
Network Working Group C. Schmitt
Internet-Draft B. Stiller
Intended status: Standards Track University of Zurich
Expires: June 3, 2017 B. Trammell
 ETH Zurich
 November 30, 2016

TinyIPFIX for smart meters in constrained networks
draft-schmitt-ipfix-tiny-01

Abstract

 This document specifies the TinyIPFIX protocol that serves for
 transmitting smart metering data in 6LoWPAN networks [RFC4944].
 TinyIPFIX is derived from IPFIX [RFC7101] and adopted to the needs of
 constrained networks. This documents specifies how the TinyIPFIX
 Data and Template Records are transmitted in 6LoWPAN networks and how
 TinyIPFIX data can be converted into unTinyIPFIX data in a proxy
 device.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 3, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Schmitt, et al. TinyIPFIX [Page 1]

https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc7101
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TinyIPFIX November 2016

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Document structure 3

2. Terminology . 3
3. Constraints . 6
3.1. Hardware constraints 6
3.2. Energy constraints 6
3.3. Packet size constraints 7
3.4. Transport protocol constraints 7

4. Application scenarios for TinyIPFIX 8
5. Architecture for TinyIPFIX 9
6. TinyIPFIX Message Format 11
6.1. TinyIPFIX Message Header 12
6.2. TinyIPFIX Set . 16
6.3. TinyIPFIX Template Record Format 17
6.4. Field Specifier Format 18
6.5. TinyIPFIX Data Record Format 19

7. TinyIPFIX Mediation . 19
7.1. Expanding the Message header 21
7.2. Translating the Set Headers 22
7.3. Expanding the Template Record Header 23

8. Template Management . 23
8.1. TCP / SCTP . 23
8.2. UDP . 23

9. Security considerations 24
10. IANA Considerations . 24
11. Acknowledgments . 24
12. References . 24
12.1. Norminative References 24
12.2. Informative References 25

 Authors' Addresses . 26

1. Introduction

 Smart meters that form a constrained wireless network need an
 application layer protocol that allows the efficient transmission of
 metering data from the devices to some kind of central analysis
 device. The meters used to build such networks are usually equipped
 with low-cost and low-power hardware. This leads to constraints in
 computational capacities, available memory and networking resources.

Schmitt, et al. TinyIPFIX [Page 2]

Internet-Draft TinyIPFIX November 2016

 The devices are often battery powered and are expected to run for a
 long time without having the possibility to re-charge themselves. In
 order to save energy, smart meters often power off their wireless
 networking device. Hence, they don't have a steady network
 connection, but are only part of the wireless network as needed when
 there is data that needs to be exported. A push protocol like
 TinyIPFIX, where data is transmitted autonomically from the meters to
 one or more collectors, is suitable for reporting metering data in
 such networks.

 TinyIPFIX is derived from IPFIX [RFC7101] and therefore inherits most
 of its properties. One of these properties is the separation of data
 and its data description by encoding the former in Data Sets and the
 latter in Template Sets.

 Transforming TinyIPFIX to IPFIX as per [RFC7101] is very simple and
 can be done on the border between the constrained network and the
 more general network. The transformation between one form of IPFIX
 data into another is known as IPFIX Mediation [RFC5982]. Hence,
 smart metering networks that are based on TinyIPFIX can be easily
 integrated into an existing IPFIX measurement infrastructure.

1.1. Document structure

Section 2 introduces the terminology used in this draft. Afterwards,
 hardware and software constraints in constrained networks, which will
 motivate our modifications to the IPFIX protocol, are discussed in

Section 3. Section 4 describes the application scenarios and
Section 5 describes the architecture for TinyIPFIX. Section 6

 defines the TinyIPFIX protocol itself and discusses the differences
 between TinyIPFIX and IPFIX. The Mediation Process from TinyIPFIX to
 IPFIX is described in Section 7. Section 8 defines the process of
 Template Management on the Exporter and the Collector. Section 9 and

Section 10 discuss the security and IANA considerations for
 TinyIPFIX.

2. Terminology

 The term smart meter is used to refer to constrained devices like
 wireless senor nodes, motes or any other kind of small constraint
 device that can be part of a network that is based on IEEE802.15.4
 and 6LoWPAN [RFC4944].

 Most of the terms used in this draft are defined in [RFC7101]. All
 these terms are written with their first letter being capitalized.
 Most of the terms that are defined for IPFIX can be used to describe
 TinyIPFIX. The term "TinyIPFIX" is used in front of the IPFIX term
 to distinguish between the IPFIX version and the TinyIPFIX version.

https://datatracker.ietf.org/doc/html/rfc7101
https://datatracker.ietf.org/doc/html/rfc7101
https://datatracker.ietf.org/doc/html/rfc5982
https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc7101

Schmitt, et al. TinyIPFIX [Page 3]

Internet-Draft TinyIPFIX November 2016

 This draft uses the term IPFIX to refer to IPFIX as per RFC 7101 and
 the term TinyIPFIX for the IPFIX version defined in this draft.

 The terms IPFIX Message, IPFIX Device, Set, Data Set, Template Set,
 Data Record, Template Record, Collecting Process, Collector,
 Exporting Process and Exporter are defined as in [RFC7101]. The term
 IPFIX Mediator is defined in [RFC5982]. The terms Intermediate
 Process, IPFIX Proxy, IPFIX Concentrator are defined in [RFC6183].

 All these terms above have been adapted from the IPFIX definitions.
 As they keep a similar notion but in a different context of
 constrained networks, the term "TinyIPFIX" now complements the
 defined terms.

 TinyIPFIX Exporting Process

 The TinyIPFIX Exporting Process is a process that exports
 TinyIPFIX Records.

 TinyIPFIX Exporter

 A TinyIPFIX Exporter is a smart metering device that contains at
 least one TinyIPFIX Exporting Process.

 TinyIPFIX Collecting Process

 The TinyIPFIX Collecting Process is a process inside a device that
 is able to receive and process TinyIPFIX Records.

