
TCPM Working Group S. Schuetz
Internet-Draft NEC
Intended status: Experimental N. Koutsianas
Expires: August 25, 2008 L. Eggert
 Nokia
 W. Eddy
 Verizon
 Y. Swami
 Nokia
 K. Le
 NSN
 February 22, 2008

TCP Response to Lower-Layer Connectivity-Change Indications
draft-schuetz-tcpm-tcp-rlci-03

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.
 This document may not be modified, and derivative works of it may not
 be created, except to publish it as an RFC and to translate it into
 languages other than English.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 25, 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2008).

Schuetz, et al. Expires August 25, 2008 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft TCP Response to Connectivity Indications February 2008

Abstract

 When the path characteristics between two hosts change abruptly, TCP
 can experience significant delays before resuming transmission in an
 efficient manner or TCP can behave unfairly to competing traffic.
 This document describes TCP extensions that improve transmission
 behavior in response to advisory, lower-layer connectivity-change
 indications. The proposed TCP extensions modify the local behavior
 of TCP and introduce a new TCP option to signal locally received
 connectivity-change indications to remote peers. Performance gains
 result from a more efficient transmission behavior and there is no
 difference in aggressiveness in comparison to a newly-started
 connection.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Motivation and Overview 4
4. Connectivity-Change Indications 6
5. TCP Response to Connectivity-Change Indications (CCIs) 7
5.1. Connectivity-Change Indication (CCI) TCP Option 9

 5.2. Generation and Processing of Connectivity-Change
 Indication TCP Options 11

5.3. Re-Probing Path Characteristics 15
5.4. Speculative Retransmission 16

6. Discussion . 16
6.1. Triggered Segment Transmission during Steady-State 17
6.2. Impact of Packet Loss 17
6.3. Use of Limited Transmit with RLCI 18

 6.4. Simultaneous Processing of Connectivity-Change
 Indications . 19

7. Security Considerations 19
8. IANA Considerations . 20
9. Acknowledgments . 20
10. References . 20
10.1. Normative References 20
10.2. Informative References 21

 Editorial Comments .
Appendix A. Background: Classification of Connectivity

 Disruptions . 23
A.1. Short Connectivity Disruptions 25
A.2. Long Connectivity Disruptions 27

Appendix B. Document Revision History 29
 Authors' Addresses . 30
 Intellectual Property and Copyright Statements 32

Schuetz, et al. Expires August 25, 2008 [Page 2]

Internet-Draft TCP Response to Connectivity Indications February 2008

1. Introduction

 The Transmission Control Protocol (TCP) [RFC0793] generally assumes
 that the end-to-end path between two hosts has characteristics that
 are relatively stable over the lifetime of a connection. Although
 TCP's congestion control algorithms [RFC2581] can adapt to changes to
 the path characteristics after several round-trip times, they fail to
 support efficient operation in the few round-trip times immediately
 after a significant path change. This is due to the granularity of
 TCP's sampling mechanisms. Significant changes to path connectivity
 include loss or reestablishment of connectivity, and drastic, abrupt
 changes in round-trip time (RTT) or available bandwidth.
 Connectivity changes that occur on such short time-scales are
 becoming more common, due to host mobility or intermittent network
 attachment.

 This document describes a set of complementary TCP extensions that
 improve behavior when transmitting over paths whose characteristics
 can change on short time-scales. TCP implementations that support
 these extensions respond to receiving generic, link-technology-
 independent, per-connection connectivity-change indications from
 lower layers. A connectivity-change indication signals that the
 characteristics of the end-to-end path between the local node and its
 peer have changed in some undefined way. The response mechanisms
 proposed for TCP act on this information in a conservative fashion.
 The specific response depends on the current state of a connection
 when a connectivity-change indication is received.

 It is important to note that this addition of response mechanisms to
 lower-layer information is following an established precedent. TCP
 and other transport protocols already react to information and
 signals from lower layers; the proposed connectivity-change
 indications thus extend an established interface between layers in
 the protocol stack. TCP measures the end-to-end path to implicitly
 derive network-layer information. TCP also directly reacts to
 network-layer signals delivered via ICMP, for example, "Port
 Unreachable" or the now-deprecated "Source Quench" [RFC1122].
 Explicit Congestion Notification (ECN) [RFC3168] and Quick-Start
 [RFC4782] are other sources of network-layer information for which
 response mechanisms for TCP have been defined. Connectivity-change
 indications are yet another source of lower-layer information that
 TCP can use to improve its operation.

 A second important point to note is that the TCP response mechanisms
 to connectivity-change indications are purely optional efficiency
 improvements. In the absence of connectivity-change indications, a
 TCP that implements these changes behaves identically to an
 unmodified TCP. When lower layers provide connectivity-change

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc4782

Schuetz, et al. Expires August 25, 2008 [Page 3]

Internet-Draft TCP Response to Connectivity Indications February 2008

 indications that trigger the response mechanisms, they enhance TCP
 operation based on the explicit lower-layer information that is
 signaled. These response mechanisms do not increase the
 aggressiveness of TCP.

 Note that the IAB has recently described architectural issues of
 "link indications" [RFC4907]. The authors feel that this term is not
 quite accurate in this environment, because transport mechanisms
 should remain link-technology-agnostic. However, transport protocols
 have always acted on network-layer information and signals, such as
 measured path characteristics or ICMP-signaled conditions. Because
 of the growing proliferation of shim layers between the traditional
 network and transport layers, this document uses the term "lower-
 layer indication" to remain independent of specific network or shim
 layers.

 Note that it is currently an open question as to whether additional
 lower-layer indications can provide further information to transport
 protocols. Also, this document only describes response mechanisms
 for TCP, although other transport protocols may benefit from similar
 response mechanisms to react to connectivity-change indications.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The following abbreviations are used throughout the document:

 +------+---+
 | CCI | Connectivity-Change Indication |
 | RLCI | Response to Lower-layer Connectivity-change Indications |
 +------+---+

 Table 1: Abbreviations

3. Motivation and Overview

 Several proposed network-layer extensions support host mobility,
 including Mobile IPv4 [RFC3344], Mobile IPv6 [RFC3775] and HIP
 [I-D.ietf-hip-mm]. Typically, they shield transport-layer protocols
 from mobility events and enable them to sustain established
 connections across mobility events. However, the path
 characteristics that established connections experience after a
 mobility event may have changed drastically and on short time-scales.

https://datatracker.ietf.org/doc/html/rfc4907
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3344
https://datatracker.ietf.org/doc/html/rfc3775

Schuetz, et al. Expires August 25, 2008 [Page 4]

Internet-Draft TCP Response to Connectivity Indications February 2008

 Congestion control, RTT and path-MTU state gathered over an old path
 before the move generally have no meaning for the new path. Because
 TCP uses stale information when resuming transmission over the new
 path, it can be either too aggressive or highly inefficient. Similar
 conditions may be found when fail-overs occur for multihomed hosts
 through the shim6 protocol. Some background on the types of
 scenarios that the technology described in this document is designed
 to work within is found in Appendix A.

