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Abstract

   When the path characteristics between two hosts change abruptly, TCP
   can experience significant delays before resuming transmission in an
   efficient manner or TCP can behave unfairly to competing traffic.
   This document describes TCP extensions that improve transmission
   behavior in response to advisory, lower-layer connectivity-change
   indications.  The proposed TCP extensions modify the local behavior
   of TCP and introduce a new TCP option to signal locally received
   connectivity-change indications to remote peers.  Performance gains
   result from a more efficient transmission behavior and there is no
   difference in aggressiveness in comparison to a newly-started
   connection.

Table of Contents

1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
2.  Terminology  . . . . . . . . . . . . . . . . . . . . . . . . .  4
3.  Motivation and Overview  . . . . . . . . . . . . . . . . . . .  4
4.  Connectivity-Change Indications  . . . . . . . . . . . . . . .  6
5.  TCP Response to Connectivity-Change Indications (CCIs) . . . .  7
5.1.  Connectivity-Change Indication (CCI) TCP Option  . . . . .  9

     5.2.  Generation and Processing of Connectivity-Change
           Indication TCP Options . . . . . . . . . . . . . . . . . . 11

5.3.  Re-Probing Path Characteristics  . . . . . . . . . . . . . 15
5.4.  Speculative Retransmission . . . . . . . . . . . . . . . . 16

6.  Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.1.  Triggered Segment Transmission during Steady-State . . . . 17
6.2.  Impact of Packet Loss  . . . . . . . . . . . . . . . . . . 17
6.3.  Use of Limited Transmit with RLCI  . . . . . . . . . . . . 18

     6.4.  Simultaneous Processing of Connectivity-Change
           Indications  . . . . . . . . . . . . . . . . . . . . . . . 19

7.  Security Considerations  . . . . . . . . . . . . . . . . . . . 19
8.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 20
9.  Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . 20
10. References . . . . . . . . . . . . . . . . . . . . . . . . . . 20
10.1. Normative References . . . . . . . . . . . . . . . . . . . 20
10.2. Informative References . . . . . . . . . . . . . . . . . . 21

   Editorial Comments . . . . . . . . . . . . . . . . . . . . . . . .
Appendix A.  Background: Classification of Connectivity

                Disruptions . . . . . . . . . . . . . . . . . . . . . 23
A.1.  Short Connectivity Disruptions . . . . . . . . . . . . . . 25
A.2.  Long Connectivity Disruptions  . . . . . . . . . . . . . . 27

Appendix B.  Document Revision History . . . . . . . . . . . . . . 29
   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 30
   Intellectual Property and Copyright Statements . . . . . . . . . . 32



Schuetz, et al.          Expires August 25, 2008                [Page 2]



Internet-Draft  TCP Response to Connectivity Indications   February 2008

1.  Introduction

   The Transmission Control Protocol (TCP) [RFC0793] generally assumes
   that the end-to-end path between two hosts has characteristics that
   are relatively stable over the lifetime of a connection.  Although
   TCP's congestion control algorithms [RFC2581] can adapt to changes to
   the path characteristics after several round-trip times, they fail to
   support efficient operation in the few round-trip times immediately
   after a significant path change.  This is due to the granularity of
   TCP's sampling mechanisms.  Significant changes to path connectivity
   include loss or reestablishment of connectivity, and drastic, abrupt
   changes in round-trip time (RTT) or available bandwidth.
   Connectivity changes that occur on such short time-scales are
   becoming more common, due to host mobility or intermittent network
   attachment.

   This document describes a set of complementary TCP extensions that
   improve behavior when transmitting over paths whose characteristics
   can change on short time-scales.  TCP implementations that support
   these extensions respond to receiving generic, link-technology-
   independent, per-connection connectivity-change indications from
   lower layers.  A connectivity-change indication signals that the
   characteristics of the end-to-end path between the local node and its
   peer have changed in some undefined way.  The response mechanisms
   proposed for TCP act on this information in a conservative fashion.
   The specific response depends on the current state of a connection
   when a connectivity-change indication is received.

   It is important to note that this addition of response mechanisms to
   lower-layer information is following an established precedent.  TCP
   and other transport protocols already react to information and
   signals from lower layers; the proposed connectivity-change
   indications thus extend an established interface between layers in
   the protocol stack.  TCP measures the end-to-end path to implicitly
   derive network-layer information.  TCP also directly reacts to
   network-layer signals delivered via ICMP, for example, "Port
   Unreachable" or the now-deprecated "Source Quench" [RFC1122].
   Explicit Congestion Notification (ECN) [RFC3168] and Quick-Start
   [RFC4782] are other sources of network-layer information for which
   response mechanisms for TCP have been defined.  Connectivity-change
   indications are yet another source of lower-layer information that
   TCP can use to improve its operation.

   A second important point to note is that the TCP response mechanisms
   to connectivity-change indications are purely optional efficiency
   improvements.  In the absence of connectivity-change indications, a
   TCP that implements these changes behaves identically to an
   unmodified TCP.  When lower layers provide connectivity-change

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc4782
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   indications that trigger the response mechanisms, they enhance TCP
   operation based on the explicit lower-layer information that is
   signaled.  These response mechanisms do not increase the
   aggressiveness of TCP.

   Note that the IAB has recently described architectural issues of
   "link indications" [RFC4907].  The authors feel that this term is not
   quite accurate in this environment, because transport mechanisms
   should remain link-technology-agnostic.  However, transport protocols
   have always acted on network-layer information and signals, such as
   measured path characteristics or ICMP-signaled conditions.  Because
   of the growing proliferation of shim layers between the traditional
   network and transport layers, this document uses the term "lower-
   layer indication" to remain independent of specific network or shim
   layers.

   Note that it is currently an open question as to whether additional
   lower-layer indications can provide further information to transport
   protocols.  Also, this document only describes response mechanisms
   for TCP, although other transport protocols may benefit from similar
   response mechanisms to react to connectivity-change indications.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

   The following abbreviations are used throughout the document:

    +------+---------------------------------------------------------+
    | CCI  | Connectivity-Change Indication                          |
    | RLCI | Response to Lower-layer Connectivity-change Indications |
    +------+---------------------------------------------------------+

                          Table 1: Abbreviations

3.  Motivation and Overview

   Several proposed network-layer extensions support host mobility,
   including Mobile IPv4 [RFC3344], Mobile IPv6 [RFC3775] and HIP
   [I-D.ietf-hip-mm].  Typically, they shield transport-layer protocols
   from mobility events and enable them to sustain established
   connections across mobility events.  However, the path
   characteristics that established connections experience after a
   mobility event may have changed drastically and on short time-scales.

https://datatracker.ietf.org/doc/html/rfc4907
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3344
https://datatracker.ietf.org/doc/html/rfc3775
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   Congestion control, RTT and path-MTU state gathered over an old path
   before the move generally have no meaning for the new path.  Because
   TCP uses stale information when resuming transmission over the new
   path, it can be either too aggressive or highly inefficient.  Similar
   conditions may be found when fail-overs occur for multihomed hosts
   through the shim6 protocol.  Some background on the types of
   scenarios that the technology described in this document is designed
   to work within is found in Appendix A.