 TinyIPFIX Collector

 A TinyIPFIX Collector is a device that contains at least one
 TinyIPFIX Collecting Process.

 TinyIPFIX Device

 A TinyIPFIX Device is a device that contains one or more TinyIPFIX
 Collector or one or more TinyIPFIX Exporter.

 TinyIPFIX Smart Meter

 A TinyIPFIX Smart Meter is a device that contains the
 functionality of a TinyIPFIX device. It is usually equipped with
 one or more sensors that meter a physical quantity, like power
 consumption, temperature, or physical tempering with the device.
 Every TinyIPFIX Smart Meter MUST at least contain a TinyIPFIX
 Exporting Process. It MAY contain a TinyIPFIX Collecting Process
 in order to work as a TinyIPFIX Proxy or Concentrator.

https://datatracker.ietf.org/doc/html/rfc7101
https://datatracker.ietf.org/doc/html/rfc7101
https://datatracker.ietf.org/doc/html/rfc5982
https://datatracker.ietf.org/doc/html/rfc6183

Schmitt, et al. TinyIPFIX [Page 4]

Internet-Draft TinyIPFIX November 2016

 TinyIPFIX Message

 The TinyIPFIX Message is a message originated by a TinyIPFIX
 Exporter. It is composed of a TinyIPFIX Message Header and one or
 more TinyIPFIX Sets. The TinyIPFIX Message Format is defined in

Section 6.

 TinyIPFIX Data Record

 A TinyIPFIX Data Record equals a Data Record in [RFC7101]. The
 term is used to distinguish between IPFIX and TinyIPFIX throughout
 the document.

 TinyIPFIX Template Record

 A TinyIPFIX Template Record is similar to a Template Record. The
 Template Record Header is substituted with a TinyIPFIX Template
 Record Header and is otherwise equal to a Template Record. See

Section 6.3.

 TinyIPFIX Set

 The TinyIPFIX Set is a group of TinyIPFIX Data Records or
 TinyIPFIX Template Records with a TinyIPFIX Set Header. Its
 format is defined in Section 6.2.

 TinyIPFIX Data Set

 The TinyIPFIX Data Set is a TinyIPFIX Set that contains TinyIPFIX
 Data Records.

 TinyIPFIX Template Set

 A TinyIPFIX Template Set is a TinyIPFIX Set that contains
 TinyIPFIX Template Records.

 TinyIPFIX Intermediate Process

 A TinyIPFIX Intermediate Process is an Intermediate Process that
 can handle TinyIPFIX Messages.

 TinyIPFIX Proxy

 A TinyIPFIX Proxy is an IPFIX Proxy that can handle TinyIPFIX
 Messages.

 TinyIPFIX Concentrator

https://datatracker.ietf.org/doc/html/rfc7101

Schmitt, et al. TinyIPFIX [Page 5]

Internet-Draft TinyIPFIX November 2016

 A TinyIPFIX Concentrator is an IPFIX Concentrator that can handle
 TinyIPFIX Messages.

 A TinyIPFIX Transport Session is defined by the communication between
 a TinyIPFIX Exporter (identified by an 6LowPAN-Address, the Transport
 Protocol, and the Transport Port) and a TinyIPFIX Collector
 (identified by the same properties).

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Constraints

3.1. Hardware constraints

 The target devices for TinyIPFIX are usually equipped with low-cost
 hardware and therefore face several constraints concerning CPU and
 memory [Schmitt09]. For example, the IRIS mote from Crossbow
 Technologies Inc. has a size of 58 x 32 x 7 mm (without a battery
 pack) [Crossbow]. Thus, there is little space for micro controller,
 flash memory (128 kb) and radio frequency transceiver, which are
 located on the board.

 Network protocols used on such hardware need to respect these
 constraints. They must be simple to implement using little code and
 little run time memory and should produce little overhead when
 encoding the application payload.

3.2. Energy constraints

 Smart meters that are battery powered have hard energy constraints
 [Schmitt09]. By power supply of two 2 AA 2,800-mAh batteries this
 means approximately 30,240J. If they run out of power, their battery
 has to be changed, which means physical manipulation to the device is
 necessary. Using as little energy as possible for network
 communication is therefore desired.

 A smart metering device can save a lot of energy, if it powers down
 its radio frequency transceiver. Such devices do not have permanent
 network connectivity but are only part of the network as needed. A
 push protocol, where only one side is sending data, is suitable for
 transmitting application data under such circumstances. As the
 communication is unidirectional, a meter can completely power down
 its radio frequency transceivers as long as it does not have any data
 to sent. If the metering device is able to keep a few measurements
 in memory, and if real time metering is not a requirement, the

https://datatracker.ietf.org/doc/html/rfc2119

Schmitt, et al. TinyIPFIX [Page 6]

Internet-Draft TinyIPFIX November 2016

 TinyIPFIX Data Records can be pushed less frequently. Therefore,
 saving some more energy on the radio frequency transceivers.

3.3. Packet size constraints

 TinyIPFIX is mainly targeted for the use in 6LoWPAN networks, which
 are based on IEEE 802.15.4 [RFC4944]. However, the protocol can also
 be used to transmit data in other networks. IEEE 802.15.4 defines a
 maximum frame size of 127 octets, which usually leaves 102 octets for
 user data. IPv6 on the other hand defines a minimum MTU of 1280
 octets. Hence, fragmentation has to be implemented in order to
 transmit such large packets. While fragmentation allows the
 transmission of large messages, its use is problematic in networks
 with high packet loss because the complete message has to be
 discarded if only a single fragment gets lost.

 TinyIPFIX enhances IPFIX by a header compression scheme, which allows
 to reduce the overhead from header sizes significantly.
 Additionally, the overall TinyIPFIX Message size is reduced, which
 reduces the need for fragmentation.