 TCP already forces a slow-start restart in some cases where the
 network state becomes unknown, such as after an idle period or heavy
 losses. A first part of the response specified in this document
 involves a similar return to initial slow-start state in response to
 connectivity-change indications that are received while a connection
 is transmitting in steady-state. Note that this behavior is more
 conservative than the standard TCP response or lack of response.
 Some performance gains with the proposed mechanisms are due to either
 avoiding overloading the new path, which typically incurs an RTO, or
 using slow-start to quickly detect new capacity far above the point
 where steady-state had previously been near.

 A second response component improves TCP operation in the presence of
 temporary connectivity disruptions. These disruptions can occur
 independently of mobility events and, for example, may be due to
 insufficient wireless access coverage or nomadic computer use.
 Connectivity disruptions can severely decrease TCP performance. The
 main reason for this decrease is TCP's retransmission behavior after
 a connectivity disruption [SCHUETZ]. TCP uses periodic
 retransmission attempts in exponentially increasing intervals, which
 can unnecessarily delay retransmissions after connectivity returns.
 In the extreme case, TCP connections can even abort, if the
 disruption is longer than the TCP "user timeout". (Connection aborts
 are out of scope for this document but can be prevented by the TCP
 User Timeout Option [I-D.ietf-tcpm-tcp-uto].)

 This second response action executes when receiving a connectivity-
 change indication while a connection is stalled in exponential back-
 off. It improves TCP retransmission behavior after connectivity is
 restored through an immediate speculative retransmission attempt
 [footnote-1]. Similar to the first response component, the second
 one also increases TCP performance through a more intelligent
 transmission behavior that uses periods of connectivity more
 efficiently. In comparison to startup of a new connection, it does
 not cause significant amounts of additional traffic and it does not
 change TCP's congestion control algorithms.

 Finally, this draft specifies a third response component, which is a
 new TCP option that notifies the connection's remote peer of a

Schuetz, et al. Expires August 25, 2008 [Page 5]

Internet-Draft TCP Response to Connectivity Indications February 2008

 connectivity-change event detected locally. This is useful because
 connectivity-change indications typically require appropriate
 responses at both ends of a connection, but may only be received or
 detected by one end. The other parts of the response to a
 connectivity-change indication are independent of the indication's
 source (locally notified or remotely signaled) and depend only on the
 specific indication and the state of the connection for which it was
 received.

4. Connectivity-Change Indications

 The focus of this document is on specifying TCP response mechanisms
 to lower-layer connectivity-change indications. This section briefly
 describes how different network- and shim-layer mechanisms underneath
 the transport layer may provide these connectivity-change indications
 to TCP. This section is included for clarification only; details on
 connectivity indication sources are out of scope of this document.

 When lower layers detect a connectivity-change event, they generate
 corresponding connectivity-change indications. Lower-layer events
 that could trigger such an indication include (but are not limited
 to):

 o the IP address of the local outbound interface used for a given
 connection has changed, e.g., due to DHCP [RFC2131] or IPv6 router
 advertisements [RFC2460];

 o link-layer connectivity of the local outbound interface used for a
 given connection has changed, e.g., link-layer "link up" event
 [RFC4957];

 o the local outbound interface used for a given connection has
 changed, due to routing changes or link-layer connectivity changes
 at other interfaces (including tunnel establishment or teardown,
 e.g., in response to IKE events [RFC4306]);

 o a Mobile IP binding update has completed [RFC3775];

 o a HIP readdressing update has completed [I-D.ietf-hip-mm];

 o a path-change signal from the network has arrived (possible in
 theory, depends on network capabilities);

 o other notifications as defined by the IETF's Detecting Network
 Attachment (DNA) working group have occurred [RFC4957].

 Note that the list above only describes some potential sources for

https://datatracker.ietf.org/doc/html/rfc2131
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc4957
https://datatracker.ietf.org/doc/html/rfc4306
https://datatracker.ietf.org/doc/html/rfc3775
https://datatracker.ietf.org/doc/html/rfc4957

Schuetz, et al. Expires August 25, 2008 [Page 6]

Internet-Draft TCP Response to Connectivity Indications February 2008

 connectivity-change events. Other sources exist, but the details on
 when to generate such events are out of the scope of this document,
 which focuses on the TCP response mechanisms when such events are
 received.

5. TCP Response to Connectivity-Change Indications (CCIs)

 A TCP connection can receive a connectivity-change indication (CCI)
 either from its local stack ("local CCI") or through a new
 "connectivity-change indication TCP option" from its peer ("remote
 CCI"). Section 5.1 specifies this new TCP option. In either case,
 upon reception of a CCI, the TCP RLCI (Response to Lower-layer
 Connectivity-change Indications) mechanisms defined in this document
 immediately re-probe path characteristics. They do this by either
 performing a speculative retransmission or by sending a single
 segment of new data or a pure ACK, depending on whether the
 connection is currently stalled in exponential back-off or
 transmitting in steady-state, respectively. A connection is "stalled
 in exponential back-off", if at least one segment was retransmitted
 due to a RTO expiration but has not been ACK'ed yet.

 The remainder of this section first defines the format of the new CCI
 TCP option in Section 5.1 and its processing in Section 5.2. After
 that, the two TCP response mechanisms triggered by receiving CCIs -
 re-probing path characteristics and speculative retransmission - are
 described in Section 5.3 and Section 5.4.

 The TCP RLCI mechanisms defined in this document depend on the TCP
 Timestamps option (TSopt) [RFC1323]. Consequently, it is REQUIRED
 that an end host that wishes to use the RLCI mechanisms for a TCP
 connection negotiate the use of TCP Timestamps options with its peer.
 If this negotiation fails, a host MUST NOT use the RLCI mechanisms
 for a connection. TCP Timestamps options are needed by the RLCI
 mechanisms during the following operations:

 o To re-probe the path characteristics after a connectivity-change
 indication. A host uses the TS Echo Reply (TSecr) field of a TCP
 Timestamps option to distinguish whether incoming ACKs are for
 segments that have been transmitted before or after CCI.

 o To identify a new remote CCI. A host uses the TS Value (TSval)
 field of an incoming TCP Timestamps option to distinguish a new
 remote CCI from the delayed reception of an old one. As a result,
 last remote CCI is defined as the one received with the highest TS
 Value.

Section 5.2 and Section 5.3 give more details about how the RLCI

https://datatracker.ietf.org/doc/html/rfc1323

Schuetz, et al. Expires August 25, 2008 [Page 7]

Internet-Draft TCP Response to Connectivity Indications February 2008

 mechanisms use TCP Timestamps options.

 An implementation of the RLCI mechanisms defined in this document
 maintains nine new state variables per TCP connection. [footnote-2]

 LOCAL_CCI
 It is a 1-bit counter, having an initial value of 0. It is used
 for distinguishing the existence of a new local CCI. It changes
 its value every time a new local CCI received from the local stack
 starts being processed.