   TCP already forces a slow-start restart in some cases where the
   network state becomes unknown, such as after an idle period or heavy
   losses.  A first part of the response specified in this document
   involves a similar return to initial slow-start state in response to
   connectivity-change indications that are received while a connection
   is transmitting in steady-state.  Note that this behavior is more
   conservative than the standard TCP response or lack of response.
   Some performance gains with the proposed mechanisms are due to either
   avoiding overloading the new path, which typically incurs an RTO, or
   using slow-start to quickly detect new capacity far above the point
   where steady-state had previously been near.

   A second response component improves TCP operation in the presence of
   temporary connectivity disruptions.  These disruptions can occur
   independently of mobility events and, for example, may be due to
   insufficient wireless access coverage or nomadic computer use.
   Connectivity disruptions can severely decrease TCP performance.  The
   main reason for this decrease is TCP's retransmission behavior after
   a connectivity disruption [SCHUETZ].  TCP uses periodic
   retransmission attempts in exponentially increasing intervals, which
   can unnecessarily delay retransmissions after connectivity returns.
   In the extreme case, TCP connections can even abort, if the
   disruption is longer than the TCP "user timeout".  (Connection aborts
   are out of scope for this document but can be prevented by the TCP
   User Timeout Option [I-D.ietf-tcpm-tcp-uto].)

   This second response action executes when receiving a connectivity-
   change indication while a connection is stalled in exponential back-
   off.  It improves TCP retransmission behavior after connectivity is
   restored through an immediate speculative retransmission attempt
   [footnote-1].  Similar to the first response component, the second
   one also increases TCP performance through a more intelligent
   transmission behavior that uses periods of connectivity more
   efficiently.  In comparison to startup of a new connection, it does
   not cause significant amounts of additional traffic and it does not
   change TCP's congestion control algorithms.

   Finally, this draft specifies a third response component, which is a
   new TCP option that notifies the connection's remote peer of a
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   connectivity-change event detected locally.  This is useful because
   connectivity-change indications typically require appropriate
   responses at both ends of a connection, but may only be received or
   detected by one end.  The other parts of the response to a
   connectivity-change indication are independent of the indication's
   source (locally notified or remotely signaled) and depend only on the
   specific indication and the state of the connection for which it was
   received.

4.  Connectivity-Change Indications

   The focus of this document is on specifying TCP response mechanisms
   to lower-layer connectivity-change indications.  This section briefly
   describes how different network- and shim-layer mechanisms underneath
   the transport layer may provide these connectivity-change indications
   to TCP.  This section is included for clarification only; details on
   connectivity indication sources are out of scope of this document.

   When lower layers detect a connectivity-change event, they generate
   corresponding connectivity-change indications.  Lower-layer events
   that could trigger such an indication include (but are not limited
   to):

   o  the IP address of the local outbound interface used for a given
      connection has changed, e.g., due to DHCP [RFC2131] or IPv6 router
      advertisements [RFC2460];

   o  link-layer connectivity of the local outbound interface used for a
      given connection has changed, e.g., link-layer "link up" event
      [RFC4957];

   o  the local outbound interface used for a given connection has
      changed, due to routing changes or link-layer connectivity changes
      at other interfaces (including tunnel establishment or teardown,
      e.g., in response to IKE events [RFC4306]);

   o  a Mobile IP binding update has completed [RFC3775];

   o  a HIP readdressing update has completed [I-D.ietf-hip-mm];

   o  a path-change signal from the network has arrived (possible in
      theory, depends on network capabilities);

   o  other notifications as defined by the IETF's Detecting Network
      Attachment (DNA) working group have occurred [RFC4957].

   Note that the list above only describes some potential sources for

https://datatracker.ietf.org/doc/html/rfc2131
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc4957
https://datatracker.ietf.org/doc/html/rfc4306
https://datatracker.ietf.org/doc/html/rfc3775
https://datatracker.ietf.org/doc/html/rfc4957
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   connectivity-change events.  Other sources exist, but the details on
   when to generate such events are out of the scope of this document,
   which focuses on the TCP response mechanisms when such events are
   received.

5.  TCP Response to Connectivity-Change Indications (CCIs)

   A TCP connection can receive a connectivity-change indication (CCI)
   either from its local stack ("local CCI") or through a new
   "connectivity-change indication TCP option" from its peer ("remote
   CCI").  Section 5.1 specifies this new TCP option.  In either case,
   upon reception of a CCI, the TCP RLCI (Response to Lower-layer
   Connectivity-change Indications) mechanisms defined in this document
   immediately re-probe path characteristics.  They do this by either
   performing a speculative retransmission or by sending a single
   segment of new data or a pure ACK, depending on whether the
   connection is currently stalled in exponential back-off or
   transmitting in steady-state, respectively.  A connection is "stalled
   in exponential back-off", if at least one segment was retransmitted
   due to a RTO expiration but has not been ACK'ed yet.

   The remainder of this section first defines the format of the new CCI
   TCP option in Section 5.1 and its processing in Section 5.2.  After
   that, the two TCP response mechanisms triggered by receiving CCIs -
   re-probing path characteristics and speculative retransmission - are
   described in Section 5.3 and Section 5.4.

   The TCP RLCI mechanisms defined in this document depend on the TCP
   Timestamps option (TSopt) [RFC1323].  Consequently, it is REQUIRED
   that an end host that wishes to use the RLCI mechanisms for a TCP
   connection negotiate the use of TCP Timestamps options with its peer.
   If this negotiation fails, a host MUST NOT use the RLCI mechanisms
   for a connection.  TCP Timestamps options are needed by the RLCI
   mechanisms during the following operations:

   o  To re-probe the path characteristics after a connectivity-change
      indication.  A host uses the TS Echo Reply (TSecr) field of a TCP
      Timestamps option to distinguish whether incoming ACKs are for
      segments that have been transmitted before or after CCI.

   o  To identify a new remote CCI.  A host uses the TS Value (TSval)
      field of an incoming TCP Timestamps option to distinguish a new
      remote CCI from the delayed reception of an old one.  As a result,
      last remote CCI is defined as the one received with the highest TS
      Value.