3.4. Transport protocol constraints

 The IPFIX standard [RFC7101] defines several transport protocol
 bindings for the transmission of IPFIX Messages. SCTP support is
 REQUIRED for any IPFIX Device to achieve standard conformance
 [RFC7101], and its use is highly recommended. However, sending IPFIX
 over UDP and TCP MAY also be implemented.

 This transport protocol recommendation is not suitable for TinyIPFIX.
 A header compression scheme that allows to compress an IPv6 header
 from 40 octets down to 2 octets is defined in 6LoWPAN. There is a
 similar compression scheme for UDP, but there is no such compression
 for TCP or SCTP headers. If header compression can be employed, more
 space for application payload is available.

 Using UDP on the transport layer for transmitting IPFIX Messages is
 therefore recommended. Furthermore, TCP or SCTP are currently not
 supported on some platforms, like on TinyOS [Harvan08]. Hence, UDP
 may be the only option.

 Every TinyIPFIX Exporter and Collector MUST implement UDP transport
 layer support for transmitting data in a constrained network
 environment. It MAY also offer TCP or SCTP support. However, using
 these protocols is NOT RECOMMENDED as their use will consume more
 power and reduces the available size of application payload compared
 to the use of UDP. If TinyIPFIX is transmitted over a non-

https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc7101
https://datatracker.ietf.org/doc/html/rfc7101

Schmitt, et al. TinyIPFIX [Page 7]

Internet-Draft TinyIPFIX November 2016

 constrained network, using SCTP as a transport layer protocol is
 RECOMMENDED.

4. Application scenarios for TinyIPFIX

 TinyIPFIX is derived from IPFIX [RFC7101] and is therefore a
 unidirectional push protocol. This means all communication that
 employs TinyIPFIX is unidirectional from an Exporting Process to a
 Collecting Process. Hence, TinyIPFIX only fits for application
 scenarios where meters transmit data to one or more Collectors.

 If TinyIPFIX is used over UDP, as recommended, packet loss can occur.
 Furthermore, if an initial Template Message gets lost, and is
 therefore unknown to the Collector, all TinyIPFIX Data Sets that
 reference this Template cannot be decoded. Hence, all these Messages
 are lost if they are not cached by the Collector. It should be clear
 to an application developer, that TinyIPFIX can only be used over UDP
 if these TinyIPFIX Message losses are not a problem.

 TinyIPFIX over UDP is especially not a suitable protocol for
 applications where sensor data trigger policy decisions or
 configuration updates for which packet loss is not tolerable.

 Applications that use smart sensors for accounting purposes for long
 time measurements can benefit from the use of TinyIPFIX. One
 application for IPFIX can be long term monitoring of large physical
 volumes. In [Tolle05], Tolle et al. built a system for monitoring a
 "70-meter tall redwood tree, at a density interval of 5 minutes in
 time and 2 meters in space". The sensor node infrastructure was
 deployed to measure the air temperature, relative humidity and
 photosynthetically active solar radiation over a long time period.

 Deploying TinyIPFIX in such scenarios seems to be a good fit. The
 sensors of the TinyIPFIX Smart Meter can be queried over several 5
 minute time intervals and the query results can be aggregated into a
 single TinyIPFIX Message. As soon as enough query results are stored
 in the TinyIPFIX Message, e.g. if the TinyIPFIX Message size fills
 the available payload in a single IEEE 802.15.4 packet, the wireless
 transceiver can be activated and the TinyIPFIX Message can be
 exported to a TinyIPFIX Collector.

 Similar sensor networks have been built to monitor the habitat of
 animals, e.g. in the "Great Duck Island Project" [GreatDuck],
 [SMPC04]. The purpose of the sensor network was to monitor the birds
 by deploying sensors in and around their burrows. The measured
 sensor data was collected and stored in a database for offline
 analysis and visualization. Again, the sensors can perform their

https://datatracker.ietf.org/doc/html/rfc7101

Schmitt, et al. TinyIPFIX [Page 8]

Internet-Draft TinyIPFIX November 2016

 measurements periodically, aggregate the sensor data and export them
 to a TinyIPFIX Collector.

 Other application scenarios for TinyIPFIX could be applications where
 sensor networks are used for long term structural health monitoring
 in order to investigate long term weather conditions on the structure
 of a building. For example, a smart metering network has been built
 to monitor the structural health of the Golden Gate Bridge [Kim07].
 If a sensor network is deployed to perform a long term measurement of
 the structural integrity, TinyIPFIX can be used to collect the sensor
 measurement data.

 If an application developer wants to decide whether to use TinyIPFIX
 for transmitting data from smart meters, he must take the following
 considerations into account:

 1. The application must require a push protocol. It is not possible
 to request data from a smart meter. The TinyIPFIX Smart Meter
 decides for itself when to send its metering data.

 2. The property above allows a TinyIPFIX Smart Meter to turn off its
 wireless device in order to save energy, as it does not have to
 receive any data.

 3. If real-time is not required, the application might benefit from
 accumulated several measurements into a single TinyIPFIX Message.
 TinyIPFIX easily allows the aggregation of several into a single
 TinyIPFIX Message (or a single packet). This aggregation can
 happen on the TinyIPFIX Smart Meter that aggregates several of
 its own measurements. Or it can happen within a multi-hop
 wireless network where one IPFIX Proxy aggregates several
 TinyIPFIX Messages into a single TinyIPFIX Message before
 forwarding them.

 4. The application must accept potential packet loss. TinyIPFIX
 only fits for applications where metering data is stored for
 accounting purposes and not for applications where the sensor
 data triggers configuration changes or policy decisions (except:
 if Message loss is acceptable for some reason).