 REMOTE_CCI
 It holds a copy of the last CCI value advertised by the peer
 through a CCI TCP option. This is a 1-bit counter initialized to
 0 and gets updated in response to remote CCIs according to the
 rules defined in Section 5.2.

 LOCAL_CCI_STATUS
 It holds the status of the processing of local CCIs. It can have
 three possible values: LOCAL_CCI_IDLE (0), LOCAL_CCI_NEW (1),
 LOCAL_CCI_ECHO_ACK (2). The initial value is LOCAL_CCI_IDLE.

 REMOTE_CCI_STATUS
 It holds the status of the processing of the last remote CCI
 advertised by the peer through a CCI TCP option. It can have two
 possible values: REMOTE_CCI_IDLE (0), REMOTE_CCI_ECHO (1). The
 initial value is REMOTE_CCI_IDLE.

 LAST_CCI_TIME
 It holds the local time when the last CCI (either local or remote)
 was received. It is updated every time either LOCAL_CCI or
 REMOTE_CCI is modified.

 REMOTE_CCI_PEER_TIME
 This variable is used in order to distinguish new remote CCIs from
 the retransmissions of the past ones. It holds the TS Value
 (TSval) of the Timestamps option of the segment advertising the
 last remote CCI. It is initialized when receiving the first
 segment from the peer and it is updated every time REMOTE_CCI is
 modified.

 LOCAL_CCI_PEER_ECHO_TIME
 This variable is used in order to distinguish the echo of a new
 local CCI from delayed retransmissions of echoes of older local
 CCIs. It holds the TS Value (TSval) of the Timestamps option of
 the segment that echoed the last local CCI. It is initialized
 when receiving the first segment from the peer and it is updated
 every time LOCAL_CCI_STATUS changes from LOCAL_CCI_NEW to

Schuetz, et al. Expires August 25, 2008 [Page 8]

Internet-Draft TCP Response to Connectivity Indications February 2008

 LOCAL_CCI_ECHO_ACK.

 CCI_SNDMAX
 Retains the highest sequence number transmitted when the most
 recent CCI (either local or remote) was received.

 CCI_CONTROLLED_CWND
 It is a Boolean variable that sets an additional condition
 controlling the increment of TCPs congestion window (CWND).
 Having an initial value of false, it is updated according to the
 rules defined in Section 5.2.

5.1. Connectivity-Change Indication (CCI) TCP Option

 Connectivity-change indications (CCIs) are generally asymmetric,
 i.e., they may occur or be detected by one end but not the other.
 The basic idea behind the CCI option is to signal the occurrence of
 local CCIs to the other end, in order to allow also the other end to
 respond appropriately. Note that this assumes that paths will
 generally be symmetric, meaning that a CCI received by one end for
 its path to the other end will imply that the characteristics of the
 reverse path have changed, too.

 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +---------------+---------------+-----+-+-+---+-+
 | | | R | | | |E|
 | Kind = X | Length = 3 | E |C|E| C |C|
 | | | S | |C| S |S|
 +---------------+---------------+-----+-+-+---+-+

 Figure 1: Format of the connectivity-change indication TCP option.

 Figure 1 shows the format of the CCI option. It contains these
 fields:

 Kind (8 bits)
 The TCP option number X [RFC0793] allocated by IANA upon
 publication of this document (see Section 8).

 Length (8 bits)
 Length of the TCP option in octets [RFC0793]; its value MUST be 3.

 RES (3 bits)
 Reserved bits. The sender SHOULD set these to zero and the
 receiver MUST ignore them.

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0793

Schuetz, et al. Expires August 25, 2008 [Page 9]

Internet-Draft TCP Response to Connectivity Indications February 2008

 C (1 bit)
 Current value of LOCAL_CCI of the end sending the option.

 EC (1 bit)
 Echoed value of C, i.e., the current value of REMOTE_CCI of the
 end sending the option.

 CS (2 bit)
 Current value of LOCAL_CCI_STATUS of the end sending the option.

 ECS (1 bit)
 Current value of REMOTE_CCI_STATUS of the end sending the option.

 The CCI option contains two single-bit fields (C and EC) used to
 distinguish new CCIs from delayed retransmissions of past ones. It
 also contains some flags representing the status of each CCI
 processing. These flags are used for a 3-way handshake ensuring that
 both parties have been informed of a new CCI. At the beginning of a
 connection, LOCAL_CCI and REMOTE_CCI MUST be set to 0.
 LOCAL_CCI_STATUS and REMOTE_CCI_STATUS MUST be set to LOCAL_CCI_IDLE
 and REMOTE_CCI_IDLE, respectively.

 A host actively opening a connection and wishing to use the CCI
 option for that connection MUST include a CCI option in its SYN
 segment with C := 0, CS := LOCAL_CCI_IDLE, EC := 0 and ECS :=
 REMOTE_CCI_IDLE in order to advertise support for the TCP CCI option.
 A host receiving a SYN segment MUST NOT include a CCI option in its
 SYN-ACK or any subsequent segment, unless it has received a CCI
 option in the corresponding SYN. In case a host has received a CCI
 option in the SYN segment, it MUST echo that CCI option in its SYN-
 ACK segment, i.e., it MUST set C := 0, CS := LOCAL_CCI_IDLE, EC := 0
 and ECS := REMOTE_CCI_IDLE. A host MUST NOT process any following
 CCI options unless one was included in both the SYN and SYN-ACK and
 both peers have enabled TCP Timestamps for the connection.

Section 5.2.1 and Section 5.2.2 describe the processing rules in
 detail.

 A host MUST send a CCI option in all outgoing segments whenever
 LOCAL_CCI_STATUS is not LOCAL_CCI_IDLE or REMOTE_CCI_STATUS is not
 REMOTE_CCI_IDLE (or both). A host MUST NOT send a CCI option when
 LOCAL_CCI_STATUS is LOCAL_CCI_IDLE and REMOTE_CCI_STATUS is
 REMOTE_CCI_IDLE, i.e., when the host is not currently processing any
 CCI. The only exceptions to that rule are SYN and SYN-ACK segments.
 Whenever sending any CCI option, C MUST be set to the current
 LOCAL_CCI, EC MUST be set to the current REMOTE_CCI, CS MUST be set
 to LOCAL_CCI_STATUS and ECS MUST be set to REMOTE_CCI_STATUS,
 respectively.

Schuetz, et al. Expires August 25, 2008 [Page 10]

Internet-Draft TCP Response to Connectivity Indications February 2008

5.2. Generation and Processing of Connectivity-Change Indication TCP
 Options

 Processing of a connectivity-change indication can be separated into
 two parts:

 1. Processing in "initiator" mode, i.e., when a host receives a
 local CCI and (reliably) forwards it to the other end through a
 CCI option.

 2. Processing in "responder" mode, i.e., when a host that receives a
 remote CCI in a CCI option from the other end.

Section 5.2.1 and Section 5.2.2 describe the state machines at an
 initiator and a responder, respectively. Note that a single host can
 be both - initiator and responder - at the same time. This can
 happen if a local CCI occurs while processing for a remote CCI is
 ongoing, or vice versa.