Section 5.2 and Section 5.3 give more details about how the RLCI

https://datatracker.ietf.org/doc/html/rfc1323
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   mechanisms use TCP Timestamps options.

   An implementation of the RLCI mechanisms defined in this document
   maintains nine new state variables per TCP connection. [footnote-2]

   LOCAL_CCI
      It is a 1-bit counter, having an initial value of 0.  It is used
      for distinguishing the existence of a new local CCI.  It changes
      its value every time a new local CCI received from the local stack
      starts being processed.

   REMOTE_CCI
      It holds a copy of the last CCI value advertised by the peer
      through a CCI TCP option.  This is a 1-bit counter initialized to
      0 and gets updated in response to remote CCIs according to the
      rules defined in Section 5.2.

   LOCAL_CCI_STATUS
      It holds the status of the processing of local CCIs.  It can have
      three possible values: LOCAL_CCI_IDLE (0), LOCAL_CCI_NEW (1),
      LOCAL_CCI_ECHO_ACK (2).  The initial value is LOCAL_CCI_IDLE.

   REMOTE_CCI_STATUS
      It holds the status of the processing of the last remote CCI
      advertised by the peer through a CCI TCP option.  It can have two
      possible values: REMOTE_CCI_IDLE (0), REMOTE_CCI_ECHO (1).  The
      initial value is REMOTE_CCI_IDLE.

   LAST_CCI_TIME
      It holds the local time when the last CCI (either local or remote)
      was received.  It is updated every time either LOCAL_CCI or
      REMOTE_CCI is modified.

   REMOTE_CCI_PEER_TIME
      This variable is used in order to distinguish new remote CCIs from
      the retransmissions of the past ones.  It holds the TS Value
      (TSval) of the Timestamps option of the segment advertising the
      last remote CCI.  It is initialized when receiving the first
      segment from the peer and it is updated every time REMOTE_CCI is
      modified.

   LOCAL_CCI_PEER_ECHO_TIME
      This variable is used in order to distinguish the echo of a new
      local CCI from delayed retransmissions of echoes of older local
      CCIs.  It holds the TS Value (TSval) of the Timestamps option of
      the segment that echoed the last local CCI.  It is initialized
      when receiving the first segment from the peer and it is updated
      every time LOCAL_CCI_STATUS changes from LOCAL_CCI_NEW to
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      LOCAL_CCI_ECHO_ACK.

   CCI_SNDMAX
      Retains the highest sequence number transmitted when the most
      recent CCI (either local or remote) was received.

   CCI_CONTROLLED_CWND
      It is a Boolean variable that sets an additional condition
      controlling the increment of TCPs congestion window (CWND).
      Having an initial value of false, it is updated according to the
      rules defined in Section 5.2.

5.1.  Connectivity-Change Indication (CCI) TCP Option

   Connectivity-change indications (CCIs) are generally asymmetric,
   i.e., they may occur or be detected by one end but not the other.
   The basic idea behind the CCI option is to signal the occurrence of
   local CCIs to the other end, in order to allow also the other end to
   respond appropriately.  Note that this assumes that paths will
   generally be symmetric, meaning that a CCI received by one end for
   its path to the other end will imply that the characteristics of the
   reverse path have changed, too.

                                  1                   2
              0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
             +---------------+---------------+-----+-+-+---+-+
             |               |               |  R  | | |   |E|
             |   Kind = X    |  Length = 3   |  E  |C|E| C |C|
             |               |               |  S  | |C| S |S|
             +---------------+---------------+-----+-+-+---+-+

    Figure 1: Format of the connectivity-change indication TCP option.

   Figure 1 shows the format of the CCI option.  It contains these
   fields:

   Kind (8 bits)
      The TCP option number X [RFC0793] allocated by IANA upon
      publication of this document (see Section 8).

   Length (8 bits)
      Length of the TCP option in octets [RFC0793]; its value MUST be 3.

   RES (3 bits)
      Reserved bits.  The sender SHOULD set these to zero and the
      receiver MUST ignore them.

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0793
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   C (1 bit)
      Current value of LOCAL_CCI of the end sending the option.

   EC (1 bit)
      Echoed value of C, i.e., the current value of REMOTE_CCI of the
      end sending the option.

   CS (2 bit)
      Current value of LOCAL_CCI_STATUS of the end sending the option.

   ECS (1 bit)
      Current value of REMOTE_CCI_STATUS of the end sending the option.

   The CCI option contains two single-bit fields (C and EC) used to
   distinguish new CCIs from delayed retransmissions of past ones.  It
   also contains some flags representing the status of each CCI
   processing.  These flags are used for a 3-way handshake ensuring that
   both parties have been informed of a new CCI.  At the beginning of a
   connection, LOCAL_CCI and REMOTE_CCI MUST be set to 0.
   LOCAL_CCI_STATUS and REMOTE_CCI_STATUS MUST be set to LOCAL_CCI_IDLE
   and REMOTE_CCI_IDLE, respectively.

   A host actively opening a connection and wishing to use the CCI
   option for that connection MUST include a CCI option in its SYN
   segment with C := 0, CS := LOCAL_CCI_IDLE, EC := 0 and ECS :=
   REMOTE_CCI_IDLE in order to advertise support for the TCP CCI option.
   A host receiving a SYN segment MUST NOT include a CCI option in its
   SYN-ACK or any subsequent segment, unless it has received a CCI
   option in the corresponding SYN.  In case a host has received a CCI
   option in the SYN segment, it MUST echo that CCI option in its SYN-
   ACK segment, i.e., it MUST set C := 0, CS := LOCAL_CCI_IDLE, EC := 0
   and ECS := REMOTE_CCI_IDLE.  A host MUST NOT process any following
   CCI options unless one was included in both the SYN and SYN-ACK and
   both peers have enabled TCP Timestamps for the connection.

Section 5.2.1 and Section 5.2.2 describe the processing rules in
   detail.

