
Workgroup: ALTO Working Group

Internet-Draft:

draft-schott-alto-new-transport-push-00

Published: 21 October 2022

Intended Status: Standards Track

Expires: 24 April 2023

Authors: R. Schott

Deutsche Telekom

Y. Yang

Yale University

K. Gao

Sichuan University

L. Delwiche

Yale University

ALTO New Transport: Server Push using PUSH_PROMISE of HTTP/2

Abstract

The ALTO New Transport [draft-ietf-alto-new-transport] introduces

ALTO transport information structures (TIS) at an ALTO server. The

introduction of ALTO TIS allows at least two types of efficient

transport using HTTP: (1) HTTP/2/3 independent client long poll

allowed by non-blocking, newer HTTP, and (2) HTTP/2 specific server

push. This document defines HTTP/2 specific server-push ALTO

transport based on ALTO TIS.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119][RFC8174] when, and only when, they appear in all

capitals, as shown here.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 24 April 2023.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Manage Server Push: Receiver Set

2.1. Receiver Set Operations

2.2. Examples

3. Server Push of Incremental Updates

3.1. Server Push

3.2. Examples

4. Server Push Stream Management

4.1. Server -> Client [PUSH_PROMISE for Transport Queue on Stream

SID_tq]

5. Server Push Information Resource Directory (IRD)

6. Security Considerations

7. IANA Considerations

8. Acknowledgments

9. References

9.1. Normative References

9.2. Informative References

Authors' Addresses

1. Introduction

The ALTO new transport [draft-ietf-alto-new-transport] introduces

ALTO transport queues for an ALTO server to manage the transport of

ALTO information to an ALTO client. The base design, however,

supports only client pull. Hence, for a client to obtain the latest

ALTO information, the client need to maintain a pending pull on the

incremental updates queue. This document extends the base design to

allow server push, potentially reducing information distribution

delay.

¶

¶

¶

https://trustee.ietf.org/license-info

The extension to realize server push on a transport queue is by

adding a receiver set. Figure 2 shows an example illustrating the

additional receiver set at each transport queue.¶

Figure 1: ALTO New Transport Information Structure.

Information Resource:

a) Static resource (#1) such as NetworkMap

b) Filterable resource (#3) such as FilteredCostMap

 +-------------+

 | |

 +--------------------| ALTO Server |-----------+

 | +-| |-+ |

 | | +-------------+ | |

 | | | |

---------|------------------|-----------------|---------|------------

 | | | | Information

 | | | | Resource

+-------------+ +-------------+ +-------------+ +-------------+

| Information | | Information | | Information | | Information |

| Resource #1 | | Resource #2 | | Resource #3 | | Resource #4 |

+-------------+ +-------------+ +-------------+ +-------------+

 | / \

-------|-----------------------------/------\------------------------

 | / \ Transport

 | +----/ \------+ Queues

 | | |

 +--------+ +--------+ +--------+

 | tq1 |-----+ | tq2 |-----+ | tq3 |-----+

 +----|---+ | +----|---+ | +----|---+ |

 | | | | | |

 +----|---+ +---|----+ +----|---+ +---|----+ +----|---+ +---|----+

 | tq1/uq | | tq1/rs | | tq2/uq | | tq2/rs | | tq3/uq | | tq3/rs |

 +--------+ +--------+ +--------+ +--------+ +--------+ +--------+

 |\ /\ | / | |

-------|-\-----/--\-------------|--------/------------|----------|---

 | \ / +-------+ | / | |

 | +-/-----------+ \ | / | |

 | / \ \ | / A + +

 | / +--\--\-|----/--+ single \ /

 | / +---\--\|---/---+ http2/3 \ /

 +----------+ +----------+ connection +----------+

 | Client 1 | | Client 2 | | Client 3 |

 +----------+ +------- --+ +----------+

tqi = transport queue i

tqi/uq = incremental updates queue of transport queue i

tqi/rs = receiver set of transport queue i

This document specifies the operation to manage the receiver set.

2. Manage Server Push: Receiver Set

2.1. Receiver Set Operations

A client starts to receive server push when it is added to the

receiver set. A client can add itself to the receiver set when

creating the transport queue, or add itself explicitly to the

receiver set. A client can read the status of the receiver set and

delete itself from the receiver set to stop server push.

Implicit Create: As a short cut, when creating a transport queue, an

ALTO client can start server push by setting the "incremental-

changes" field to be true when creating a transport queue using the

HTTP POST method with ALTO SSE AddUpdateReq ([RFC 8895] Sec. 6.5) as

the parameter:

PUT Create: A client can add itself in the receiver set by using the

HTTP PUT method: PUT transport-queue/rs/self

Read: A client can see only itself in the receiver set. The

appearance of self in the receiver set (read does not return "not

exists" error) is an indication that push starts.

