfuscation server knows the actual address

of the client, but the other MASQUE Obfuscation servers only know

the address of the previous server. To assure reasonable privacy,

the path should include at least 3 MASQUE Obfuscation servers.

3. Requirements

This section describes the goals and requirements chosen for MASQUE

Obfuscation.

3.1. Invisibility of Usage

An authenticated client using MASQUE Obfuscation appears to

observers as a regular HTTPS client. Observers only see that HTTP/3

or HTTP/2 is being used over an encrypted channel. No part of the

exchanges between client and server may stick out. Note that traffic

analysis is discussed in Section 8.1.

3.2. Invisibility of the Server

To anyone without private keys, the server is indistinguishable from

a regular web server. It is impossible to send an unauthenticated

probe that the server would reply to differently than if it were a

normal web server.

3.3. Fallback to HTTP/2 over TLS over TCP

When QUIC is blocked, MASQUE Obfuscation can run over TCP and still

satisfy previous requirements. Note that in this scenario

performance may be negatively impacted.

4. Overview of the Mechanism

The server runs an HTTPS server on port 443, and has a valid TLS

certificate for its domain. The client has a public/private key

pair, and the server maintains a list of authorized MASQUE

Obfuscation clients, and their public key. (Alternatively, clients

can also be authenticated using a shared secret.) The client starts

¶

¶

¶

¶

¶

¶

by establishing a regular HTTPS connection to the server (HTTP/3

over QUIC or HTTP/2 over TLS 1.3 [TLS13] over TCP), and validates

the server's TLS certificate as it normally would for HTTPS. If

validation fails, the connection is aborted. At this point the

client can send regular unauthenticated HTTP requests to the server.

When it wishes to start MASQUE Obfuscation, the client uses HTTP

Transport Authentication [TRANSPORT-AUTH] to prove its possession of

its associated key. The client sends the Transport-Authentication

header alongside its MASQUE Negotiation request.

When the server receives the MASQUE Negotiation request, it

authenticates the client and if that fails responds with code "404

Not Found", making sure its response is the same as what it would

return for any unexpected POST request. If authentication succeeds,

the server sends its list of supported MASQUE applications and the

client can start using them.

5. Connection Resumption

Clients MUST NOT attempt to "resume" MASQUE Obfuscation state

similarly to how TLS sessions can be resumed. Every new QUIC or TLS

connection requires fully authenticating the client and server. QUIC

0-RTT and TLS early data MUST NOT be used with MASQUE Obfuscation as

they are not forward secure.

6. Path MTU Discovery

In the main deployment of this mechanism, QUIC will be used between

client and server, and that will most likely be the smallest MTU

link in the path due to QUIC header and authentication tag overhead.

The client is responsible for not sending overly large UDP packets

and notifying the server of the low MTU. Therefore PMTUD is

currently seen as out of scope of this document.

7. Operation over HTTP/2

We will need to define the details of how to run MASQUE over HTTP/2.

When running over HTTP/2, MASQUE uses the Extended CONNECT method to

negotiate the use of datagrams over an HTTP/2 stream [HTTP2-

TRANSPORT].

MASQUE Obfuscation implementations SHOULD discover that HTTP/3 is

available (as opposed to only HTTP/2) using the same mechanism as

regular HTTP traffic. This current standardized mechanism for this

is HTTP Alternative Services [ALT-SVC], but future mechanisms such

as [HTTPSSVC] can be used if they become widespread.

MASQUE Obfuscation implementations using HTTP/3 MUST support the

fallback to HTTP/2 to avoid incentivizing censors to block HTTP/3 or

QUIC.

¶

¶

¶

¶

¶

¶

¶

When the client wishes to use the "UDP Proxying" MASQUE application

over HTTP/2, the client opens a new stream with a CONNECT request to

the "masque-udp-proxy" protocol and then sends datagrams

encapsulated inside the stream with a two-byte length prefix in

network byte order. The target IP and port are sent as part of the

URL query. Resetting that stream instructs the server to release any

associated resources.

When the client wishes to use the "IP Proxying" MASQUE application

over HTTP/2, the client opens a new stream with a CONNECT request to

the "masque-ip-proxy" protocol and then sends IP datagrams with a

two byte length prefix. The server can inspect the IP datagram to

look for the destination address in the IP header.