   A host MUST send a CCI option in all outgoing segments whenever
   LOCAL_CCI_STATUS is not LOCAL_CCI_IDLE or REMOTE_CCI_STATUS is not
   REMOTE_CCI_IDLE (or both).  A host MUST NOT send a CCI option when
   LOCAL_CCI_STATUS is LOCAL_CCI_IDLE and REMOTE_CCI_STATUS is
   REMOTE_CCI_IDLE, i.e., when the host is not currently processing any
   CCI.  The only exceptions to that rule are SYN and SYN-ACK segments.
   Whenever sending any CCI option, C MUST be set to the current
   LOCAL_CCI, EC MUST be set to the current REMOTE_CCI, CS MUST be set
   to LOCAL_CCI_STATUS and ECS MUST be set to REMOTE_CCI_STATUS,
   respectively.
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5.2.  Generation and Processing of Connectivity-Change Indication TCP
      Options

   Processing of a connectivity-change indication can be separated into
   two parts:

   1.  Processing in "initiator" mode, i.e., when a host receives a
       local CCI and (reliably) forwards it to the other end through a
       CCI option.

   2.  Processing in "responder" mode, i.e., when a host that receives a
       remote CCI in a CCI option from the other end.

Section 5.2.1 and Section 5.2.2 describe the state machines at an
   initiator and a responder, respectively.  Note that a single host can
   be both - initiator and responder - at the same time.  This can
   happen if a local CCI occurs while processing for a remote CCI is
   ongoing, or vice versa.

   The following events, conditions and actions are used in the
   definition of the two state machines:

   Events:

   E_LOCAL_CCI
      Local end received a local CCI.

   E_REMOTE_CCI
      Local end received information about a remote CCI, i.e., received
      a TCP segment that includes a CCI option.

   E_SEGMENT_SENT
      Local end sent a TCP segment that includes the CCI option.

   Conditions:

   C_NEW_REMOTE_CCI
      A received CCI option signals a new remote CCI, i.e., C !=
      REMOTE_CCI, CS == LOCAL_CCI_NEW and the TSval of the Timestamps
      option of the received segment is greater than the current
      REMOTE_CCI_PEER_TIME (TSval > REMOTE_CCI_PEER_TIME).

   C_ECHOED_LOCAL_CCI
      A received CCI option echoes the last local CCI, i.e., EC ==
      LOCAL_CCI, ECS == REMOTE_CCI_ECHO and the TSval of the Timestamps
      option of the received segment is greater than the current
      LOCAL_CCI_PEER_ECHO_TIME (TSval > LOCAL_CCI_PEER_ECHO_TIME).
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   C_ECHOED_REMOTE_CCI
      A received CCI option acknowledges that the peer has received the
      echo of its last local CCI, i.e., C == REMOTE_CCI, CS ==
      LOCAL_CCI_ECHO_ACK and the TSval of the Timestamps option of the
      received segment is greater than the current REMOTE_CCI_PEER_TIME
      (TSval > REMOTE_CCI_PEER_TIME).

   Actions:

   A_TGL_LOCAL_CCI
      Toggle LOCAL_CCI.

   A_TGL_REMOTE_CCI
      Toggle REMOTE_CCI.

   A_REPROBE_PATH
      TCP discards all congestion control information gathered on the
      current path, initializes them to the defaults and re-probes path
      characteristics based only on the segments transmitted after this
      event, as described in Section 5.3.  In other words,
      CCI_CONTROLLED_CWND := 1, LAST_CCI_TIME := current local time,
      CCI_SNDMAX := highest sequence number transmitted so far and the
      congestion control state (CWND and SS_THRESH), round-trip time
      measurement (RTTM) state and RTO timer are reset to the initial
      values for a new connection.  Additionally, if the connection is
      stalled in exponential back-off, TCP MUST act as if RTO had
      expired and start the speculative retransmission procedure
      described in Section 5.4.

   A_FORCE_SEND
      Force transmission of a segment that MUST include a CCI option, in
      order to inform the other peer about the local CCI.  If the
      connection is stalled in exponential back-off, this is taken care
      of by the speculative retransmission procedure described in

Section 5.4.  If the connection is in steady-state and there is
      new data to be sent, TCP MUST immediately send a single segment of
      new data including a CCI option.  If there is no new data to be
      sent, TCP MUST immediately send a pure ACK including a CCI option.

   A_UPD_CCI_PEER_TIME
      Set REMOTE_CCI_PEER_TIME to the TSval value of the TCP Timestamps
      option of the received segment.

   A_UPD_CCI_PEER_E_TIME
      Set LOCAL_CCI_PEER_ECHO_TIME to the TSval value of the TCP
      Timestamps option of the received segment.
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5.2.1.  Initiator Mode Processing

   This section describes the initiator mode processing of a TCP host
   implementing RLCI.  In initiator mode, a host signals the occurrence
   of a local CCI to its peer, until the peer echoes reception of that
   CCI.  After receiving the echo, the host needs to acknowledge the
   echo reception, resulting in a 3-way handshake.  Figure 2 shows the
   corresponding state machine.

   At the beginning of a connection, i.e., before the first local CCI
   occurs, LOCAL_CCI is 0 and LOCAL_CCI_STATUS is LOCAL_CCI_IDLE.  This
   remains the case until TCP receives a local CCI (E_LOCAL_CCI).

   When that happens, TCP toggles LOCAL_CCI (A_TGL_LOCAL_CCI), sets
   LOCAL_CCI_STATUS := LOCAL_CCI_NEW, starts re-probing the new path
   (A_REPROBE_PATH) and forces a segment to be sent to the peer
   (A_FORCE_SEND).

   Note that all subsequently transmitted segments MUST contain a CCI
   option until LOCAL_CCI_STATUS becomes LOCAL_CCI_IDLE.  After the host
   receives the echo of the local CCI (C_ECHOED_LOCAL_CCI), it updates
   LOCAL_CCI_PEER_ECHO_TIME (A_UPD_CCI_PEER_E_TIME) and sets
   LOCAL_CCI_STATUS := LOCAL_CCI_ECHO_ACK.  The initiator remains in
   this state until it can send a segment with the CCI option
   (E_SEGMENT_SENT) that acknowledges reception of the CCI echo.  At
   that time, it sets LOCAL_CCI_STATUS := LOCAL_CCI_IDLE.

   The transition from LOCAL_CCI_IDLE to LOCAL_CCI_ECHO_ACK occurs if a
   segment acknowledging the reception of a CCI echo is lost, and the
   initiator retransmits the echo acknowledgment.