 The following events, conditions and actions are used in the
 definition of the two state machines:

 Events:

 E_LOCAL_CCI
 Local end received a local CCI.

 E_REMOTE_CCI
 Local end received information about a remote CCI, i.e., received
 a TCP segment that includes a CCI option.

 E_SEGMENT_SENT
 Local end sent a TCP segment that includes the CCI option.

 Conditions:

 C_NEW_REMOTE_CCI
 A received CCI option signals a new remote CCI, i.e., C !=
 REMOTE_CCI, CS == LOCAL_CCI_NEW and the TSval of the Timestamps
 option of the received segment is greater than the current
 REMOTE_CCI_PEER_TIME (TSval > REMOTE_CCI_PEER_TIME).

 C_ECHOED_LOCAL_CCI
 A received CCI option echoes the last local CCI, i.e., EC ==
 LOCAL_CCI, ECS == REMOTE_CCI_ECHO and the TSval of the Timestamps
 option of the received segment is greater than the current
 LOCAL_CCI_PEER_ECHO_TIME (TSval > LOCAL_CCI_PEER_ECHO_TIME).

Schuetz, et al. Expires August 25, 2008 [Page 11]

Internet-Draft TCP Response to Connectivity Indications February 2008

 C_ECHOED_REMOTE_CCI
 A received CCI option acknowledges that the peer has received the
 echo of its last local CCI, i.e., C == REMOTE_CCI, CS ==
 LOCAL_CCI_ECHO_ACK and the TSval of the Timestamps option of the
 received segment is greater than the current REMOTE_CCI_PEER_TIME
 (TSval > REMOTE_CCI_PEER_TIME).

 Actions:

 A_TGL_LOCAL_CCI
 Toggle LOCAL_CCI.

 A_TGL_REMOTE_CCI
 Toggle REMOTE_CCI.

 A_REPROBE_PATH
 TCP discards all congestion control information gathered on the
 current path, initializes them to the defaults and re-probes path
 characteristics based only on the segments transmitted after this
 event, as described in Section 5.3. In other words,
 CCI_CONTROLLED_CWND := 1, LAST_CCI_TIME := current local time,
 CCI_SNDMAX := highest sequence number transmitted so far and the
 congestion control state (CWND and SS_THRESH), round-trip time
 measurement (RTTM) state and RTO timer are reset to the initial
 values for a new connection. Additionally, if the connection is
 stalled in exponential back-off, TCP MUST act as if RTO had
 expired and start the speculative retransmission procedure
 described in Section 5.4.

 A_FORCE_SEND
 Force transmission of a segment that MUST include a CCI option, in
 order to inform the other peer about the local CCI. If the
 connection is stalled in exponential back-off, this is taken care
 of by the speculative retransmission procedure described in

Section 5.4. If the connection is in steady-state and there is
 new data to be sent, TCP MUST immediately send a single segment of
 new data including a CCI option. If there is no new data to be
 sent, TCP MUST immediately send a pure ACK including a CCI option.

 A_UPD_CCI_PEER_TIME
 Set REMOTE_CCI_PEER_TIME to the TSval value of the TCP Timestamps
 option of the received segment.

 A_UPD_CCI_PEER_E_TIME
 Set LOCAL_CCI_PEER_ECHO_TIME to the TSval value of the TCP
 Timestamps option of the received segment.

Schuetz, et al. Expires August 25, 2008 [Page 12]

Internet-Draft TCP Response to Connectivity Indications February 2008

5.2.1. Initiator Mode Processing

 This section describes the initiator mode processing of a TCP host
 implementing RLCI. In initiator mode, a host signals the occurrence
 of a local CCI to its peer, until the peer echoes reception of that
 CCI. After receiving the echo, the host needs to acknowledge the
 echo reception, resulting in a 3-way handshake. Figure 2 shows the
 corresponding state machine.

 At the beginning of a connection, i.e., before the first local CCI
 occurs, LOCAL_CCI is 0 and LOCAL_CCI_STATUS is LOCAL_CCI_IDLE. This
 remains the case until TCP receives a local CCI (E_LOCAL_CCI).

 When that happens, TCP toggles LOCAL_CCI (A_TGL_LOCAL_CCI), sets
 LOCAL_CCI_STATUS := LOCAL_CCI_NEW, starts re-probing the new path
 (A_REPROBE_PATH) and forces a segment to be sent to the peer
 (A_FORCE_SEND).

 Note that all subsequently transmitted segments MUST contain a CCI
 option until LOCAL_CCI_STATUS becomes LOCAL_CCI_IDLE. After the host
 receives the echo of the local CCI (C_ECHOED_LOCAL_CCI), it updates
 LOCAL_CCI_PEER_ECHO_TIME (A_UPD_CCI_PEER_E_TIME) and sets
 LOCAL_CCI_STATUS := LOCAL_CCI_ECHO_ACK. The initiator remains in
 this state until it can send a segment with the CCI option
 (E_SEGMENT_SENT) that acknowledges reception of the CCI echo. At
 that time, it sets LOCAL_CCI_STATUS := LOCAL_CCI_IDLE.

 The transition from LOCAL_CCI_IDLE to LOCAL_CCI_ECHO_ACK occurs if a
 segment acknowledging the reception of a CCI echo is lost, and the
 initiator retransmits the echo acknowledgment.

 When a local CCI occurs (E_LOCAL_CCI) while LOCAL_CCI_STATUS !=
 LOCAL_CCI_IDLE, the host MUST ignore it and MUST NOT alter LOCAL_CCI,
 because it is already processing another local CCI.

Schuetz, et al. Expires August 25, 2008 [Page 13]

Internet-Draft TCP Response to Connectivity Indications February 2008

 E_LOCAL_CCI =>
 A_TGL_LOCAL_CCI E_REMOTE_CCI
 A_REPROBE_PATH C_ECHOED_LOCAL_CCI=>
 A_FORCE_SEND A_UPD_CCI_PEER_E_TIME
 +----------------+ +----------------+
 | | | |
 | | | |
 | | | |
 | V | V
 +----------------+ +----------------+ +----------------+
 | | | | | |
 |LOCAL_CCI_STATUS| |LOCAL_CCI_STATUS| |LOCAL_CCI_STATUS|
 | == | | == | | == |
 |LOCAL_CCI_IDLE | |LOCAL_CCI_NEW | |LOCAL_CCI_ECHO_ |
 | | | | |ACK |
 +----------------+ +----------------+ +----------------+
 ^ | ^ |
 | | | |
 | +-----------------------------------+ |
 | E_REMOTE_CCI |
 | C_ECHOED_LOCAL_CCI |
 | |
 | |
 +---+
 E_SEGMENT_SENT

 Figure 2: State machine for initiator processing.

5.2.2. Responder Mode Processing

 This section describes the responder mode processing of CCIs for a
 TCP host implementing the CCI option. In responder mode, a host
 echoes the last received remote CCI to its peer, until it can be sure
 that the peer correctly received the echo. Figure 3 shows the
 corresponding state machine.

