
QUIC Working Group D. Schinazi
Internet-Draft Google LLC
Intended status: Informational E. Rescorla
Expires: March 13, 2020 Mozilla
 September 10, 2019

Compatible Version Negotiation for QUIC
draft-schinazi-quic-version-negotiation-01

Abstract

 QUIC does not provide a complete version negotiation mechanism but
 instead only provides a way for the server to indicate that the
 version the client offered is unacceptable. This document describes
 a version negotiation mechanism that allows a client and server to
 select from a set of QUIC versions which share a compatible Initial
 format without incurring an extra round trip.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 13, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Schinazi & Rescorla Expires March 13, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft QUIC Compatible VN September 2019

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Conventions and Definitions 2
3. Version Negotiation Mechanism 3
4. Compatible Versions Transport Parameter 3
5. Compatible Versions . 4
6. Security Considerations 4
7. IANA Considerations . 4
8. Normative References . 5

 Authors' Addresses . 5

1. Introduction

 QUIC [I-D.ietf-quic-transport] does not provide a complete version
 negotiation (VN) mechanism; the VN packet only allows the server to
 indicate that the version the client offered is unacceptable, but
 doesn't allow the client to safely make use of that information. In
 principle the VN packet could be part of a mechanism to allow two
 QUIC implementations to negotiate between two totally disjoint
 versions of QUIC (at the cost of an extra round trip). However,
 experience with negotiation of previous IETF protocols indicates that
 this is probably not the most common scenario:

 1. Implementations do not generally want to incur an extra round
 trip to negotiate versions.

 2. Most incremental versions are broadly similar to the the previous
 version, and so the version negotiation mechanism can be built on
 the assumption that the version advertisement and selection is
 common to the versions to be negotiated.

 This specification describes a simple version negotiation mechanism
 which exploits property (2) and can negotiate between the set of
 "compatible" versions in a single round trip. Negotiation between
 totally disjoint versions - if it ever proves to be necessary - is
 left as a topic for future work.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Schinazi & Rescorla Expires March 13, 2020 [Page 2]

Internet-Draft QUIC Compatible VN September 2019

3. Version Negotiation Mechanism

 The mechanism defined in this document is straightforward: the client
 maintains a list of QUIC versions it supports, ordered by preference.
 Its Initial packet is sent using the version that the server is most
 likely to support (in practice, this will generally be the oldest
 version the client supports); that Initial packet then lists all of
 the other compatible versions (Section 5) that the client supports in
 the supported_compatible_versions field of its transport parameters
 (Section 4). The server then selects its preferred version and
 responds with that version in all of its future packets (except for
 Retry, as below). It also inserts the selected version in the
 negotiated_compatible_version field of its transport parameters.

 The server MUST NOT select a version not offered by the client. The
 client MUST validate that the version in the server's packets is one
 of the versions that it offered and that it matches the value in the
 server's transport parameters.

 If the server sends a Retry, it MUST use the same version that the
 client provided in its Initial. Version negotiation takes place
 after the retry cycle is over.

 In order for negotiation to complete successfully, the client's
 Initial packet (and initial CRYPTO frames) MUST be interpretable by
 the server. This implies that servers must retain the ability to
 process the Initial packet from older versions as long as they are
 reasonably popular. This is not generally an issue in practice as
 long as the the overall structure of the protocol remains similar.

 If the server receives an Initial packet with a version it does not
 understand this will cause a connection failure and the server SHOULD
 send a Version Negotiation packet as defined in
 [I-D.ietf-quic-transport].

4. Compatible Versions Transport Parameter

 This document adds a new transport parameter, CompatibleVersions:

 struct {
 select (Handshake.msg_type) {
 case client_hello:
 QuicVersion supported_compatible_versions<4..2^8-4>;

 case encrypted_extensions:
 QuicVersion negotiated_compatible_version;
 }
 } CompatibleVersions;

Schinazi & Rescorla Expires March 13, 2020 [Page 3]

Internet-Draft QUIC Compatible VN September 2019

 The client's "supported_compatible_versions" parameter lists the
 versions it supports in decreasing order of preference. The server's
 "negotiated_compatible_version" parameter lists the version it has
 selected. If the client does not send this transport parameter, the
 server MUST assume that the client only supports the version it used
 for the Initial packet and MUST NOT send its own parameter.

 Clients MAY include versions following the pattern 0x?a?a?a?a in
 their supported_compatible_versions. Those versions are reserved to
 exercise version negotiation (see the Versions section of
 [I-D.ietf-quic-transport]), and MUST be ignored by the server when
 parsing supported_compatible_versions.

5. Compatible Versions

 Two versions of QUIC A and B are "compatible" if a version A Initial
 can be used to negotiate version B and vice versa. The most common
 scenario is a sequence of versions 1, 2, 3, etc. in which all the
 Initial packets have the same basic structure but might include
 specific extensions (especially inside the crypto handshake) that are
 only meaningful in some subset of versions and are ignored in others.
 Note that it is not possible to add new frame types in Initial
 packets because QUIC frames do not use a self-describing encoding, so
 unrecognized frame types cannot be parsed or ignored (see the
 Extension Frames section of [I-D.ietf-quic-transport]).

 When a new version of QUIC is defined, it is assumed to not be
 compatible with any other version unless otherwise specified.
 Implementations MUST NOT assume compatibility between version unless
 explicitly specified.

6. Security Considerations

 The crypto handshake is already required to guarantee agreement on
 the supported parameters, so negotiation between compatible versions
 will have the security of the weakest common version.

 The requirement that versions not be assumed compatible mitigates the
 possibility of cross-protocol attacks, but more analysis is still
 needed here.

7. IANA Considerations

 If this document is approved, IANA shall assign the identifier TBD
 for the "compatible_versions" transport parameter.

Schinazi & Rescorla Expires March 13, 2020 [Page 4]

Internet-Draft QUIC Compatible VN September 2019

8. Normative References

 [I-D.ietf-quic-transport]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-22 (work
 in progress), July 2019.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Authors' Addresses

 David Schinazi
 Google LLC
 1600 Amphitheatre Parkway
 Mountain View, California 94043
 United States of America

 Email: dschinazi.ietf@gmail.com

 Eric Rescorla
 Mozilla

 Email: ekr@rtfm.com

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-22
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174

Schinazi & Rescorla Expires March 13, 2020 [Page 5]