   When a local CCI occurs (E_LOCAL_CCI) while LOCAL_CCI_STATUS !=
   LOCAL_CCI_IDLE, the host MUST ignore it and MUST NOT alter LOCAL_CCI,
   because it is already processing another local CCI.
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                 E_LOCAL_CCI =>
                 A_TGL_LOCAL_CCI        E_REMOTE_CCI
                 A_REPROBE_PATH         C_ECHOED_LOCAL_CCI=>
                 A_FORCE_SEND           A_UPD_CCI_PEER_E_TIME
                 +----------------+    +----------------+
                 |                |    |                |
                 |                |    |                |
                 |                |    |                |
                 |                V    |                V
         +----------------+  +----------------+  +----------------+
         |                |  |                |  |                |
         |LOCAL_CCI_STATUS|  |LOCAL_CCI_STATUS|  |LOCAL_CCI_STATUS|
         |       ==       |  |       ==       |  |       ==       |
         |LOCAL_CCI_IDLE  |  |LOCAL_CCI_NEW   |  |LOCAL_CCI_ECHO_ |
         |                |  |                |  |ACK             |
         +----------------+  +----------------+  +----------------+
                ^  |                                   ^  |
                |  |                                   |  |
                |  +-----------------------------------+  |
                |           E_REMOTE_CCI                  |
                |           C_ECHOED_LOCAL_CCI            |
                |                                         |
                |                                         |
                +-----------------------------------------+
                               E_SEGMENT_SENT

             Figure 2: State machine for initiator processing.

5.2.2.  Responder Mode Processing

   This section describes the responder mode processing of CCIs for a
   TCP host implementing the CCI option.  In responder mode, a host
   echoes the last received remote CCI to its peer, until it can be sure
   that the peer correctly received the echo.  Figure 3 shows the
   corresponding state machine.

   At the beginning of a connection, REMOTE_CCI is 0 and
   REMOTE_CCI_STATUS is REMOTE_CCI_IDLE, i.e., the local host is not
   processing any remote CCIs.

   When TCP receives a segment with a CCI option (E_REMOTE_CCI)
   signaling a new remote CCI (C_NEW_REMOTE_CCI), it increments
   REMOTE_CCI (A_TGL_REMOTE_CCI), changes REMOTE_CCI_STATUS to
   REMOTE_CCI_ECHO, updates REMOTE_CCI_PEER_TIME according to TSval
   (A_UPD_CCI_PEER_TIME), starts re-probing the new path
   (A_REPROBE_PATH) and forces a segment to be sent to the peer
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   (A_FORCE_SEND).

   Note that all subsequently transmitted segments MUST contain a CCI
   option until REMOTE_CCI_STATUS is again REMOTE_CCI_IDLE.  This
   transition occurs when the peer acknowledges the reception of the CCI
   echo (C_ECHOED_REMOTE_CCI).

                   E_REMOTE_CCI             E_REMOTE_CCI
                   C_NEW_REMOTE_CCI =>      C_NEW_REMOTE_CCI =>
                   A_TGL_REMOTE_CCI         A_TGL_REMOTE_CCI
                   A_UPD_CCI_PEER_TIME      A_UPD_CCI_PEER_TIME
                   A_REPROBE_PATH           A_REPROBE_PATH
                   A_FORCE_SEND             A_FORCE_SEND
                   +-----------------+      +-------------+
                   |                 |      |             |
                   |                 V      |             |
            +-----------------+  +-----------------+      |
            |REMOTE_CCI_STATUS|  |REMOTE_CCI_STATUS|      |
            |        ==       |  |        ==       |      |
            |REMOTE_CCI_IDLE  |  |REMOTE_CCI_ECHO  |      |
            +-----------------+  +-----------------+      |
                    ^                 |     ^             |
                    |                 |     |             |
                    +-----------------+     +-------------+
                     E_REMOTE_CCI
                     C_ECHOED_REMOTE_CCI

             Figure 3: State machine for responder processing.

   If TCP receives a new remote CCI while REMOTE_CCI_STATUS ==
   REMOTE_CCI_ECHO, this indicates that the acknowledgment of a previous
   CCI echo may have been lost and that the peer had a new CCI occur.
   In this case, TCP MUST perform the same actions as if
   REMOTE_CCI_STATUS == REMOTE_CCI_IDLE.

5.3.  Re-Probing Path Characteristics

   When a TCP connection receives a new CCI, it MUST re-probe path
   characteristics in order to prevent causing congestion by
   transmitting based on stale path state information.  In principle,
   this is similar to the initial slow-start: The sender MUST NOT
   transmit more than the default initial window (INIT_WINDOW) of data
   after a new CCI is received and it MUST reset the congestion control
   state (CWND and SS_THRESH), round-trip time measurement (RTTM) state
   and RTO timer, as if this were a new connection [RFC2581][RFC2988].

https://datatracker.ietf.org/doc/html/rfc2581
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   If Path MTU Discovery (PMTUD) is in use, the PMTUD state MUST also be
   reset [RFC1191][RFC1981][RFC4821].

   One difference to an initial slow-start is that after a CCI, the
   connection may have segments in flight towards the destination along
   a previous path.  Therefore, after a CCI, TCP MUST ignore any ACKs
   received for data that was sent before the CCI and it MUST update the
   congestion window solely based on ACKs for data that was sent after
   the CCI occurred.

   The mechanism used for distinguishing ACKs for data sent after a CCI
   occurred from ACKs for data sent before a CCI occurred uses TCP
   Timestamps options.  When a host receives a new CCI (either local or
   remote), LAST_CCI_TIME MUST be set to the current local time,
   CCI_SNDMAX MUST be set to the highest sequence number transmitted so
   far and CCI_CONTROLLED_CWND MUST be set to true.

   While CCI_CONTROLLED_CWND == true, TCP MUST update the congestion
   window based only on inbound ACKs that contain a TS Echo Reply
   (TSecr) value greater than or equal to LAST_CCI_TIME.  Any inbound
   ACK with a TS Echo Reply (TSecr) value less than LAST_CCI_TIME MUST
   NOT cause an update to the congestion window, even if it advances the
   window.  If CCI_CONTROLLED_CWND is true and the host receives an ACK
   with a sequence number greater than or equal to CCI_SNDMAX,
   CCI_CONTROLLED_CWND MUST be set to false and the congestion control
   algorithm MUST begin to process all ACKs normally, without checking
   their Timestamps options.

5.4.  Speculative Retransmission

   The basic idea behind the speculative retransmission is to allow TCP
   to resume stalled connections as soon as it receives an indication
   that connectivity to previously unreachable peers may have returned.

   When a TCP connection receives a new CCI - either from the local
   stack or in a CCI TCP option from the peer - and is currently stalled
   in exponential back-off, it MUST immediately initiate the standard
   retransmission procedure, just as if the RTO for the connection had
   expired.

6.  Discussion

   This section discusses some design choices of the RLCI mechanisms
   that can affect TCP performance under certain circumstances.