8. Security Considerations

Here be dragons. TODO: slay the dragons.

8.1. Traffic Analysis

While MASQUE Obfuscation ensures that proxied traffic appears

similar to regular HTTP traffic, it doesn't inherently defeat

traffic analysis. However, the fact that MASQUE leverages QUIC

allows it to segment STREAM frames over multiple packets and add

PADDING frames to change the observable characteristics of its

encrypted traffic. The exact details of how to change traffic

patterns to defeat traffic analysis is considered an open research

question and is out of scope for this document.

When multiple MASQUE Obfuscation servers are available, a client can

leverage QUIC connection migration to seamlessly transition its end-

to-end QUIC connections by treating separate MASQUE Obfuscation

servers as different paths. This could afford an additional level of

obfuscation in hopes of rendering traffic analysis less effective.

8.2. Untrusted Servers

As with any proxy or VPN technology, MASQUE Obfuscation hides some

of the client's private information (such as who they are

communicating with) from their network provider by transferring that

information to the MASQUE server. It is paramount that clients only

use MASQUE Obfuscation servers that they trust, as a malicious actor

could easily setup a MASQUE Obfuscation server and advertise it as a

privacy solution in hopes of attracting users to send it their

traffic.

9. IANA Considerations

We will need to register the "masque-udp-proxy" and "masque-ip-

proxy" extended HTTP CONNECT protocols.

¶

¶

¶

¶

¶

¶

¶

[ALT-SVC]

[HTTP2]

[HTTP2-TRANSPORT]

[HTTP3]

[MASQUE]

[QUIC]

[RFC2119]

[RFC8174]

[TLS13]

[TRANSPORT-AUTH]

10. References

10.1. Normative References

Nottingham, M., McManus, P., and J. Reschke, "HTTP

Alternative Services", RFC 7838, DOI 10.17487/RFC7838,

April 2016, <https://www.rfc-editor.org/rfc/rfc7838>.

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

rfc/rfc7540>.

Kinnear, E. and T. Pauly, "Using HTTP/2 as a

Transport for Arbitrary Bytestreams", Work in Progress,

Internet-Draft, draft-kinnear-httpbis-http2-transport-02,

4 November 2019, <https://tools.ietf.org/html/draft-

kinnear-httpbis-http2-transport-02>.

Bishop, M., "Hypertext Transfer Protocol Version 3 (HTTP/

3)", Work in Progress, Internet-Draft, draft-ietf-quic-

http-34, 2 February 2021, <https://tools.ietf.org/html/

draft-ietf-quic-http-34>.

Schinazi, D., "The MASQUE Protocol", Work in Progress,

Internet-Draft, draft-schinazi-masque-protocol-02, 9

September 2020, <https://tools.ietf.org/html/draft-

schinazi-masque-protocol-02>.

Iyengar, J. and M. Thomson, "QUIC: A UDP-Based

Multiplexed and Secure Transport", Work in Progress,

Internet-Draft, draft-ietf-quic-transport-34, 14 January

2021, <https://tools.ietf.org/html/draft-ietf-quic-

transport-34>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>.

Schinazi, D., "HTTP Transport Authentication", Work

in Progress, Internet-Draft, draft-schinazi-httpbis-

https://www.rfc-editor.org/rfc/rfc7838
https://www.rfc-editor.org/rfc/rfc7540
https://www.rfc-editor.org/rfc/rfc7540
https://tools.ietf.org/html/draft-kinnear-httpbis-http2-transport-02
https://tools.ietf.org/html/draft-kinnear-httpbis-http2-transport-02
https://tools.ietf.org/html/draft-ietf-quic-http-34
https://tools.ietf.org/html/draft-ietf-quic-http-34
https://tools.ietf.org/html/draft-schinazi-masque-protocol-02
https://tools.ietf.org/html/draft-schinazi-masque-protocol-02
https://tools.ietf.org/html/draft-ietf-quic-transport-34
https://tools.ietf.org/html/draft-ietf-quic-transport-34
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8446

[HTTPSSVC]

[I-D.ietf-httpbis-http2-secondary-certs]

[I-D.pardue-httpbis-http-network-tunnelling]

[I-D.schwartz-httpbis-helium]

[I-D.sullivan-tls-post-handshake-auth]

[RFC8441]

[RFC8471]

transport-auth-05, 12 March 2021, <https://

tools.ietf.org/html/draft-schinazi-httpbis-transport-

auth-05>.

