
QUIC Working Group D. Schinazi
Internet-Draft Google LLC
Intended status: Informational E. Rescorla
Expires: May 7, 2020 Mozilla
 November 04, 2019

Compatible Version Negotiation for QUIC
draft-schinazi-quic-version-negotiation-02

Abstract

 QUIC does not provide a complete version negotiation mechanism but
 instead only provides a way for the server to indicate that the
 version the client offered is unacceptable. This document describes
 a version negotiation mechanism that allows a client and server to
 select a mutually supported version. Optionally, if the original and
 negotiated version share a compatible Initial format, the negotiation
 can take place without incurring an extra round trip.

 Discussion of this work is encouraged to happen on the QUIC IETF
 mailing list quic@ietf.org [1] or on the GitHub repository which
 contains the draft: http://github.com/ekr/draft-schinazi-quic-

version-negotiation [2].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Schinazi & Rescorla Expires May 7, 2020 [Page 1]

http://github.com/ekr/draft-schinazi-quic-version-negotiation
http://github.com/ekr/draft-schinazi-quic-version-negotiation
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft QUIC Compatible VN November 2019

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Conventions and Definitions 3
3. Version Negotiation Mechanism 3
4. Version Negotiation Transport Parameter 4
5. Version Downgrade Prevention 6
6. Supported Versions . 7
7. Compatible Versions . 7
8. Security Considerations 7
9. IANA Considerations . 7
10. References . 8
10.1. Normative References 8
10.2. URIs . 8

 Authors' Addresses . 8

1. Introduction

 QUIC [QUIC] does not provide a complete version negotiation (VN)
 mechanism; the VN packet only allows the server to indicate that the
 version the client offered is unacceptable, but doesn't allow the
 client to safely make use of that information to create a new
 connection with a mutually supported version. With proper safety
 mechanisms in place, the VN packet can be part of a mechanism to
 allow two QUIC implementations to negotiate between two totally
 disjoint versions of QUIC, at the cost of an extra round trip.
 However, it is beneficial to avoid that cost whenever possible,
 especially given that most incremental versions are broadly similar
 to the the previous version.

 This specification describes a simple version negotiation mechanism
 which optionally leverages similarities between versions and can
 negotiate between the set of "compatible" versions in a single round
 trip.

 Discussion of this work is encouraged to happen on the QUIC IETF
 mailing list quic@ietf.org [3] or on the GitHub repository which

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Schinazi & Rescorla Expires May 7, 2020 [Page 2]

Internet-Draft QUIC Compatible VN November 2019

 contains the draft: http://github.com/ekr/draft-schinazi-quic-
version-negotiation [4].

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Version Negotiation Mechanism

 The mechanism defined in this document is straightforward: the client
 maintains a list of QUIC versions it supports, ordered by preference.
 Its Initial packet is sent using the version that the server is most
 likely to support (in the absence of other information, this will
 often be the oldest version the client supports); that Initial packet
 then lists all compatible versions (Section 7) that the client
 supports in the Compatible Version fields of its transport parameters
 (Figure 1). Note that the client's compatible version list always
 contains its currently attempted version.

 o If the server supports one of the client's compatible versions, it
 selects a version it supports from the client's compatible version
 list. It then responds with that version in all of its future
 packets (except for Retry, as below).

 o If the server does not support any of the client's compatible
 versions, it sends a Version Negotiation packet listing all the
 versions it supports.

 If the server leverages compatible versions and responds with a
 different version from the client's currently attempted version, it
 MUST NOT select a version not offered by the client. The client MUST
 validate that the version in the server's packets is one of the
 compatible versions that it offered and that it matches the
 negotiated version in the server's transport parameters.

 If the server sends a Retry, it MUST use the same version that the
 client provided in its Initial. Version negotiation takes place
 after the retry cycle is over.

 In order for negotiation to complete successfully, the client's
 Initial packet (and initial CRYPTO frames) MUST be interpretable by
 the server. This implies that servers must retain the ability to
 process the Initial packet from older versions as long as they are

http://github.com/ekr/draft-schinazi-quic-version-negotiation
http://github.com/ekr/draft-schinazi-quic-version-negotiation
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Schinazi & Rescorla Expires May 7, 2020 [Page 3]

Internet-Draft QUIC Compatible VN November 2019

 reasonably popular. This is not generally an issue in practice as
 long as the the overall structure of the protocol remains similar.