5. Architecture for TinyIPFIX

 The TinyIPFIX architecture is similar to the IPFIX architecture which
 is described in [RFC5470]. The most common deployment of TinyIPFIX
 Smart Meters is shown in Figure 1.

https://datatracker.ietf.org/doc/html/rfc5470

Schmitt, et al. TinyIPFIX [Page 9]

Internet-Draft TinyIPFIX November 2016

 +----------------+ +----------------+
 |[*Application 1]| ... |[*Application n]|
 +--------+-------+ +-------+--------+
 ^ ^
 | |
 +----------+----------+
 ^
 |
 +------------------------+ +--------+-------------------+
 | TinyIPFIX S.M. | TinyIPFIX | TinyIPFIX Collector |
 | [Exporting Process] |----------->| [Collecting Process(es)] |
 +------------------------+ +----------------------------+

 Figure 1: Direct transmission between sensors and applications

 A TinyIPFIX Smart Meter (S.M.) queries its internal sensors to
 retrieve the sensor data. It then encodes the results into a
 TinyIPFIX Message and exports this TinyIPFIX Message to one or more
 TinyIPFIX Collectors. The TinyIPFIX Collector runs one or more
 applications that process the collected sensor data. The TinyIPFIX
 Collector can be deployed on non-constrained devices at the
 constrained network border.

 A second way to deploy TinyIPFIX Smart Meter can employ aggregation
 on TinyIPFIX Messages during their journey through the constrained
 network as shown in Figure 2. This aggregation can be performed by
 special TinyIPFIX Smart Meter that act as TinyIPFIX Concentrators.
 Such devices must have enough resources to perform the aggregation.

 +-------------------------+ +------------------------+
 | TinyIPFIX S.M. | TinyIPFIX | TinyIPFIX Concentrator |
 | [Exporting Process] |----------------->| [Collecting Process] |
 +-------------------------+ +-------->| [Exporting Process] |
 | +------------------------+
 +-------------------------+ | |
 | TinyIPFIX S.M. | | TinyIPFIX|
 | [Exporting Process] |--------+ |
 +-------------------------+ v
 +-------+------------------+
 | Collector(1) |
 | [Collecting Process(es)] |
 +--------------------------+

 Figure 2: Aggregation on TinyIPFIX

Schmitt, et al. TinyIPFIX [Page 10]

Internet-Draft TinyIPFIX November 2016

 TinyIPFIX Smart Meters send their data to TinyIPFIX Concentrator
 which needs to have enough storage space to store the incoming data.
 It may also aggregate the incoming data with its own measurement
 data. The aggregated data can then be re-exported again to one or
 more Collectors.

 The last deployment, shown in Figure 3, employs another TinyIPFIX
 Mediation process.

 +------------------------+ +------------------------+
 | TinyIPFIX S.M | TinyIPFIX | TinyIPFIX Proxy |
 | [Exporting Process] |----------------->| [Collecting Process] |
 +------------------------+ | [Exporting Process] |
 +------------------------+
 |
 IPFIX |
 v
 +--------------------------+
 | IPFIX Collector(1) |
 | [Collecting Process(es)] |
 +--------------------------+

 Figure 3: Aggregation on TinyIPFIX

 The TinyIPFIX Smart Meters transmit their TinyIPFIX Messages to one
 node, e.g. the base station, which translates the TinyIPFIX Messages
 to IPFIX Messages. The IPFIX Messages can then be exported into an
 existing IPFIX infrastructure. The Mediation process from TinyIPFIX
 to IPFIX is described in Section 7.

6. TinyIPFIX Message Format

 A TinyIPFIX IFPIX Message starts with a TinyIPFIX Message Header,
 followed by one or more TinyIPFIX Sets. The TinyIPFIX Sets can be
 any of the possible two types: TinyIPFIX Template Set and TinyIPFIX
 Data Set. A TinyIPFIX Message MUST only contain one type of
 TinyIPFIX Set. The format of the TinyIPFIX Message is shown in
 Figure 4

Schmitt, et al. TinyIPFIX [Page 11]

Internet-Draft TinyIPFIX November 2016

 +--+
 | TinyIPFIX Message Header |
 +--+
 | TinyIPFIX Set |
 +--+
 | TinyIPFIX Set |
 +--+
 ...
 +--+
 | TinyIPFIX Set |
 +--+

 Figure 4: TinyIPFIX Message Format

6.1. TinyIPFIX Message Header

 The TinyIPFIX Message Header is derived from the IPFIX Message
 Header, with some optimization using field compression. The IPFIX
 Message Header from [RFC7101] is shown in Figure 5.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Version Number | Length |
 +-+
 | Export Time |
 +-+
 | Sequence Number |
 +-+
 | Observation ID |
 +-+

 Figure 5: IPFIX Message Header

 The length of the IPFIX Message Header is 16 octets and every IPFIX
 Message has to be started with it. The TinyIPFIX Message Header
 needs to be smaller due to the packet size constraints discussed in

Section 3.3. TinyIPFIX introduces a TinyIPFIX Message Header that
 has a smaller size. The TinyIPFIX header consists of a fixed part of
 three octets and a variable length "Remaining Header" as shown in
 Figure 6.

https://datatracker.ietf.org/doc/html/rfc7101

Schmitt, et al. TinyIPFIX [Page 12]

Internet-Draft TinyIPFIX November 2016

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 |E1|E2| SetID | Length |
 | | | Lookup | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | Sequence | Ext. Sequence |
 | Number | Number |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | Ext. SetID |
 +--+--+--+--+--+--+--+--+

 Figure 6: Format of the TinyIPFIX Message header

 The first part has a fixed length of thre octets and consists of the
 "E1" field (1 bit), the "E2" field (1 bit), the "SetID Lookup" field
 (4 bit), the "Length" field (10 bit), and the "Sequence Number" field
 (8 bit). The second part (the "Remaining Header") has a variable
 length. Its length is defined by the "E1" and "E2" field in the
 fixed header part. The four variants are illustrated in the figures
 below.