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc4821
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6.1.  Triggered Segment Transmission during Steady-State

   A TCP stack that implements RLCI mechanisms and receives a local CCI
   immediately sends a TCP segment (A_FORCE_SEND) in order to inform the
   other end of the CCI and resets all path information
   (A_REPROBE_PATH).  When TCP is stalled in exponential back-off, this
   is taken care of by the speculative retransmission procedure that is
   triggered by the CCI.

   On the other hand, when TCP is in steady-state, it sends a new
   segment (A_FORCE_SEND) if there is any new data queued for
   transmission.  As usual, the number of unacknowledged segments is
   limited by CWND.  However, CWND has just been reset to its initial
   value.  This means that there is a possibility that the transmission
   sends a segment that is outside the current congestion window.
   Although this behavior may appear to be aggressive, it is in fact as
   conservative as a newly starting connection, because only a single
   unacknowledged segment is sent along the path after CCI.

6.2.  Impact of Packet Loss

   If a connection is in exponential back-off when a CCI occurs, TCP
   considers all unacknowledged segments to be lost and the speculative
   retransmission procedure immediately starts.

   On the other hand, if the connection is in steady-state when a CCI
   occurs, TCP considers all unacknowledged segments to still be in
   flight and continues sending new data.  Depending on what caused a
   CCI, four scenarios are possible that differ in what happens to
   segments and ACKs in flight:

   1.  All (or at least the vast majority of) segments and ACKs in
       flight reach their respective destinations, i.e., there are no
       losses.  In this case, TCP acts as if a new connection had
       started and re-probes the new path.

   2.  Some of the ACKs in flight from the receiver to the sender are
       lost.  In this case, TCP behaves exactly as above, because a
       cumulative ACK for the new segment sent along the path after the
       CCI acknowledges all the previous unacknowledged segments.

   3.  Some of the data segments in flight from the sender to the
       receiver are lost.  In this case, the new data segment
       transmitted after the CCI causes a duplicate ACK.  As this
       duplicate ACK does not cause TCP to send another data segment,
       the connection stalls and a RTO occurs.  After RTO, the standard
       retransmission procedure takes place with SS_THRESH equal to
       INITIAL_WINDOW/2 (i.e., the minimum allowed).  This disables slow
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       start and causes a severely decreased performance.  A possible
       solution is to execute the speculative retransmission procedure
       after receiving a CCI even if the connection is in steady-state.

   4.  Some of the data segments and some of the ACKs that are in flight
       are lost.  This case is similar to the previous one.

   In all these cases, it is also possible that the round-trip time
   changes significantly after the CCI, reordering data segments and
   ACKs that are still in flight with ones sent after the CCI.  These
   reorderings appear to TCP as losses, and may result in the connection
   experiencing one of the above cases even if there was no actual
   packet loss.

6.3.  Use of Limited Transmit with RLCI

   As described in the previous section, when a connection is in steady-
   state, a connectivity-change indication (CCI) resets all path
   information of TCP and causes one new data segment to be sent.  In
   case of significant data segment loss before a CCI, the new data
   segment transmitted after a CCI causes a duplicate ACK.  As this
   duplicate ACK does not trigger TCP to send another data segment, the
   connection stalls and an RTO occurs.

   Limited Transmit [RFC3042] can be used in case of packet loss in
   order to cause the transmission of three duplicate ACKs and trigger
   the fast retransmission procedure.  As it must not cause an amount of
   outstanding data more than the congestion window plus two segments,
   it cannot always be used after a CCI due to the initialized CWND.  If
   the connection has more outstanding data than INITIAL_WINDOW plus two
   segments before a CCI, resetting of CWND to the initial value after
   CCI causes an amount of outstanding data greater than the new CWND
   plus two segments and disables Limited Transmit.

   A modified Limited Transmit algorithm can be used in combination with
   RLCI:

   If CCI_CONTROLLED_CWND is true:
      The Limited Transmit Algorithm as described in [RFC3042] should be
      followed, but without checking the amount of outstanding data,
      i.e., if a TCP sender has previously unsent data queued for
      transmission it should transmit new data upon the arrival of the
      first two consecutive duplicate ACKs when the receiver's
      advertised window allows this transmission.

https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc3042
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   If CCI_CONTROLLED_CWND is false:
      The Limited Transmit Algorithm as described in [RFC3042] should be
      followed unmodified.

   When the fast retransmission procedure is triggered by the modified
   Limited Transmit after a CCI, SS_THRESH is set to INITIAL_WINDOW/2
   (i.e., the minimum allowed) as CWND before fast retransmission was
   equal to INITIAL_WINDOW.  As a result, slow-start is disabled causing
   decreased TCP performance.

   A minor modification can keep SS_THRESH unmodified in the previous
   case, i.e., if CCI_CONTROLLED_CWND == true and CWND ==
   INITIAL_WINDOW, keep SS_THRESH unmodified (having its initial value)
   upon the reception of the third duplicate ACK that triggers the fast
   retransmission procedure.

6.4.  Simultaneous Processing of Connectivity-Change Indications

   As mentioned in Section 5.2.1, if a local CCI occurs (E_LOCAL_CCI)
   while LOCAL_CCI_STATUS != LOCAL_CCI_IDLE, the host MUST ignore it,
   because it is already processing another local CCI.  As a result,
   only one local CCI at each end can be processed at the same time.
   Consequently, as every remote CCI at one end is triggered by a local
   CCI at the other end, only one remote CCI at each end can be
   processed at the same time.

   On the other hand, if both hosts receive connectivity-change
   indications from their local stacks (local CCIs) at almost the same
   time, there is a possibility of simultaneous processing of local and
   remote CCIs at both ends.  In that case, path re-probing is triggered
   twice at each end in a very short time that can be lower than RTT.
   As this does not improve TCP performance, it can be avoided by
   triggering the A_REPROBE_PATH action only if CCI_CONTROLLED_CWND ==
   false.

7.  Security Considerations

   The only foreseen security considerations with the techniques
   presented in this document result from either an attacker's ability
   to spoof valid TCP segments with CCI options that seemingly indicate
   connectivity changes, or an attacker's ability to generate bogus CCIs
   locally.  An attacker might produce a stream of such false indicators
   that could keep a connection in slow-start at the initial window.
   One possible defense against this type of attack is to rate-limit the
   response to CCIs (whether local or remote).  This is also probably
   less serious than other attacks such an empowered adversary could
   perform, like resetting the connection or injecting data.  A similar

https://datatracker.ietf.org/doc/html/rfc3042
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   effect could be achieved without the new CCI option by forging
   duplicate ACKs that would keep a sender in loss recovery.  If both
   sets of IP addresses, port numbers, and sequence numbers are
   guessable for a connection, then the connection should employ other
   measures [RFC4953] for protection against spoofed segments.