 At the beginning of a connection, REMOTE_CCI is 0 and
 REMOTE_CCI_STATUS is REMOTE_CCI_IDLE, i.e., the local host is not
 processing any remote CCIs.

 When TCP receives a segment with a CCI option (E_REMOTE_CCI)
 signaling a new remote CCI (C_NEW_REMOTE_CCI), it increments
 REMOTE_CCI (A_TGL_REMOTE_CCI), changes REMOTE_CCI_STATUS to
 REMOTE_CCI_ECHO, updates REMOTE_CCI_PEER_TIME according to TSval
 (A_UPD_CCI_PEER_TIME), starts re-probing the new path
 (A_REPROBE_PATH) and forces a segment to be sent to the peer

Schuetz, et al. Expires August 25, 2008 [Page 14]

Internet-Draft TCP Response to Connectivity Indications February 2008

 (A_FORCE_SEND).

 Note that all subsequently transmitted segments MUST contain a CCI
 option until REMOTE_CCI_STATUS is again REMOTE_CCI_IDLE. This
 transition occurs when the peer acknowledges the reception of the CCI
 echo (C_ECHOED_REMOTE_CCI).

 E_REMOTE_CCI E_REMOTE_CCI
 C_NEW_REMOTE_CCI => C_NEW_REMOTE_CCI =>
 A_TGL_REMOTE_CCI A_TGL_REMOTE_CCI
 A_UPD_CCI_PEER_TIME A_UPD_CCI_PEER_TIME
 A_REPROBE_PATH A_REPROBE_PATH
 A_FORCE_SEND A_FORCE_SEND
 +-----------------+ +-------------+
 | | | |
 | V | |
 +-----------------+ +-----------------+ |
 |REMOTE_CCI_STATUS| |REMOTE_CCI_STATUS| |
 | == | | == | |
 |REMOTE_CCI_IDLE | |REMOTE_CCI_ECHO | |
 +-----------------+ +-----------------+ |
 ^ | ^ |
 | | | |
 +-----------------+ +-------------+
 E_REMOTE_CCI
 C_ECHOED_REMOTE_CCI

 Figure 3: State machine for responder processing.

 If TCP receives a new remote CCI while REMOTE_CCI_STATUS ==
 REMOTE_CCI_ECHO, this indicates that the acknowledgment of a previous
 CCI echo may have been lost and that the peer had a new CCI occur.
 In this case, TCP MUST perform the same actions as if
 REMOTE_CCI_STATUS == REMOTE_CCI_IDLE.

5.3. Re-Probing Path Characteristics

 When a TCP connection receives a new CCI, it MUST re-probe path
 characteristics in order to prevent causing congestion by
 transmitting based on stale path state information. In principle,
 this is similar to the initial slow-start: The sender MUST NOT
 transmit more than the default initial window (INIT_WINDOW) of data
 after a new CCI is received and it MUST reset the congestion control
 state (CWND and SS_THRESH), round-trip time measurement (RTTM) state
 and RTO timer, as if this were a new connection [RFC2581][RFC2988].

https://datatracker.ietf.org/doc/html/rfc2581

Schuetz, et al. Expires August 25, 2008 [Page 15]

Internet-Draft TCP Response to Connectivity Indications February 2008

 If Path MTU Discovery (PMTUD) is in use, the PMTUD state MUST also be
 reset [RFC1191][RFC1981][RFC4821].

 One difference to an initial slow-start is that after a CCI, the
 connection may have segments in flight towards the destination along
 a previous path. Therefore, after a CCI, TCP MUST ignore any ACKs
 received for data that was sent before the CCI and it MUST update the
 congestion window solely based on ACKs for data that was sent after
 the CCI occurred.

 The mechanism used for distinguishing ACKs for data sent after a CCI
 occurred from ACKs for data sent before a CCI occurred uses TCP
 Timestamps options. When a host receives a new CCI (either local or
 remote), LAST_CCI_TIME MUST be set to the current local time,
 CCI_SNDMAX MUST be set to the highest sequence number transmitted so
 far and CCI_CONTROLLED_CWND MUST be set to true.

 While CCI_CONTROLLED_CWND == true, TCP MUST update the congestion
 window based only on inbound ACKs that contain a TS Echo Reply
 (TSecr) value greater than or equal to LAST_CCI_TIME. Any inbound
 ACK with a TS Echo Reply (TSecr) value less than LAST_CCI_TIME MUST
 NOT cause an update to the congestion window, even if it advances the
 window. If CCI_CONTROLLED_CWND is true and the host receives an ACK
 with a sequence number greater than or equal to CCI_SNDMAX,
 CCI_CONTROLLED_CWND MUST be set to false and the congestion control
 algorithm MUST begin to process all ACKs normally, without checking
 their Timestamps options.

5.4. Speculative Retransmission

 The basic idea behind the speculative retransmission is to allow TCP
 to resume stalled connections as soon as it receives an indication
 that connectivity to previously unreachable peers may have returned.

 When a TCP connection receives a new CCI - either from the local
 stack or in a CCI TCP option from the peer - and is currently stalled
 in exponential back-off, it MUST immediately initiate the standard
 retransmission procedure, just as if the RTO for the connection had
 expired.

6. Discussion

 This section discusses some design choices of the RLCI mechanisms
 that can affect TCP performance under certain circumstances.

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc4821

Schuetz, et al. Expires August 25, 2008 [Page 16]

Internet-Draft TCP Response to Connectivity Indications February 2008

6.1. Triggered Segment Transmission during Steady-State

 A TCP stack that implements RLCI mechanisms and receives a local CCI
 immediately sends a TCP segment (A_FORCE_SEND) in order to inform the
 other end of the CCI and resets all path information
 (A_REPROBE_PATH). When TCP is stalled in exponential back-off, this
 is taken care of by the speculative retransmission procedure that is
 triggered by the CCI.

 On the other hand, when TCP is in steady-state, it sends a new
 segment (A_FORCE_SEND) if there is any new data queued for
 transmission. As usual, the number of unacknowledged segments is
 limited by CWND. However, CWND has just been reset to its initial
 value. This means that there is a possibility that the transmission
 sends a segment that is outside the current congestion window.
 Although this behavior may appear to be aggressive, it is in fact as
 conservative as a newly starting connection, because only a single
 unacknowledged segment is sent along the path after CCI.

6.2. Impact of Packet Loss

 If a connection is in exponential back-off when a CCI occurs, TCP
 considers all unacknowledged segments to be lost and the speculative
 retransmission procedure immediately starts.

 On the other hand, if the connection is in steady-state when a CCI
 occurs, TCP considers all unacknowledged segments to still be in
 flight and continues sending new data. Depending on what caused a
 CCI, four scenarios are possible that differ in what happens to
 segments and ACKs in flight:

 1. All (or at least the vast majority of) segments and ACKs in
 flight reach their respective destinations, i.e., there are no
 losses. In this case, TCP acts as if a new connection had
 started and re-probes the new path.