10.2. Informative References

Schwartz, B., Bishop, M., and E. Nygren, "Service binding

and parameter specification via the DNS (DNS SVCB and

HTTPSSVC)", Work in Progress, Internet-Draft, draft-ietf-

dnsop-svcb-httpssvc-03, 11 June 2020, <https://

tools.ietf.org/html/draft-ietf-dnsop-svcb-httpssvc-03>.

Bishop, M., Sullivan, N., and M. Thomson, "Secondary

Certificate Authentication in HTTP/2", Work in Progress,

Internet-Draft, draft-ietf-httpbis-http2-secondary-

certs-06, 14 May 2020, <https://tools.ietf.org/html/

draft-ietf-httpbis-http2-secondary-certs-06>.

Pardue, L., "HTTP-initiated Network Tunnelling (HiNT)",

Work in Progress, Internet-Draft, draft-pardue-httpbis-

http-network-tunnelling-01, 18 October 2018, <https://

tools.ietf.org/html/draft-pardue-httpbis-http-network-

tunnelling-01>.

Schwartz, B., "Hybrid Encapsulation Layer for IP and UDP

Messages (HELIUM)", Work in Progress, Internet-Draft,

draft-schwartz-httpbis-helium-00, 25 June 2018, <https://

tools.ietf.org/html/draft-schwartz-httpbis-helium-00>.

Sullivan, N., Thomson, M., and M. Bishop, "Post-Handshake

Authentication in TLS", Work in Progress, Internet-Draft,

draft-sullivan-tls-post-handshake-auth-00, 5 August 2016,

<https://tools.ietf.org/html/draft-sullivan-tls-post-

handshake-auth-00>.

McManus, P., "Bootstrapping WebSockets with HTTP/2", RFC

8441, DOI 10.17487/RFC8441, September 2018, <https://

www.rfc-editor.org/rfc/rfc8441>.

Popov, A., Ed., Nystroem, M., Balfanz, D., and J. Hodges,

"The Token Binding Protocol Version 1.0", RFC 8471, DOI

10.17487/RFC8471, October 2018, <https://www.rfc-

editor.org/rfc/rfc8471>.

https://tools.ietf.org/html/draft-schinazi-httpbis-transport-auth-05
https://tools.ietf.org/html/draft-schinazi-httpbis-transport-auth-05
https://tools.ietf.org/html/draft-schinazi-httpbis-transport-auth-05
https://tools.ietf.org/html/draft-ietf-dnsop-svcb-httpssvc-03
https://tools.ietf.org/html/draft-ietf-dnsop-svcb-httpssvc-03
https://tools.ietf.org/html/draft-ietf-httpbis-http2-secondary-certs-06
https://tools.ietf.org/html/draft-ietf-httpbis-http2-secondary-certs-06
https://tools.ietf.org/html/draft-pardue-httpbis-http-network-tunnelling-01
https://tools.ietf.org/html/draft-pardue-httpbis-http-network-tunnelling-01
https://tools.ietf.org/html/draft-pardue-httpbis-http-network-tunnelling-01
https://tools.ietf.org/html/draft-schwartz-httpbis-helium-00
https://tools.ietf.org/html/draft-schwartz-httpbis-helium-00
https://tools.ietf.org/html/draft-sullivan-tls-post-handshake-auth-00
https://tools.ietf.org/html/draft-sullivan-tls-post-handshake-auth-00
https://www.rfc-editor.org/rfc/rfc8441
https://www.rfc-editor.org/rfc/rfc8441
https://www.rfc-editor.org/rfc/rfc8471
https://www.rfc-editor.org/rfc/rfc8471

Acknowledgments

This proposal was inspired directly or indirectly by prior work from

many people. In particular, this work is related to [I-D.schwartz-

httpbis-helium] and [I-D.pardue-httpbis-http-network-tunnelling].