Delete: A client can delete itself (stops receiving push) either

explicitly or implicitly.

Explicit delete: A client deletes itself using the HTTP DELETE

method: DELETE transport-queue/rs/self.

Implicit delete: Transport queue is connection ephemeral: the

close of connection or stream for the transport queue deletes the

transport queue (from the view) for the client.

2.2. Examples

The first example is a client creating a transport queue and

starting server push.

¶

¶

¶

 object {

 ResourceID resource-id;

 [JSONString tag;]

 [Boolean incremental-changes;]

 [Object input;]

 } AddUpdateReq;

¶

¶

¶

¶

*

¶

*

¶

¶

If the client reads the status of the transport queue created above

using the read operation (GET) in the same HTTP connection, the

client should see itself in the receiver set:

 Client -> server request

 HEADERS

 - END_STREAM

 + END_HEADERS

 :method = POST

 :scheme = https

 :path = /tqs

 host = alto.example.com

 accept = application/alto-error+json,

 application/alto-transport+json

 content-type = application/alto-transport+json

 content-length = TBD

 DATA

 - END_STREAM

 {

 "resource-id": "my-routingcost-map",

 "incremental-push": true

 }

¶

 Server -> client response:

 HEADERS

 - END_STREAM

 + END_HEADERS

 :status = 200

 content-type = application/alto-transport+json

 content-length = TBD

 DATA

 - END_STREAM

 {"tq": “/tqs/2718281828459”}

¶

¶

A client can stop incremental push updates from the server to itself

by sending the request:

 Client -> server request

 HEADERS

 - END_STREAM

 + END_HEADERS

 :method = GET

 :scheme = https

 :path = /tqs/2718281828459

 host = alto.example.com

 accept = application/alto-error+json,

 application/alto-transport+json

 Server -> client response:

 HEADERS

 - END_STREAM

 + END_HEADERS

 :status = 200

 content-type = application/alto-transport+json

 content-length = TBD

 DATA

 - END_STREAM

 { "uq":

 [

 {“seq”: 101,

 "media-type": "application/alto-costmap+json",

 “tag”: "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe" },

 {“seq”: 102,

 "media-type": "application/merge-patch+json",

 “tag”: "cdf0222x59740b0b2e3f8eb1d4785acd42231bfe" },

 {“seq”: 103,

 "media-type": "application/merge-patch+json",

 “tag”: "8eb1d4785acd42231bfecdf0222x59740b0b2e3f",

 "link": "/tqs/2718281828459/snapshot/2e3f"}

],

 "rs": ["self"]

 }

¶

¶

 DELETE /tqs/2718281828459/rs/self HTTP/2

 Accept: application/alto-transport+json

 HTTP/2 200 OK

¶

3. Server Push of Incremental Updates

3.1. Server Push

The work flow of server push of individual updates is the following:

Initialization: the first update pushed from the server to the

client MUST be the later of the following two: (1) the last

independent update in the incremental updates queue; and (2) the

following entry of the entry that matches the tag when the client

creates the transport queue. The client MUST set

SETTINGS_ENABLE_PUSH to be consistent.

Push state: the server MUST maintain the last entry pushed to the

client (and hence per client, per connection state) and schedule

next update push accordingly.

Push management: The client MUST NOT cancel (RST_STREAM) a

PUSH_PROMISE to avoid complex server state management.

3.2. Examples

A client can wait for the server for incremental push, where the

server first sends PUSH_PROMISE, for the first example in Sec. 2.2:

¶

*

¶

*

¶

*

¶

¶

 Server -> client PUSH_PROMISE in current stream:

 PUSH_PROMISE

 - END_STREAM

 Promised Stream 4

 HEADER BLOCK

 :method = GET

 :scheme = https

 :path = /tqs/2718281828459/uq/101

 host = alto.example.com

 accept = application/alto-error+json,

 application/alto-costmap+json

 Server -> client content Stream 4:

 HEADERS

 + END_STREAM

 + END_HEADERS

 :status = 200

 content-type = application/alto-costmap+json

 content-length = TBD

 DATA

 + END_STREAM

 {

 "meta" : {

 "dependent-vtags" : [{

 "resource-id": "my-network-map",

 "tag": "da65eca2eb7a10ce8b059740b0b2e3f8eb1d4785"

 }],

 "cost-type" : {

 "cost-mode" : "numerical",

 "cost-metric": "routingcost"

 },

 "vtag": {

 "resource-id" : "my-routingcost-map",

 "tag" : "3ee2cb7e8d63d9fab71b9b34cbf764436315542e"