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 |0 |0 | SetID | Length |
 | | | Lookup | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | Sequence |
 | Number |
 +--+--+--+--+--+--+--+--+

 Figure 7: TinyIPFIX Message Header format if E1 = E2 = 0

Schmitt, et al. TinyIPFIX [Page 13]

Internet-Draft TinyIPFIX November 2016

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 |1 |0 | SetID | Length |
 | | | Lookup | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | Sequence | Ext. SetID |
 | Number | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 Figure 8: TinyIPFIX Message Header format if E1 = 1 and E2 = 0

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 |0 | 1| SetID | Length |
 | | | Lookup | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | Sequence | Ext. Sequence |
 | Number | Number |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 Figure 9: TinyIPFIX Message Header format if E1 = 0 and E2 = 1

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 |1 |1 | SetID | Length |
 | | | Lookup | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | Sequence | Ext. Sequence |
 | Number | Number |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | Ext. SetID |
 +--+--+--+--+--+--+--+--+

 Figure 10: TinyIPFIX Message Header format if E1 = E2 = 1

 The fixed header fields are defined as follows [kothmayr10]
 [schmitt2014]:

 E1 and E2

Schmitt, et al. TinyIPFIX [Page 14]

Internet-Draft TinyIPFIX November 2016

 The bits marked "E1" and "E2" control the presence of the file
 "Ext. SetID" and the length of the field "Ext. Sequence Number"
 respectively. In case E1 = E2 = 0 the TinyIPFIX message header
 has the format as shown in Figure 7. No Ext. Sequence Number and
 Ext. SetID are required. In case E1 = 1, custom SetIDs can be
 specified in the extended SetID field (cf. Figure 8.) When
 evaluated, the value specified in the extended SetID field is
 shifted left by 8 bits to prevent collisions with the reserved
 SetIDs 0-255. To reference these, shifting can be disabled by
 setting all SetID lookup bits to 1. Depending on the application
 sampling rates might be larger than in typical WSNs and, thus,
 they may have a large quantity of records per packet. In order to
 make TinyIPFIX applicable for those cases E2 = 1 is set (cf.
 Figure 9.) This means the Ext. Sequence Number field is available
 offering 8-bit more sequence numbers as usual. Depending on the
 WSN settings the also the combination E1 = E2 = 1 is possible
 resulting in the maximum TinyIPFIX Message header shown in
 Figure 10where Ext. Sequence Number field and Ext. SetID field are
 required.

 SetID Lookup

 This field acts as a lookup field for the SetIDs and provides
 shortcuts to often used SetIDs. So far only four values are
 defined: Value = 0 means Lookup extended SetID field, Shifting
 enabled. Value = 1 means SetID = 2 and message contains a
 Template definition. Value = 2 means SetID = 256 and message
 containts Data Record for Template 256. This places special
 importance on a single template ID, but since most sensor nodes
 only define a single template directly after booting and continue
 to stream data with this template ID during the whole session
 lifetime, this shorthand is useful for this case. Value = 3-14
 means SetIDs are reserved for future extensions. Value = 15 means
 Lookup extended SetID field, shiftig enabled.

 Length

 The length field has a fixed length of 10 bits.

 Sequence Number

 Due to the low sampling rate in typical WSNs, the "Sequence
 Number" field is only one byte long. However, some applications
 may have a large quantity of records per packet. In this case the
 sequence field can be extended to 16 bit by setting the E2-bit to
 1.

Schmitt, et al. TinyIPFIX [Page 15]

Internet-Draft TinyIPFIX November 2016

 Since TinyIPFIX packets are always transported via a network
 protocol, which specifies the source of the packet, the "Observation
 Domain" can be equated with the source of a TinyIPFIX packet and the
 field can be dropped from the header. Should applications require
 several Observation Domains the information can be included in the
 TinyIPFIX data message. The version field has been dropped since the
 SetID lookup field provides room for future extensions. The
 specification of a 32 bit time stamp in seconds would require the
 time synchronization across a wireless sensor network and produces
 too much overhead. Thus, the "Export Time" field is dropped. If
 applications should require the specification of time it can be sent
 as part of the TinyIPFIX data message.

6.2. TinyIPFIX Set

 A TinyIPFIX Set is a set of TinyIPFIX Template or TinyIPFIX Data
 Records. Depending on the TinyIPFIX Record type, the TinyIPFIX Set
 can either be a TinyIPFIX Template Set or a TinyIPFIX Data Set.
 Every TinyIPFIX Set is started with a TinyIPFIX Set Header and is
 followed by one or more TinyIPFIX Records.

 The IPFIX Set Header consists of an two octet "Set ID" field and a
 two octet "Length" field. These two fields are compressed to one
 octet each for the TinyIPFIX Set Header. The format of the TinyIPFIX
 Set Header is shown in Figure 11.

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Comp. Set ID | Length |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 11: TinyIPFIX Set Header

 The two fields are defined as follows:

 TinyIPFIX Set ID

 The "TinyIPFIX Set ID" (Comp. Set ID) identifies the type of data
 that is transported in the TinyIPFIX Set. A TinyIPFIX Template
 Set is identified by TinyIPFIX Set ID 2. This corresponds to the
 Set IDs that are used by Sets in IPFIX. TinyIPFIX Set ID number 3
 MUST NOT be used. All values from 4 to 127 are reserved for
 future use. Values above 127 are used for TinyIPFIX Data Sets.

 Length

Schmitt, et al. TinyIPFIX [Page 16]

Internet-Draft TinyIPFIX November 2016

 The "Length" Field contains the total length of the TinyIPFIX Set,
 including the TinyIPFIX Set Header.

6.3. TinyIPFIX Template Record Format

 The format of the TinyIPFIX Template Records is shown in Figure 12.
 The TinyIPFIX Template Record starts with a TinyIPFIX Template Record
 Header and is followed by one or more Field Specifiers. The Field
 Specifier format is defined as in Section 6.4 and is identical to the
 Field Specifier definition in [RFC7101].

 +--+
 | TinyIPFIX Template Record Header |
 +--+
 | Field Specifier |
 +--+
 | Field Specifier |
 +--+
 ...
 +--+
 | Field Specifier |
 +--+

 Figure 12: TinyIPFIX Template Format

 The format of the TinyIPFIX Template Record Header is shown in
 Figure 13.