8.  IANA Considerations

   This section is to be interpreted according to
   [I-D.narten-iana-considerations-rfc2434bis].

   This document does not define any new namespaces.  It requests that
   IANA allocate a new 8-bit TCP option number for the CCI option from
   the registry maintained at

http://www.iana.org/assignments/tcp-parameters.
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Editorial Comments

   [footnote-1]  The authors have heard the idea of triggering
                 retransmits based on connectivity events of directly-
                 connected links being attributed to Phil Karn ("kick"
                 operation in the KAQ9 TCP stack).  A thread from the
                 PILC mailing list in 2000 discusses some thoughts on
                 this (http://www.isi.edu/pilc/list/archive/0691.html).

   [footnote-2]  Although this specification introduces eight new per-
                 connection state variables, a preliminary
                 implementation of an earlier revision of this mechanism
                 [I-D.swami-tcp-lmdr] only required around a hundred
                 lines of kernel code.

Appendix A.  Background: Classification of Connectivity Disruptions

   Connectivity disruptions can occur in many different situations.
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https://datatracker.ietf.org/doc/html/rfc3819
https://datatracker.ietf.org/doc/html/rfc4306
https://datatracker.ietf.org/doc/html/rfc4782
https://datatracker.ietf.org/doc/html/rfc4907
https://datatracker.ietf.org/doc/html/rfc4953
https://datatracker.ietf.org/doc/html/rfc4957
http://www.isi.edu/pilc/list/archive/0691.html
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   They can be due to wireless interference, movement out of a wireless
   coverage area, switching between access networks, or simply due to
   unplugging an Ethernet cable.  Depending on the situation in which
   they occur, the implications of connectivity disruptions are
   different and must be handled appropriately.  This section attempts
   to classify different types of connectivity disruptions and discusses
   their implications and impact on TCP.

   Two main properties of connectivity disruptions affect how TCP reacts
   to them: their duration and whether the path characteristics have
   significantly changed after they end.  This document distinguishes
   between "short" and "long" disruptions and "changed" and "unchanged"
   path characteristics.  Note that these two categories are orthogonal
   to each other, i.e., four types of connectivity disruptions exist.

   Connectivity disruptions are "short" for a given TCP connection, if
   connectivity returns before the RTO fires for the first time, i.e.,
   when TCP is still in steady-state.  In this case, standard TCP
   recovers lost data segments through Fast Retransmit and lost ACKs
   through successfully delivered later ACKs.  Appendix A.1 briefly
   describes this case.

   Connectivity disruptions are "long" for a given TCP connection, if
   the RTO fires at least once before connectivity returns, i.e., when
   TCP is in exponential back-off.  In this case, TCP can be inefficient
   in its retransmission scheme, as described in Appendix A.2.

   Whether or not path characteristics change when connectivity returns
   is a second important factor for TCP's retransmission scheme.
   Standard TCP implicitly assumes that path characteristics remain
   unchanged across short disruptions by performing Fast Retransmit
   using the path parameters collected before the disruption.  For long
   disruptions, standard TCP is more conservative and performs slow-
   start, re-probing the path characteristics from scratch.  However,
   the standard behavior can be inefficient due to when it is initiated.

   These implicit assumptions can cause standard TCP to misbehave or
   perform inefficiently in some scenarios.  Figure 4 illustrates the
   standard TCP behavior.
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                  +-----------------------+-----------------------+
         Short    | Fast Retransmit using | Fast Retransmit using |
         Duration | currently collected   | currently collected   |
         < RTO    | path characteristics  | path characteristics  |
                  +-----------------------+-----------------------+
         Long     |                       |                       |
         Duration | Slow-start            | Slow-start            |
         >= RTO   |                       |                       |
                  +-----------------------+-----------------------+
                      Unchanged Path          Changed Path
                      Characteristics         Characteristics

                     Figure 4: Standard TCP behavior.

A.1.  Short Connectivity Disruptions

   One common cause of short connectivity disruptions that result in a
   change of the end-to-end path characteristics is transparent network
   layer mobility, via protocols such as Mobile IP, NEMO, or HIP.  These
   protocols generally hide mobility events from the transport layer,
   but cannot mask the resulting changes to the end-to-end path that
   established TCP connections transmit over.

   Consider a Mobile IP scenario as shown in Figure 5.  At time T, a
   mobile node MN attaches to access network Net-1, connected to the
   Internet through access router AR-1 and has the care-of address
   <Net-1, MN>.  It establishes a TCP connection to the correspondent
   node CN.  While MN attaches to AR-1, packets between CN and <Net-1,
   MN> follow PATH-1 (via Cloud-1 and AR-1).  Assume that at some time
   T+1, MN moves and then attaches to Net-2, which is reachable through
   AR-2 with the care-of address <Net-2, MN>.  While MN attaches to
   AR-2, all packets between CN and <Net-2, MN> follow PATH-2 (through
   Cloud-2 and AR-2).
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                      <---------PATH-1---------->

                       /---------\   +------+
                       |         |   |      | Net-1
                   +---+ Cloud-1 +---+ AR-1 +-----> MN (time=T)
                   |   |         |   |      |
                   |   \----+----/   +---+--+        |
                   |        |                        |
         CN <------+        | PATH-3                 |
                   |        |                        |
                   |   /----V----\   +-------+       V
                   |   |         |   |       |
                   +---+ Cloud-2 +---+ AR-2  +-----> MN (time=T+1)
                       |         |   |       | Net-2
                       \---------/   +-------+

                      <--------PATH-2----------->

                        Figure 5: Mobility example.

   During a transient disconnected period, MN may have disconnected from
   Net-1 and not yet attached to Net-2.  Consequently, AR-1 may not be
   able to deliver packets to MN.  This could result in a burst of
   packet losses.  Several approaches for "fast" or "seamless" handovers
   exist that involve adding machinery to the ARs to buffer and redirect
   packets originally sent to Net-1 towards Net-2, rather than dropping
   them (e.g., [KOODLI]).