 }

 },

 "cost-map" : {

 "PID1": { "PID1": 1, "PID2": 5, "PID3": 10 },

 "PID2": { "PID1": 5, "PID2": 1, "PID3": 15 },

 "PID3": { "PID1": 20, "PID2": 15 }

 }

 }

 Server -> client PUSH_PROMISE in current stream:

 PUSH_PROMISE

 - END_STREAM

 Promised Stream 6

 HEADER BLOCK

 :method = GET

 :scheme = https

 :path = /tqs/2718281828459/uq/102

 host = alto.example.com

 accept = application/alto-error+json,

 application/merge-patch+json

 Server -> client content Stream 6

 HEADERS

 + END_STREAM

 + END_HEADERS

 :status = 200

 content-type = application/merge-patch+json

 content-length = TBD

 DATA

 + END_STREAM

 { ...}

¶

4. Server Push Stream Management

4.1. Server -> Client [PUSH_PROMISE for Transport Queue on Stream

SID_tq]

The server push MUST satisfy the following requirements:

PUSH_PROMISE MUST be sent in stream SID_tq to serialize to allow

the client to know the push order;

Each PUSH_PROMISE chooses a new server-selected stream ID, and

the stream is closed after push.

5. Server Push Information Resource Directory (IRD)

Extending the IRD example in Section 8.1 of [RFC8895], below is the

IRD of an ALTO server supporting ALTO base protocol, ALTO/SSE, and

Server Push.

In particular,

¶

*

¶

*

¶

¶

¶

 "my-network-map": {

 "uri": "https://alto.example.com/networkmap",

 "media-type": "application/alto-networkmap+json",

 },

 "my-routingcost-map": {

 "uri": "https://alto.example.com/costmap/routingcost",

 "media-type": "application/alto-costmap+json",

 "uses": ["my-networkmap"],

 "capabilities": {

 "cost-type-names": ["num-routingcost"]

 }

 },

 "my-hopcount-map": {

 "uri": "https://alto.example.com/costmap/hopcount",

 "media-type": "application/alto-costmap+json",

 "uses": ["my-networkmap"],

 "capabilities": {

 "cost-type-names": ["num-hopcount"]

 }

 },

 "my-filtered-cost-map": {

 "uri": "https://alto.example.com/costmap/filtered/constraints",

 "media-type": "application/alto-costmap+json",

 "accepts": "application/alto-costmapfilter+json",

 "uses": ["my-networkmap"],

 "capabilities": {

 "cost-type-names": ["num-routingcost", "num-hopcount"],

 "cost-constraints": true

 }

 },

 "my-simple-filtered-cost-map": {

 "uri": "https://alto.example.com/costmap/filtered/simple",

 "media-type": "application/alto-costmap+json",

 "accepts": "application/alto-costmapfilter+json",

 "uses": ["my-networkmap"],

 "capabilities": {

 "cost-type-names": ["num-routingcost", "num-hopcount"],

 "cost-constraints": false

 }

 },

 "my-props": {

 "uri": "https://alto.example.com/properties",

 "media-type": "application/alto-endpointprops+json",

 "accepts": "application/alto-endpointpropparams+json",

 "capabilities": {

 "prop-types": ["priv:ietf-bandwidth"]

 }

 },

 "my-pv": {

 "uri": "https://alto.example.com/endpointcost/pv",

 "media-type": "multipart/related;

 type=application/alto-endpointcost+json",

 "accepts": "application/alto-endpointcostparams+json",

 "capabilities": {

 "cost-type-names": ["path-vector"],

 "ane-properties": ["maxresbw", "persistent-entities"]

 }

 },

 "update-my-costs": {

 "uri": "https://alto.example.com/updates/costs",

 "media-type": "text/event-stream",

 "accepts": "application/alto-updatestreamparams+json",

 "uses": [

 "my-network-map",

 "my-routingcost-map",

 "my-hopcount-map",

 "my-simple-filtered-cost-map"

],

 "capabilities": {

 "incremental-change-media-types": {

 "my-network-map": "application/json-patch+json",

 "my-routingcost-map": "application/merge-patch+json",

 "my-hopcount-map": "application/merge-patch+json"

 },

 "support-stream-control": true

 }

 },

 "update-my-costs-h2": {

 "uri": "https://alto.example.com/updates-h2/costs",

 "media-type": "application/alto-transport+json",

 "accepts": "application/alto-updatestreamparams+json",

 "uses": [

 "my-network-map",

 "my-routingcost-map",

 "my-hopcount-map",

 "my-simple-filtered-cost-map"

],

 "capabilities": {

 "incremental-change-media-types": {

 "my-network-map": "application/json-patch+json",

 "my-routingcost-map": "application/merge-patch+json",

 "my-hopcount-map": "application/merge-patch+json"