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Comp. Temp ID | Field Count |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 13: TinyIPFIX Template Record Header

 TinyIPFIX Template ID

 Each TinyIPFIX Template Record must have a unique TinyIPFIX
 Template ID (Comp. Temp ID) between 128 and 255. The TinyIPFIX
 Template ID must be unique for the given TinyIPFIX Transport
 Session.

 Field Count

https://datatracker.ietf.org/doc/html/rfc7101

Schmitt, et al. TinyIPFIX [Page 17]

Internet-Draft TinyIPFIX November 2016

 The number of fields placed in the TinyIPFIX Template Record.

6.4. Field Specifier Format

 The type and length of the transmitted data is encoded in Field
 Specifiers within TinyIPFIX Template Records. The Field Specifier is
 shown in Figure 14 and is identical with the Field Specifier that was
 defined for IPFIX [RFC7101]. The following text has been copied from
 [RFC7101] for completeness.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |E| Information Element ident. | Field Length |
 +-+
 | Enterprise Number |
 +-+

 Figure 14: TinyIPFIX Dta Field Specifier

 Where:

 E

 Enterprise bit. This is the first bit of the Field Specifier. If
 this bit is zero, the Information Element Identifier identifies an
 IETF-specified Information Element, and the four-octet Enterprise
 Number field MUST NOT be present. If this bit is one, the
 Information Element Identifier identifies an enterprise-specific
 Information Element, and the Enterprise Number field MUST be
 present.

 Information Element Identifier

 A numeric value that represents the type of Information Element.

 Field Length

 The length of the corresponding encoded Information Element, in
 octets. Refer to [RFC7012]. The value 65535 is illegal as there
 are no variable size encoded elements as they are defined in
 IPFIX.

 Enterprise Number

https://datatracker.ietf.org/doc/html/rfc7101
https://datatracker.ietf.org/doc/html/rfc7101
https://datatracker.ietf.org/doc/html/rfc7012

Schmitt, et al. TinyIPFIX [Page 18]

Internet-Draft TinyIPFIX November 2016

 IANA Private Enterprise Number of the authority defining the
 Information Element identifier in this Template Record.

 Vendors can easily define their own data model by registering a
 Enterprise ID with IANA. Using their own Enterprise ID, they can use
 any ID in the way they want them to use.

6.5. TinyIPFIX Data Record Format

 The Data Records are sent in TinyIPFIX Data Sets. The format of the
 Data Records is shown in Figure 15 and matches the Data Record format
 from IPFIX.

 +--+
 | Field Value |
 +--+
 | Field Value |
 +--+
 ...
 +--+
 | Field Value |
 +--+

 Figure 15: Data Record Format

7. TinyIPFIX Mediation

 There are two types of TinyIPFIX Intermediate Processes. The first
 one can occur on the transition between a constraint 6LoWPAN and the
 non-constrained network. This mediation changes the network and
 transport protocol from 6LowPAN/UDP to IP/(SCTP|TCP|UDP) and is shown
 in Figure 16.

Schmitt, et al. TinyIPFIX [Page 19]

Internet-Draft TinyIPFIX November 2016

 +-----------------------+ TinyIPFIX +-------------------------+
 | TinyIPFIX S.M. | 6LoWPAN/UDP | TinyIPFIX mediator |
 | [Exporting Process] |--------------->| [Collecting Process] |
 +-----------------------+ | [Exporting Process] |
 +-------------------------+
 |
 TinyIPFIX |
 IP/(UDP/SCTP|TCP) |
 v
 +--------------------------+
 | Collector(1) |
 | [Collecting Process(es)] |
 +--------------------------+

 Figure 16: Translation from TinyIPFIX over 6LowPAN/UDP to TinyIPFIX
 over IP/(SCTP|TCP|UDP)

 The mediator removes the TinyIPFIX Messages from the 6LowPAN/UDP
 packets and wraps them into the new network and transport protocols.
 Templates MUST be managed the same way as in the constraint
 environment after the translation to IP/(SCTP|UDP|TCP) (see

Section 8).

 The second type of mediation transforms TinyIPFIX into IPFIX. This
 process MUST be combined with the transport protocol mediation as
 shown in Figure 17.

 +------------------------+ TinyIPFIX +-----------------------+
 | TinyIPFIX S.M. | 6LoWPAN/UDP | IPFIX mediator |
 |[Exporting Processes] |---------------->| [Collecting Process] |
 +------------------------+ | [Exporting Process] |
 +-----------------------+
 |
 IPFIX |
 IP/(UDP/SCTP|TCP) |
 v
 +--------------------------+
 | Collector(1) |
 | [Collecting Process(es)] |
 +--------------------------+

 Figure 17: Transformation from TinyIPFIX to IPFIX

 This mediation can also be performed by an IPFIX Collector before
 parsing the IPFIX message as shown in Figure 18. There is no need

Schmitt, et al. TinyIPFIX [Page 20]

Internet-Draft TinyIPFIX November 2016

 for a TinyIPFIX IPFIX parser if such a mediation process can be
 employed in front of an already existing IPFIX collector.

 +------------------------+ TinyIPFIX +----------------------+
 | TinyIPFIX S.M. | 6LoWPAN/UDP | IPFIX Mediator |
 | [Exporting Processes] |----------------->| [Collecting Process] |
 +------------------------+ | [Exporting Process] |
 | | |
 | |IPFIX |
 | | |
 | v |
 | Collector(1) |
 | [Collecting Process] |
 +----------------------+

 Figure 18: Transformation from TinyIPFIX to IPFIX

 The TinyIPFIX Mediation Process has to translate the TinyIPFIX
 Message Header, the TinyIPFIX Set Headers and the TinyIPFIX Template
 Record Header into their counterparts in IPFIX Afterwards, the new
 IPFIX Message Length needs to be calculated and inserted into the
 IPFIX Message header.

7.1. Expanding the Message header

 The fields of the IPFIX Message Header that are shown in Figure 5 can
 be determined as follows:

 Version

 This is always 0x000a.