4. Version Negotiation Transport Parameter

 This document registers a new transport parameter,
 "version_negotiation". The contents of this transport parameter
 depend on whether the client or server is sending it, and are shown
 below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Currently Attempted Version (32) |
 +-+
 | Previously Attempted Version (32) |
 +-+
 | Received Negotiation Version Count (i) ...
 +-+
 | [Received Negotiation Version 1 (32)] |
 +-+
 | [Received Negotiation Version 2 (32)] |
 +-+
 ...
 +-+
 | [Received Negotiation Version N (32)] |
 +-+
 | Compatible Version Count (i) ...
 +-+
 | Compatible Version 1 (32) |
 +-+
 | [Compatible Version 2 (32)] |
 +-+
 ...
 +-+
 | [Compatible Version N (32)] |
 +-+

 Figure 1: Client Transport Parameter Format

 The content of each field is described below:

 Currently Attempted Version: The version that the client is using in
 this Initial. This field MUST be equal to the value of the
 Version field in the long header that carries this transport
 parameter.

Schinazi & Rescorla Expires May 7, 2020 [Page 4]

Internet-Draft QUIC Compatible VN November 2019

 Previously Attempted Version: If the client is sending this Initial
 in response to a Version Negotiation packet, this field contains
 the version that the client used in the previous Initial packet
 that triggered the version negotiation packet. If the client did
 not receive a Version Negotiation packet, this field SHALL be all-
 zeroes.

 Received Negotiation Version Count: A variable-length integer
 specifying the number of Received Negotiation Version fields
 following it. If the client is sending this Initial in response
 to a Version Negotiation packet, the subsequent versions SHALL
 include all the versions from that Version Negotiation packet in
 order, even if they are not supported by the client (even if the
 versions are reserved). If the client has not received a Version
 Negotiation packet on this connection, this field SHALL be 0.

 Compatible Version Count: A variable-length integer specifying the
 number of Compatible Version fields following it. The client
 lists all versions compatible with Currently Attempted Version in
 the subsequent Compatible Version fields, ordered by descending
 preference. Note that the version in the Currently Attempted
 Version field MUST be included in the Compatible Version list to
 allow the client to communicate the currently attempted version's
 preference.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Negotiated Version (32) |
 +-+
 | Supported Version Count (i) ...
 +-+
 | Supported Version 1 (32) |
 +-+
 | [Supported Version 2 (32)] |
 +-+
 ...
 +-+
 | [Supported Version N (32)] |
 +-+

 Figure 2: Server Transport Parameter Format

 The content of each field is described below:

 Negotiated Version: The version that the server chose to use for the
 connection. This field SHALL be equal to the value of the Version
 field in the long header that carries this transport parameter.

Schinazi & Rescorla Expires May 7, 2020 [Page 5]

Internet-Draft QUIC Compatible VN November 2019

 Supported Version Count: A variable-length integer specifying the
 number of Supported Version fields following it. The server
 encodes all versions it supports in the subsequent list, ordered
 by descending preference. Note that the version in the Negotiated
 Version field MUST be included in the Supported Version list.

 Clients MAY include versions following the pattern "0x?a?a?a?a" in
 their Compatible Version list, and the server in their Supported
 Version list. Those versions are reserved to exercise version
 negotiation (see the Versions section of [QUIC]), and MUST be ignored
 when parsing these fields. On the other hand, the Received
 Negotiation Version list MUST be identical to the received Version
 Negotiation packet, so clients MUST NOT add or remove reserved
 version from that list.

5. Version Downgrade Prevention

 Clients MUST ignore any received Version Negotiation packets that
 contain the version that they initially attempted.

 Servers MUST validate that the client's "Currently Attempted Version"
 matches the version in the long header that carried the transport
 parameter. Similarly, clients MUST validate that the server's
 "Negotiated Version" matches the long header version. If an
 endpoint's validation fails, it MUST close the connection with an
 error of type VERSION_NEGOTIATION_ERROR.