 },

 "support-stream-control": true

 }

 },

 "update-my-props": {

 "uri": "https://alto.example.com/updates/properties",

 "media-type": "text/event-stream",

 "uses": ["my-props"],

 "accepts": "application/alto-updatestreamparams+json",

 "capabilities": {

 "incremental-change-media-types": {

 "my-props": "application/merge-patch+json"

 },

 "support-stream-control": true

 }

 },

 "update-my-pv": {

 "uri": "https://alto.example.com/updates/pv",

 "media-type": "text/event-stream",

 "uses": ["my-pv"],

 "accepts": "application/alto-updatestreamparams+json",

 "capabilities": {

 "incremental-change-media-types": {

 "my-pv": "application/merge-patch+json"

 },

 "support-stream-control": true

 }

 }

¶

[draft-ietf-alto-new-transport]

[RFC2119]

[RFC7230]

[RFC7285]

[RFC7540]

[RFC8174]

6. Security Considerations

The properties defined in this document present no security

considerations beyond those in Section 15 of the base ALTO

specification [RFC7285].

7. IANA Considerations

IANA will need to register server push.

8. Acknowledgments

The authors of this document would also like to thank many for the

reviews and comments.

9. References

9.1. Normative References

Schott, R. and Y. Yang, "ALTO New

Transport: ALTO Transport Information Structures",

Internet Draft ID, October 2022, <https://

datatracker.ietf.org/doc/draft-ietf-alto-new-transport/

02/>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/info/rfc7230>.

Alimi, R., Ed., Penno, R., Ed., Yang, Y., Ed., Kiesel,

S., Previdi, S., Roome, W., Shalunov, S., and R. Woundy,

"Application-Layer Traffic Optimization (ALTO) Protocol",

RFC 7285, DOI 10.17487/RFC7285, September 2014, <https://

www.rfc-editor.org/info/rfc7285>.

Belshe, M., Peon, R., and M. Thomson, "Hypertext Transfer

Protocol Version 2 (HTTP/2)", RFC 7540, DOI 10.17487/

RFC7540, May 2015, <https://www.rfc-editor.org/info/

rfc7540>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

¶

¶

¶

https://datatracker.ietf.org/doc/draft-ietf-alto-new-transport/02/
https://datatracker.ietf.org/doc/draft-ietf-alto-new-transport/02/
https://datatracker.ietf.org/doc/draft-ietf-alto-new-transport/02/
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7285
https://www.rfc-editor.org/info/rfc7285
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc8174

[RFC8895]

[RFC7971]

Roome, W. and Y. Yang, "Application-Layer Traffic

Optimization (ALTO) Incremental Updates Using Server-Sent

Events (SSE)", RFC 8895, DOI 10.17487/RFC8895, November

2020, <https://www.rfc-editor.org/info/rfc8895>.

9.2. Informative References

Stiemerling, M., Kiesel, S., Scharf, M., Seidel, H., and

S. Previdi, "Application-Layer Traffic Optimization

(ALTO) Deployment Considerations", RFC 7971, DOI

10.17487/RFC7971, October 2016, <https://www.rfc-

editor.org/info/rfc7971>.

Authors' Addresses

Roland Schott

Deutsche Telekom

Heinrich-Hertz-Strasse 3-7

64295 Darmstadt

Germany

Email: Roland.Schott@telekom.de

Y. Richard Yang

Yale University

51 Prospect St

New Haven, CT 06520

United States of America

Email: yry@cs.yale.edu

Kai Gao

Sichuan University

Chengdu

201804

China

Email: kgao@scu.edu.cn

Lauren Delwiche

Yale University

51 Prospect St

New Haven, CT 06520

United States of America

Email: lauren.delwiche@yale.edu

https://www.rfc-editor.org/info/rfc8895
https://www.rfc-editor.org/info/rfc7971
https://www.rfc-editor.org/info/rfc7971
mailto:Roland.Schott@telekom.de
mailto:yry@cs.yale.edu
mailto:kgao@scu.edu.cn
mailto:lauren.delwiche@yale.edu

	ALTO New Transport: Server Push using PUSH_PROMISE of HTTP/2
	Abstract
	Requirements Language
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Manage Server Push: Receiver Set
	2.1. Receiver Set Operations
	2.2. Examples

	3. Server Push of Incremental Updates
	3.1. Server Push
	3.2. Examples

	4. Server Push Stream Management
	4.1. Server -> Client [PUSH_PROMISE for Transport Queue on Stream SID_tq]

	5. Server Push Information Resource Directory (IRD)
	6. Security Considerations
	7. IANA Considerations
	8. Acknowledgments
	9. References
	9.1. Normative References
	9.2. Informative References

	Authors' Addresses