 Length

 The IPFIX Message Length can only be calculated after the complete
 TinyIPFIX Message has been translated. The new length can be
 calculated by adding the length of the IPFIX Message Header, which
 is 16 octets, and the length of all Sets that are contained in the
 IPFIX Message.

 Export Time

 If the "Export Time" in the TinyIPFIX Message Header has a length
 of 4 octets, the value from the TinyIPFIX Message Header MUST be
 used for the IPFIX Message Header. If it was omitted, the "Export
 Time" MUST be generated by the Mediator. If the IPFIX Message is

Schmitt, et al. TinyIPFIX [Page 21]

Internet-Draft TinyIPFIX November 2016

 exported again, the "Export Time" field MUST contain the time in
 seconds since 0000 UTC Jan 1, 1970, at which the IPFIX Message
 leaves the Exporter. If the Message is passed to an IPFIX
 Collector for decoding directly, the "Export Time" field is the
 time in seconds since 0000 UTC Jan 1 1970 at which the TinyIPFIX
 Message has been received by the TinyIPFIX Exporter.

 Sequence Number

 If the TinyIPFIX Sequence Number has a length of 4 octets, the
 original value MUST be used for the IPFIX Message. If the
 TinyIPFIX Sequence Number has a size of one or two octets, the
 TinyIPFIX Mediator MUST expand the TinyIPFIX Sequence Number into
 a four octet field. If the TinyIPFIX Sequence Number was omitted,
 the Mediator needs to calculate the Sequence Number as per
 [RFC7101].

 Observation Domain ID

 Since the Observation Domain ID is used to scope templates in
 IPFIX, it MUST be set to a unique value per TinyIPFIX Exporting
 Process, using either a mapping algorithmically determined by the
 Intermediate Process or directly configured by an administrator.

7.2. Translating the Set Headers

 Both fields in the TinyIPFIX Set Header have a size of one octet and
 need to be expanded:

 Set ID

 The field needs to be expanded from one octet to two octets. If
 the Set ID is below 128, no recalculation needs to be performed.
 This is because all IDs below 128 are reserved for special
 messages and match the IDs used in IPFIX. The TinyIPFIX Set IDs
 starting with 128 identify TinyIPFIX Data Sets. Therefore, every
 TinyIPFIX Set ID above 127 needs to be incremented by 128 because
 IPFIX Data Set IDs are located above 255.

 Set Length

 The field needs to be expanded from one octet to two octets. It
 needs to be recalculated by adding a value of 2 octet to match the
 additional size of the Set Header. For each TinyIPFIX Template
 Record that is contained in the TinyIPFIX Set, 2 more octets need
 to be added to the length.

https://datatracker.ietf.org/doc/html/rfc7101

Schmitt, et al. TinyIPFIX [Page 22]

Internet-Draft TinyIPFIX November 2016

7.3. Expanding the Template Record Header

 Both fields in the TinyIPFIX Template Record Header have a length of
 one octet and therefore need translation:

 Template ID

 The field needs to be expanded from one octet to two octets. The
 Template ID needs to be increased by a value of 128.

 Field Count

 The field needs to be expanded from one octet to two octets.

8. Template Management

 As with IPFIX, TinyIPFIX templates management depends on the
 transport protocol used. If TCP or SCTP is used, it can be ensured
 that TinyIPFIX Templates are delivered reliably. If UDP is used,
 reliability cannot be guaranteed, and template loss can occur. If a
 Template is lost on its way to the Collector, all following TinyIPFIX
 Data Records that refer to this TinyIPFIX Template cannot be decoded.
 Template withdrawals are not supported in TinyIPFIX. This is
 generally not a problem, because most sensor nodes only define a
 single template directly after booting.

8.1. TCP / SCTP

 If TCP or SCTP is an option and can be used for the transmission of
 TinyIPFIX, Template Management MUST be performed as defined in
 [RFC7101] for IPFIX, with the exception of template withdrawals,
 which are not supported in TinyIPFIX. Template withdrawals MUST NOT
 be sent by TinyIPFIX exporters.

8.2. UDP

 All specifications for Template management from [RFC7101] apply
 unless specified otherwise in this document.

 TinyIPFIX Templates MUST be sent by a TinyIPFIX Exporter before any
 TinyIPFIX Data Set that refers to the TinyIPFIX Template is
 transmitted. TinyIPFIX Templates are not expected to change over
 time in TinyIPFIX. Hence, a TinyIPFIX Template that has been sent
 once MAY NOT be withdrawn and MUST NOT expire. If a TinyIPFIX Smart
 Meter wants to use another TinyIPFIX Template it MUST use a new
 TinyIPFIX Template ID for the TinyIPFIX Template.

https://datatracker.ietf.org/doc/html/rfc7101
https://datatracker.ietf.org/doc/html/rfc7101

Schmitt, et al. TinyIPFIX [Page 23]

Internet-Draft TinyIPFIX November 2016

 As UDP is used, reliable transport of TinyIPFIX Templates cannot be
 guaranteed and TinyIPFIX Templates can be lost. A TinyIPFIX Exporter
 MUST expect TinyIPFIX Template loss. It MUST therefore re-send its
 TinyIPFIX Templates periodically. A TinyIPFIX Template MUST be re-
 send after a fixed number of N TinyIPFIX Messages that contained
 TinyIPFIX Data Sets that referred to this TinyIPFIX Template. The
 number N MUST be configured by the application developer.

9. Security considerations

 The same security considerations as for the IPFIX Protocol [RFC7101]
 apply.

10. IANA Considerations

 This document has no actions for IANA.

11. Acknowledgments

 Many thanks to Lothar Braun, Georg Carle, and Benoit Claise, who
 contributed significant work to earlier versions especially to the
 document entitled "Compressed IPFIX for Smart Meters in Constrained
 Networks" (draft-braun-core-compressed-ipfix), of this work.

 Many thanks to Thomas Kothmayr, Michael Meister, and Livio Sgier, who
 implemented TinyIPFIX for TinyOS 2.x, Contiki 2.7/3.0 (except the
 mediator) for different sensor platforms (IRIS, TelosB, and
 OpenMote).