 2. Some of the ACKs in flight from the receiver to the sender are
 lost. In this case, TCP behaves exactly as above, because a
 cumulative ACK for the new segment sent along the path after the
 CCI acknowledges all the previous unacknowledged segments.

 3. Some of the data segments in flight from the sender to the
 receiver are lost. In this case, the new data segment
 transmitted after the CCI causes a duplicate ACK. As this
 duplicate ACK does not cause TCP to send another data segment,
 the connection stalls and a RTO occurs. After RTO, the standard
 retransmission procedure takes place with SS_THRESH equal to
 INITIAL_WINDOW/2 (i.e., the minimum allowed). This disables slow

Schuetz, et al. Expires August 25, 2008 [Page 17]

Internet-Draft TCP Response to Connectivity Indications February 2008

 start and causes a severely decreased performance. A possible
 solution is to execute the speculative retransmission procedure
 after receiving a CCI even if the connection is in steady-state.

 4. Some of the data segments and some of the ACKs that are in flight
 are lost. This case is similar to the previous one.

 In all these cases, it is also possible that the round-trip time
 changes significantly after the CCI, reordering data segments and
 ACKs that are still in flight with ones sent after the CCI. These
 reorderings appear to TCP as losses, and may result in the connection
 experiencing one of the above cases even if there was no actual
 packet loss.

6.3. Use of Limited Transmit with RLCI

 As described in the previous section, when a connection is in steady-
 state, a connectivity-change indication (CCI) resets all path
 information of TCP and causes one new data segment to be sent. In
 case of significant data segment loss before a CCI, the new data
 segment transmitted after a CCI causes a duplicate ACK. As this
 duplicate ACK does not trigger TCP to send another data segment, the
 connection stalls and an RTO occurs.

 Limited Transmit [RFC3042] can be used in case of packet loss in
 order to cause the transmission of three duplicate ACKs and trigger
 the fast retransmission procedure. As it must not cause an amount of
 outstanding data more than the congestion window plus two segments,
 it cannot always be used after a CCI due to the initialized CWND. If
 the connection has more outstanding data than INITIAL_WINDOW plus two
 segments before a CCI, resetting of CWND to the initial value after
 CCI causes an amount of outstanding data greater than the new CWND
 plus two segments and disables Limited Transmit.

 A modified Limited Transmit algorithm can be used in combination with
 RLCI:

 If CCI_CONTROLLED_CWND is true:
 The Limited Transmit Algorithm as described in [RFC3042] should be
 followed, but without checking the amount of outstanding data,
 i.e., if a TCP sender has previously unsent data queued for
 transmission it should transmit new data upon the arrival of the
 first two consecutive duplicate ACKs when the receiver's
 advertised window allows this transmission.

https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc3042

Schuetz, et al. Expires August 25, 2008 [Page 18]

Internet-Draft TCP Response to Connectivity Indications February 2008

 If CCI_CONTROLLED_CWND is false:
 The Limited Transmit Algorithm as described in [RFC3042] should be
 followed unmodified.

 When the fast retransmission procedure is triggered by the modified
 Limited Transmit after a CCI, SS_THRESH is set to INITIAL_WINDOW/2
 (i.e., the minimum allowed) as CWND before fast retransmission was
 equal to INITIAL_WINDOW. As a result, slow-start is disabled causing
 decreased TCP performance.

 A minor modification can keep SS_THRESH unmodified in the previous
 case, i.e., if CCI_CONTROLLED_CWND == true and CWND ==
 INITIAL_WINDOW, keep SS_THRESH unmodified (having its initial value)
 upon the reception of the third duplicate ACK that triggers the fast
 retransmission procedure.

6.4. Simultaneous Processing of Connectivity-Change Indications

 As mentioned in Section 5.2.1, if a local CCI occurs (E_LOCAL_CCI)
 while LOCAL_CCI_STATUS != LOCAL_CCI_IDLE, the host MUST ignore it,
 because it is already processing another local CCI. As a result,
 only one local CCI at each end can be processed at the same time.
 Consequently, as every remote CCI at one end is triggered by a local
 CCI at the other end, only one remote CCI at each end can be
 processed at the same time.

 On the other hand, if both hosts receive connectivity-change
 indications from their local stacks (local CCIs) at almost the same
 time, there is a possibility of simultaneous processing of local and
 remote CCIs at both ends. In that case, path re-probing is triggered
 twice at each end in a very short time that can be lower than RTT.
 As this does not improve TCP performance, it can be avoided by
 triggering the A_REPROBE_PATH action only if CCI_CONTROLLED_CWND ==
 false.

7. Security Considerations

 The only foreseen security considerations with the techniques
 presented in this document result from either an attacker's ability
 to spoof valid TCP segments with CCI options that seemingly indicate
 connectivity changes, or an attacker's ability to generate bogus CCIs
 locally. An attacker might produce a stream of such false indicators
 that could keep a connection in slow-start at the initial window.
 One possible defense against this type of attack is to rate-limit the
 response to CCIs (whether local or remote). This is also probably
 less serious than other attacks such an empowered adversary could
 perform, like resetting the connection or injecting data. A similar

https://datatracker.ietf.org/doc/html/rfc3042

Schuetz, et al. Expires August 25, 2008 [Page 19]

Internet-Draft TCP Response to Connectivity Indications February 2008

 effect could be achieved without the new CCI option by forging
 duplicate ACKs that would keep a sender in loss recovery. If both
 sets of IP addresses, port numbers, and sequence numbers are
 guessable for a connection, then the connection should employ other
 measures [RFC4953] for protection against spoofed segments.

8. IANA Considerations

 This section is to be interpreted according to
 [I-D.narten-iana-considerations-rfc2434bis].

 This document does not define any new namespaces. It requests that
 IANA allocate a new 8-bit TCP option number for the CCI option from
 the registry maintained at

http://www.iana.org/assignments/tcp-parameters.

9. Acknowledgments

 This draft combines and obsoletes [I-D.swami-tcp-lmdr] and
 [I-D.eggert-tcpm-tcp-retransmit-now]. The authors would like to
 thank Mark Allman, Marcus Brunner, Alfred Hoenes, Shashikant
 Maheshwari, Kacheong Poon, Juergen Quittek, Stefan Schmid and Joe
 Touch for their comments and suggestions on this draft as well as the
 two original drafts.

 Simon Schuetz and Lars Eggert are partly funded by the Trilogy
 project, a research project supported by the European Commission
 under its Seventh Framework Program.

 Wesley Eddy's work on this document was performed at NASA's Glenn
 Research Center, while in support of the NASA Space Communications
 Architecture Working Group (SCAWG), and the FAA/Eurocontrol Future
 Communications Study (FCS).