The mechanism used to run the MASQUE protocol over HTTP/2 streams

was inspired by [RFC8441]. Brendan Moran is to thank for the idea of

leveraging connection migration across MASQUE servers. The author

would also like to thank Nick Harper, Christian Huitema, Marcus

Ihlar, Eric Kinnear, Mirja Kuehlewind, Lucas Pardue, Tommy Pauly,

Zaheduzzaman Sarker, Ben Schwartz, and Christopher A. Wood for their

input.

The author would like to express immense gratitude to Christophe A.,

an inspiration and true leader of VPNs.

Design Justifications

Using an exported key as a nonce allows us to prevent replay attacks

(since it depends on randomness from both endpoints of the TLS

connection) without requiring the server to send an explicit nonce

before it has authenticated the client. Adding an explicit nonce

mechanism would expose the server as it would need to send these

nonces to clients that have not been authenticated yet.

The rationale for a separate MASQUE protocol stream is to allow

server-initiated messages. If we were to use HTTP semantics, we

would only be able to support the client-initiated request-response

model. We could have used WebSocket for this purpose but that would

have added wire overhead and dependencies without providing useful

features.

There are many other ways to authenticate HTTP, however the

authentication used here needs to work in a single client-initiated

message to meet the requirement of not exposing the server.

The current proposal would also work with TLS 1.2, but in that case

TLS false start and renegotiation must be disabled, and the extended

master secret and renegotiation indication TLS extensions must be

enabled.

If the server or client want to hide that HTTP/2 is used, the client

can set its ALPN to an older version of HTTP and then use the

Upgrade header to upgrade to HTTP/2 inside the TLS encryption.

The client authentication used here is similar to how Token Binding

[RFC8471] operates, but it has very different goals. MASQUE does not

use token binding directly because using token binding requires

sending the token_binding TLS extension in the TLS ClientHello, and

that would stick out compared to a regular TLS connection.

¶

¶

¶

¶

¶

¶

¶

¶

TLS post-handshake authentication [I-D.sullivan-tls-post-handshake-

auth] is not used by this proposal because that requires sending the

"post_handshake_auth" extension in the TLS ClientHello, and that

would stick out from a regular HTTPS connection.

Client authentication could have benefited from Secondary

Certificate Authentication in HTTP/2 [I-D.ietf-httpbis-http2-

secondary-certs], however that has two downsides: it requires the

server advertising that it supports it in its SETTINGS, and it

cannot be sent unprompted by the client, so the server would have to

request authentication. Both of these would make the server stick

out from regular HTTP/2 servers.

MASQUE proposes a new client authentication method (as opposed to

reusing something like HTTP basic authentication) because HTTP

authentication methods are conceptually per-request (they need to be

repeated on each request) whereas the new method is bound to the

underlying connection (be it QUIC or TLS). In particular, this

allows sending QUIC DATAGRAM frames without authenticating every

frame individually. Additionally, HMAC and asymmetric keying are

preferred to sending a password for client authentication since they

have a tighter security bound. Going into the design rationale,

HMACs (and signatures) need some data to sign, and to avoid replay

attacks that should be a fresh nonce provided by the remote peer.

Having the server provide an explicit nonce would leak the existence

of the server so we use TLS keying material exporters as they

provide us with a nonce that contains entropy from the server

without requiring explicit communication.

Author's Address

David Schinazi

Google LLC

1600 Amphitheatre Parkway

Mountain View, California 94043,

United States of America

Email: dschinazi.ietf@gmail.com

¶

¶

¶

mailto:dschinazi.ietf@gmail.com

	MASQUE Obfuscation
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Definitions

	2. Usage Scenarios
	2.1. Protection from Network Providers
	2.2. Protection from Web Servers
	2.3. Onion Routing

	3. Requirements
	3.1. Invisibility of Usage
	3.2. Invisibility of the Server
	3.3. Fallback to HTTP/2 over TLS over TCP

	4. Overview of the Mechanism
	5. Connection Resumption
	6. Path MTU Discovery
	7. Operation over HTTP/2
	8. Security Considerations
	8.1. Traffic Analysis
	8.2. Untrusted Servers

	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Acknowledgments
	Design Justifications
	Author's Address