12. References

12.1. Norminative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,
 <http://www.rfc-editor.org/info/rfc4944>.

 [RFC7101] Ginoza, S., "List of Internet Official Protocol Standards:
 Replaced by a Web Page", RFC 7101, DOI 10.17487/RFC7101,
 December 2013, <http://www.rfc-editor.org/info/rfc7101>.

https://datatracker.ietf.org/doc/html/rfc7101
https://datatracker.ietf.org/doc/html/draft-braun-core-compressed-ipfix
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4944
http://www.rfc-editor.org/info/rfc4944
https://datatracker.ietf.org/doc/html/rfc7101
http://www.rfc-editor.org/info/rfc7101

Schmitt, et al. TinyIPFIX [Page 24]

Internet-Draft TinyIPFIX November 2016

 [RFC7012] Claise, B., Ed. and B. Trammell, Ed., "Information Model
 for IP Flow Information Export (IPFIX)", RFC 7012,
 DOI 10.17487/RFC7012, September 2013,
 <http://www.rfc-editor.org/info/rfc7012>.

 [RFC5470] Sadasivan, G., Brownlee, N., Claise, B., and J. Quittek,
 "Architecture for IP Flow Information Export", RFC 5470,
 DOI 10.17487/RFC5470, March 2009,
 <http://www.rfc-editor.org/info/rfc5470>.

 [RFC5982] Kobayashi, A., Ed. and B. Claise, Ed., "IP Flow
 Information Export (IPFIX) Mediation: Problem Statement",

RFC 5982, DOI 10.17487/RFC5982, August 2010,
 <http://www.rfc-editor.org/info/rfc5982>.

 [RFC6183] Kobayashi, A., Claise, B., Muenz, G., and K. Ishibashi,
 "IP Flow Information Export (IPFIX) Mediation: Framework",

RFC 6183, DOI 10.17487/RFC6183, April 2011,
 <http://www.rfc-editor.org/info/rfc6183>.

12.2. Informative References

 [Schmitt09]
 Schmitt, C. and G. Carle, "Applications for Wireless
 Sensor Networks", In Handbook of Research on P2P and Grid
 Systems for Service-Oriented Computing: Models,
 Methodologies and Applications, Antonopoulos N.;
 Exarchakos G.; Li M.; Liotta A. (Eds.), Information
 Science Publishing. , 2010.

 [Tolle05] Tolle, G., Polastre, J., Szewczyk, R., Turner, N., Tu, K.,
 Buonadonna, P., Burgess, S., Gay, D., Hong, W., Dawnson,
 T., and D. Culler, "A macroscope in the redwoods", In the
 Proceedings of the 3rd ACM Conference on Embedded
 Networked Sensor Systems (Sensys 05), San Diego, ACM
 Press , November 2005.

 [Kim07] Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G.,
 Glaser, S., and M. Turon, "Health Monitoring of Civil
 Infrastructure Using Wireless Sensor Networks", In the
 Proceedings of the 6th International Conference on
 Information Processing in Sensor Networks (IPSN 2007),
 Cambridge, MA, ACM Press, pp. 254-263 , April 2007.

https://datatracker.ietf.org/doc/html/rfc7012
http://www.rfc-editor.org/info/rfc7012
https://datatracker.ietf.org/doc/html/rfc5470
http://www.rfc-editor.org/info/rfc5470
https://datatracker.ietf.org/doc/html/rfc5982
http://www.rfc-editor.org/info/rfc5982
https://datatracker.ietf.org/doc/html/rfc6183
http://www.rfc-editor.org/info/rfc6183

Schmitt, et al. TinyIPFIX [Page 25]

Internet-Draft TinyIPFIX November 2016

 [SMPC04] Szewczyk, R., Mainwaring, A., Polastre, J., and D. Culler,
 "An analysis of a large scale habitat monitoring
 application", The Proceedings of the Second ACM Conference
 on Embedded Networked Sensor Systems (SenSys 04) ,
 November 2004.

 [GreatDuck]
 Habitat Monitoring on Great Duck Island, ,
 "http://www.greatduckisland.net", The Proceedings of the
 Second ACM Conference on Embedded Networked Sensor Systems
 (SenSys 04) , November 2004.

 [Harvan08]
 Harvan, M. and J. Schoenwaelder, "TinyOS Motes on the
 Internet: IPv6 over 802.15.4 (6lowpan)", 2008.

 [Crossbow]
 Crossbow Technologies Inc., , "http://www.xbow.com", 2010.

 [kothmayr10]
 Kothmayr, T., "Data Collection in Wireless Sensor Networks
 for Autonomic Home Networking", Bachelor Thesis, Technical
 University of Munich, Germany , 2010.

 [schmitt2014]
 Schmitt, C., Kothmayr, T., Ertl, B., Hu, W., Braun, L.,
 and G. Carle, "TinyIPFIX: An Efficient Application
 Protocol for Data Exchange in Cyber Physical Systems",
 Computer Communications, ELSEVIER, DOI: 10.1016/
 j.comcom.2014.05.012 , 2014.

Authors' Addresses

 Corinna Schmitt
 University of Zurich
 Department of Informatics
 Communication Systems Group
 Binzmuehlestrasse 14
 Zurich 8050
 Switzerland

 Email: schmitt@ifi.uzh.ch

Schmitt, et al. TinyIPFIX [Page 26]

Internet-Draft TinyIPFIX November 2016

 Burkhard Stiller
 University of Zurich
 Department of Informatics
 Communication Systems Group
 Binzmuehlestrasse 14
 Zurich 8050
 Switzerland

 Email: stiller@ifi.uzh.ch

 Brian Trammell
 Swiss Federal Institute of Technology
 Gloriastrasse 35
 Zurich 8092
 Switzerland

 Email: ietf@trammell.ch

Schmitt, et al. TinyIPFIX [Page 27]