10. References

10.1. Normative References

 [I-D.narten-iana-considerations-rfc2434bis]
 Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs",

draft-narten-iana-considerations-rfc2434bis-08 (work in
 progress), October 2007.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,

https://datatracker.ietf.org/doc/html/rfc4953
http://www.iana.org/assignments/tcp-parameters
https://datatracker.ietf.org/doc/html/draft-narten-iana-considerations-rfc2434bis-08

Schuetz, et al. Expires August 25, 2008 [Page 20]

Internet-Draft TCP Response to Connectivity Indications February 2008

RFC 793, September 1981.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 November 1990.

 [RFC1323] Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, August 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2581] Allman, M., Paxson, V., and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

 [RFC2988] Paxson, V. and M. Allman, "Computing TCP's Retransmission
 Timer", RFC 2988, November 2000.

 [RFC3042] Allman, M., Balakrishnan, H., and S. Floyd, "Enhancing
 TCP's Loss Recovery Using Limited Transmit", RFC 3042,
 January 2001.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, March 2007.

10.2. Informative References

 [DUKE] Duke, M., Henderson, T., and J. Meegan, "Experience with
 ``Link-UP Notification'' Over a Mobile Satellite Link",
 ACM Computer Communication Review, Vol. 34, No. 3,
 July 2004.

 [EDDY] Eddy, W. and Y. Swami, "Adapting End-host Congestion
 Control for Mobility", NASA Glenn Research Center
 Technical Report, CR-2005-213838, July 2005.

 [I-D.dawkins-trigtran-linkup]
 Dawkins, S., "End-to-end, Implicit 'Link-Up'
 Notification", draft-dawkins-trigtran-linkup-01 (work in
 progress), October 2003.

 [I-D.eggert-tcpm-tcp-retransmit-now]
 Eggert, L., "TCP Extensions for Immediate
 Retransmissions", draft-eggert-tcpm-tcp-retransmit-now-02
 (work in progress), June 2005.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/draft-dawkins-trigtran-linkup-01
https://datatracker.ietf.org/doc/html/draft-eggert-tcpm-tcp-retransmit-now-02

Schuetz, et al. Expires August 25, 2008 [Page 21]

Internet-Draft TCP Response to Connectivity Indications February 2008

 [I-D.ietf-hip-mm]
 Henderson, T., "End-Host Mobility and Multihoming with the
 Host Identity Protocol", draft-ietf-hip-mm-05 (work in
 progress), March 2007.

 [I-D.ietf-tcpimpl-restart]
 Hughes, A., Touch, J., and J. Heidemann, "Issues in TCP
 Slow-Start Restart After Idle",

draft-ietf-tcpimpl-restart-00 (work in progress),
 March 1998.

 [I-D.ietf-tcpm-tcp-uto]
 Eggert, L. and F. Gont, "TCP User Timeout Option",

draft-ietf-tcpm-tcp-uto-08 (work in progress),
 November 2007.

 [I-D.swami-tcp-lmdr]
 Swami, Y., "Lightweight Mobility Detection and Response
 (LMDR) Algorithm for TCP", draft-swami-tcp-lmdr-07 (work
 in progress), March 2006.

 [KOODLI] Koodli, R. and C. Perkins, "Fast Handovers and Context
 Transfers in Mobile Networks", ACM Computer Communication
 Review, Vol. 31, No. 5, October 2001.

 [OTT] Ott, J. and D. Kutscher, "OTT Internet: IEEE 802.11b for
 Automobile Users", Proc. Infocom 2004, March 2004.

 [RFC1122] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC2131] Droms, R., "Dynamic Host Configuration Protocol",
RFC 2131, March 1997.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, September 2001.

 [RFC3344] Perkins, C., "IP Mobility Support for IPv4", RFC 3344,
 August 2002.

 [RFC3775] Johnson, D., Perkins, C., and J. Arkko, "Mobility Support
 in IPv6", RFC 3775, June 2004.

 [RFC3819] Karn, P., Bormann, C., Fairhurst, G., Grossman, D.,

https://datatracker.ietf.org/doc/html/draft-ietf-hip-mm-05
https://datatracker.ietf.org/doc/html/draft-ietf-tcpimpl-restart-00
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-tcp-uto-08
https://datatracker.ietf.org/doc/html/draft-swami-tcp-lmdr-07
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc2131
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3344
https://datatracker.ietf.org/doc/html/rfc3775

Schuetz, et al. Expires August 25, 2008 [Page 22]

Internet-Draft TCP Response to Connectivity Indications February 2008

 Ludwig, R., Mahdavi, J., Montenegro, G., Touch, J., and L.
 Wood, "Advice for Internet Subnetwork Designers", BCP 89,

RFC 3819, July 2004.

 [RFC4306] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol",
RFC 4306, December 2005.

 [RFC4782] Floyd, S., Allman, M., Jain, A., and P. Sarolahti, "Quick-
 Start for TCP and IP", RFC 4782, January 2007.

 [RFC4907] Aboba, B., "Architectural Implications of Link
 Indications", RFC 4907, June 2007.

 [RFC4953] Touch, J., "Defending TCP Against Spoofing Attacks",
RFC 4953, July 2007.

 [RFC4957] Krishnan, S., Montavont, N., Njedjou, E., Veerepalli, S.,
 and A. Yegin, "Link-Layer Event Notifications for
 Detecting Network Attachments", RFC 4957, August 2007.

 [SCHUETZ] Schuetz, S., Eggert, L., Schmid, S., and M. Brunner,
 "Protocol Enhancements for Intermittently Connected
 Hosts", ACM Computer Communication Review, Vol. 35, No. 3,
 July 2005.

 [SCOTT] Scott, J. and G. Mapp, "Link layer-based TCP optimization
 for disconnecting networks", ACM Computer Communication
 Review, Vol. 33, No. 5, October 2003.

Editorial Comments

 [footnote-1] The authors have heard the idea of triggering
 retransmits based on connectivity events of directly-
 connected links being attributed to Phil Karn ("kick"
 operation in the KAQ9 TCP stack). A thread from the
 PILC mailing list in 2000 discusses some thoughts on
 this (http://www.isi.edu/pilc/list/archive/0691.html).

 [footnote-2] Although this specification introduces eight new per-
 connection state variables, a preliminary
 implementation of an earlier revision of this mechanism
 [I-D.swami-tcp-lmdr] only required around a hundred
 lines of kernel code.

Appendix A. Background: Classification of Connectivity Disruptions

 Connectivity disruptions can occur in many different situations.

https://datatracker.ietf.org/doc/html/bcp89
https://datatracker.ietf.org/doc/html/rfc3819
https://datatracker.ietf.org/doc/html/rfc4306
https://datatracker.ietf.org/doc/html/rfc4782
https://datatracker.ietf.org/doc/html/rfc4907
https://datatracker.ietf.org/doc/html/rfc4953
https://datatracker.ietf.org/doc/html/rfc4957
http://www.isi.edu/pilc/list/archive/0691.html

Schuetz, et al. Expires August 25, 2008 [Page 23]

Internet-Draft TCP Response to Connectivity Indications February 2008

 They can be due to wireless interference, movement out of a wireless
 coverage area, switching between access networks, or simply due to
 unplugging an Ethernet cable. Depending on the situation in which
 they occur, the implications of connectivity disruptions are
 different and must be handled appropriately. This section attempts
 to classify different types of connectivity disruptions and discusses
 their implications and impact on TCP.