 When a server parses the client's "version_negotiation" transport
 parameter, if the "Received Negotiation Version Count" is not zero,
 the server MUST validate that it could have sent the Version
 Negotation packet described by the client in response to an Initial
 of version "Previously Attempted Version". In particular, the server
 MUST ensure that there are no versions that it supports that are
 absent from the Received Negotiation Versions, and that the ordering
 matches the server's preference. If this validation fails, the
 server MUST close the connection with an error of type
 VERSION_NEGOTIATION_ERROR. This mitigates an attacker's ability to
 forge Version Negotiation packets to force a version downgrade.

 If a server operator is progressively deploying a new QUIC version
 throughout its fleet, it MAY perform a two-step process where it
 first progressively adds support for the new version, but without
 enforcing its presence in Received Negotiation Versions. Once all
 servers have been upgraded, the second step is to start enforcing
 that the new version is present in Received Negotiation Versions.
 This opens connections to version downgrades during the upgrade
 window, since those could be due to clients communicating with both
 upgraded and non-upgraded servers.

Schinazi & Rescorla Expires May 7, 2020 [Page 6]

Internet-Draft QUIC Compatible VN November 2019

6. Supported Versions

 The server's Supported Version list allows it to communicate the full
 list of versions it supports to the client. In the case where
 clients initially attempt connections with the oldest version they
 support, this allows them to be notified of more recent versions the
 server supports. If the client notices that the server supports a
 version that is more preferable that the one initially attempted by
 default, the client SHOULD cache that information and attempt the
 preferred version in subsequent connections.

7. Compatible Versions

 Two versions of QUIC A and B are said to be "compatible" if a version
 A Initial can be used to negotiate version B and vice versa. The
 most common scenario is a sequence of versions 1, 2, 3, etc. in which
 all the Initial packets have the same basic structure but might
 include specific extensions (especially inside the crypto handshake)
 that are only meaningful in some subset of versions and are ignored
 in others. Note that it is not possible to add new frame types in
 Initial packets because QUIC frames do not use a self-describing
 encoding, so unrecognized frame types cannot be parsed or ignored
 (see the Extension Frames section of [QUIC]).

 When a new version of QUIC is defined, it is assumed to not be
 compatible with any other version unless otherwise specified.
 Implementations MUST NOT assume compatibility between version unless
 explicitly specified.

8. Security Considerations

 The crypto handshake is already required to guarantee agreement on
 the supported parameters, so negotiation between compatible versions
 will have the security of the weakest common version.

 The requirement that versions not be assumed compatible mitigates the
 possibility of cross-protocol attacks, but more analysis is still
 needed here.

 The presence of the Attempted Version and Negotiated Version fields
 mitigates an attacker's ability to forge packets by altering the
 version.

9. IANA Considerations

 If this document is approved, IANA shall assign the identifier 0x73DB
 for the "version_negotiation" transport parameter from the QUIC
 Transport Parameter Registry and the identifier 0x53F8 for

Schinazi & Rescorla Expires May 7, 2020 [Page 7]

Internet-Draft QUIC Compatible VN November 2019

 "VERSION_NEGOTIATION_ERROR" from the QUIC Transport Error Codes
 registry.

10. References

10.1. Normative References

 [QUIC] Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-23 (work
 in progress), September 2019.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

10.2. URIs

 [1] mailto:quic@ietf.org

 [2] http://github.com/ekr/draft-schinazi-quic-version-negotiation

 [3] mailto:quic@ietf.org

 [4] http://github.com/ekr/draft-schinazi-quic-version-negotiation

Authors' Addresses

 David Schinazi
 Google LLC
 1600 Amphitheatre Parkway
 Mountain View, California 94043
 United States of America

 Email: dschinazi.ietf@gmail.com

 Eric Rescorla
 Mozilla

 Email: ekr@rtfm.com

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-23
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
http://github.com/ekr/draft-schinazi-quic-version-negotiation
http://github.com/ekr/draft-schinazi-quic-version-negotiation

Schinazi & Rescorla Expires May 7, 2020 [Page 8]