   As long as MN remains in Net-1, standard congestion control
   algorithms [RFC2581] are sufficient.  However, once MN moves from
   Net-1 to Net-2, two different scenarios are possible depending on
   network topology:

   o  In the first scenario, with standard Mobile IPv4, all packets
      destined to <Net-1, MN> are dropped by AR-1 once MN has moved.
      Since the latency involved in establishing a new tunnel to the HA
      is on the order of the RTT (2*RTT in case of Mobile IPv6), roughly
      an entire window's worth of data and ACKs will be dropped by AR-1.
      Because of this burst loss, CN and MN are likely to incur
      expensive retransmission timeouts.

   o  In the second scenario, with a fast handover mechanism in place,
      losses are masked through buffering and tunneling between routers
      AR-1 and AR-2.  The exact sequence of buffering and forwarding
      between the ARs is not guaranteed to occur in a manner consistent
      with the available bandwidth of PATH-3 or conformant to TCP's
      clocking expectations.  This can cause TCP's behavior over PATH-2
      to be based on the unrelated properties of PATH-1 and PATH-3.

https://datatracker.ietf.org/doc/html/rfc2581
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   After attaching to Net-2, reception of stale ACKs (for data sent on
   PATH-1) will cause MN to incorrectly inflate its congestion window.
   These stale ACKs do not provide any indication of the congestion
   along PATH-2.  CN's congestion window becomes similarly inflated by
   ACKs that MN sends for data segments redirected over PATH-3.  If the
   congestion windows from PATH-1 are already too big for PATH-2, this
   can overload Net-2 or PATH-2, causing packet loss and timeouts.

   On the other hand, if the available bandwidth along PATH-2 is greater
   than along PATH-1, and if the sender is in congestion avoidance, it
   will need potentially many RTTs before utilizing the available path
   capacity.  This is due to relatively slow bandwidth increase during
   congestion avoidance caused by a stale SS_THRESH.  (See [EDDY] for
   details.)

A.2.  Long Connectivity Disruptions

   For long disruptions, standard TCP performs slow-start after
   connectivity returns, because the retransmission timeout (RTO) has
   expired.  This conservative strategy avoids overloading the new path.
   However, TCP's general exponential back-off retransmission strategy
   can time these slow-starts such that performance decreases.

   When a long connectivity disruption occurs along the path between a
   host and its peer while the host is transmitting data, it stops
   receiving ACKs.  After the RTO expires, the host attempts to
   retransmit the first unacknowledged segment.  TCP implementations
   that follow the recommended RTO management proposed in [RFC2988]
   double the RTO after each retransmission attempt until it exceeds 60
   seconds.  This scheme causes a host to attempt to retransmit across
   established connections roughly once a minute.  (More frequently
   during the first minute or two of the connectivity disruption, while
   the RTO is still being backed off.)

   When the long connectivity disruption ends, standard TCP
   implementations still wait until the RTO expires before attempting
   retransmission.  Figure 6 illustrates this behavior.  Depending on
   when connectivity becomes available again, this can waste up to a
   minute of connectivity for TCPs that implement the recommended RTO
   management described in [RFC2988].  For TCP implementations that do
   not implement [RFC2988], even longer connectivity periods may be
   wasted.  For example, Linux uses 120 seconds as the maximum RTO by
   default.

https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2988
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          Sequence
          number      X = Successfully transmitted segment
           ^          O = Lost segment
           |     :                     :              : X
           |     :                     :              :X
           |     OO O  O    O        O :              X
           |    X:                     :              :
           |   X :                     :<------------>:
           |  X  :                     :    Wasted    :
           | X   :                     :  connection  :
           |X    :                     :     time     :
           +-----:---------------------:--------------:-------->
                 :                     :              :       Time
            Connectivity          Connectivity       TCP
               gone                  back         retransmit

       Figure 6: Standard TCP behavior in the presence of disrupted
                               connectivity.

   This retransmission behavior is not efficient, especially in
   scenarios where connectivity periods are short and connectivity
   disruptions are frequent [OTT].  Experiments show that TCP
   performance across a path with frequent disruptions is significantly
   worse, compared to a similar path without disruptions [SCHUETZ].

   In the ideal case, TCP would attempt a retransmission as soon as
   connectivity to its peer was re-established.  Figure 7 illustrates
   the ideal behavior.

          Sequence
          number      X = Successfully transmitted segment
           ^          O = Lost segment
           |     :                     : X            :
           |     :                     :X             :
           |     OO O  O    O        O X              :
           |    X:                     :              :
           |   X :                     :<------------>:
           |  X  :                     :  Efficiency  :
           | X   :                     :  improvement :
           |X    :                     :              :
           +-----:---------------------:--------------:-------->
                 :                     :              :       Time
            Connectivity          Connectivity      Next
               gone             back := immediate  scheduled
                                 TCP retransmit   retransmit

         Figure 7: Ideal TCP behavior in the presence of disrupted
                               connectivity
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   The ideal behavior is difficult to achieve for arbitrary connectivity
   disruptions.  One obviously problematic approach would use higher-
   frequency retransmission attempts to enable earlier detection of
   whether connectivity has returned.  This can generate significant
   amounts of extra traffic.  Other proposals attempt to trigger faster
   retransmissions by retransmitting buffered or newly-crafted segments
   from inside the network
   [SCOTT][I-D.dawkins-trigtran-linkup][DUKE][RFC3819].

   Note that scenarios exist where path characteristics remain unchanged
   after long connectivity disruptions.  In this case, even an
   intelligently scheduled slow-start is inefficient, because TCP could
   safely resume transmitting at the old rate instead of slow-starting.
   Although originally developed to avoid line-rate bursts, techniques
   for the well-known "slow-start after idle" case
   [I-D.ietf-tcpimpl-restart] may be useful to further improve
   performance after a disruption ends in such a scenario.  This
   document does not currently describe this additional optimization,
   and an open question remains on how unchanged path characteristics
   after long connectivity disruptions could be validated by an end
   host.

Appendix B.  Document Revision History

   +----------+--------------------------------------------------------+
   | Revision | Comments                                               |
   +----------+--------------------------------------------------------+
   | 03       | Mainly editorial and textual changes according to      |
   |          | feedback received since last version.                  |
   | 02       | Major modification to the RLCI mechanism for           |
   |          | implementing a 3-way handshake that ensures that both  |
   |          | peers are informed about a connectivity-change         |
   |          | indication. CCI option format, RLCI variables          |
   |          | maintained by the TCP peers and the related state      |
   |          | machines are affected by that modification.            |
   | 01       | Major revision of the description of the               |
   |          | connectivity-change indication TCP option and its      |
   |          | processing in Section 5. Other formatting changes to   |
   |          | the document include moving some background material   |
   |          | to the appendix.                                       |
   | 00       | Initial version. This document is a merge of and       |
   |          | obsoletes [I-D.eggert-tcpm-tcp-retransmit-now] and     |
   |          | [I-D.swami-tcp-lmdr].                                  |
   +----------+--------------------------------------------------------+
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