 Two main properties of connectivity disruptions affect how TCP reacts
 to them: their duration and whether the path characteristics have
 significantly changed after they end. This document distinguishes
 between "short" and "long" disruptions and "changed" and "unchanged"
 path characteristics. Note that these two categories are orthogonal
 to each other, i.e., four types of connectivity disruptions exist.

 Connectivity disruptions are "short" for a given TCP connection, if
 connectivity returns before the RTO fires for the first time, i.e.,
 when TCP is still in steady-state. In this case, standard TCP
 recovers lost data segments through Fast Retransmit and lost ACKs
 through successfully delivered later ACKs. Appendix A.1 briefly
 describes this case.

 Connectivity disruptions are "long" for a given TCP connection, if
 the RTO fires at least once before connectivity returns, i.e., when
 TCP is in exponential back-off. In this case, TCP can be inefficient
 in its retransmission scheme, as described in Appendix A.2.

 Whether or not path characteristics change when connectivity returns
 is a second important factor for TCP's retransmission scheme.
 Standard TCP implicitly assumes that path characteristics remain
 unchanged across short disruptions by performing Fast Retransmit
 using the path parameters collected before the disruption. For long
 disruptions, standard TCP is more conservative and performs slow-
 start, re-probing the path characteristics from scratch. However,
 the standard behavior can be inefficient due to when it is initiated.

 These implicit assumptions can cause standard TCP to misbehave or
 perform inefficiently in some scenarios. Figure 4 illustrates the
 standard TCP behavior.

Schuetz, et al. Expires August 25, 2008 [Page 24]

Internet-Draft TCP Response to Connectivity Indications February 2008

 +-----------------------+-----------------------+
 Short | Fast Retransmit using | Fast Retransmit using |
 Duration | currently collected | currently collected |
 < RTO | path characteristics | path characteristics |
 +-----------------------+-----------------------+
 Long | | |
 Duration | Slow-start | Slow-start |
 >= RTO | | |
 +-----------------------+-----------------------+
 Unchanged Path Changed Path
 Characteristics Characteristics

 Figure 4: Standard TCP behavior.

A.1. Short Connectivity Disruptions

 One common cause of short connectivity disruptions that result in a
 change of the end-to-end path characteristics is transparent network
 layer mobility, via protocols such as Mobile IP, NEMO, or HIP. These
 protocols generally hide mobility events from the transport layer,
 but cannot mask the resulting changes to the end-to-end path that
 established TCP connections transmit over.

 Consider a Mobile IP scenario as shown in Figure 5. At time T, a
 mobile node MN attaches to access network Net-1, connected to the
 Internet through access router AR-1 and has the care-of address
 <Net-1, MN>. It establishes a TCP connection to the correspondent
 node CN. While MN attaches to AR-1, packets between CN and <Net-1,
 MN> follow PATH-1 (via Cloud-1 and AR-1). Assume that at some time
 T+1, MN moves and then attaches to Net-2, which is reachable through
 AR-2 with the care-of address <Net-2, MN>. While MN attaches to
 AR-2, all packets between CN and <Net-2, MN> follow PATH-2 (through
 Cloud-2 and AR-2).

Schuetz, et al. Expires August 25, 2008 [Page 25]

Internet-Draft TCP Response to Connectivity Indications February 2008

 <---------PATH-1---------->

 /---------\ +------+
 | | | | Net-1
 +---+ Cloud-1 +---+ AR-1 +-----> MN (time=T)
 | | | | |
 | \----+----/ +---+--+ |
 | | |
 CN <------+ | PATH-3 |
 | | |
 | /----V----\ +-------+ V
 | | | | |
 +---+ Cloud-2 +---+ AR-2 +-----> MN (time=T+1)
 | | | | Net-2
 \---------/ +-------+

 <--------PATH-2----------->

 Figure 5: Mobility example.

 During a transient disconnected period, MN may have disconnected from
 Net-1 and not yet attached to Net-2. Consequently, AR-1 may not be
 able to deliver packets to MN. This could result in a burst of
 packet losses. Several approaches for "fast" or "seamless" handovers
 exist that involve adding machinery to the ARs to buffer and redirect
 packets originally sent to Net-1 towards Net-2, rather than dropping
 them (e.g., [KOODLI]).

 As long as MN remains in Net-1, standard congestion control
 algorithms [RFC2581] are sufficient. However, once MN moves from
 Net-1 to Net-2, two different scenarios are possible depending on
 network topology:

 o In the first scenario, with standard Mobile IPv4, all packets
 destined to <Net-1, MN> are dropped by AR-1 once MN has moved.
 Since the latency involved in establishing a new tunnel to the HA
 is on the order of the RTT (2*RTT in case of Mobile IPv6), roughly
 an entire window's worth of data and ACKs will be dropped by AR-1.
 Because of this burst loss, CN and MN are likely to incur
 expensive retransmission timeouts.

 o In the second scenario, with a fast handover mechanism in place,
 losses are masked through buffering and tunneling between routers
 AR-1 and AR-2. The exact sequence of buffering and forwarding
 between the ARs is not guaranteed to occur in a manner consistent
 with the available bandwidth of PATH-3 or conformant to TCP's
 clocking expectations. This can cause TCP's behavior over PATH-2
 to be based on the unrelated properties of PATH-1 and PATH-3.

https://datatracker.ietf.org/doc/html/rfc2581

Schuetz, et al. Expires August 25, 2008 [Page 26]

Internet-Draft TCP Response to Connectivity Indications February 2008

 After attaching to Net-2, reception of stale ACKs (for data sent on
 PATH-1) will cause MN to incorrectly inflate its congestion window.
 These stale ACKs do not provide any indication of the congestion
 along PATH-2. CN's congestion window becomes similarly inflated by
 ACKs that MN sends for data segments redirected over PATH-3. If the
 congestion windows from PATH-1 are already too big for PATH-2, this
 can overload Net-2 or PATH-2, causing packet loss and timeouts.

 On the other hand, if the available bandwidth along PATH-2 is greater
 than along PATH-1, and if the sender is in congestion avoidance, it
 will need potentially many RTTs before utilizing the available path
 capacity. This is due to relatively slow bandwidth increase during
 congestion avoidance caused by a stale SS_THRESH. (See [EDDY] for
 details.)

A.2. Long Connectivity Disruptions

 For long disruptions, standard TCP performs slow-start after
 connectivity returns, because the retransmission timeout (RTO) has
 expired. This conservative strategy avoids overloading the new path.
 However, TCP's general exponential back-off retransmission strategy
 can time these slow-starts such that performance decreases.

 When a long connectivity disruption occurs along the path between a
 host and its peer while the host is transmitting data, it stops
 receiving ACKs. After the RTO expires, the host attempts to
 retransmit the first unacknowledged segment. TCP implementations
 that follow the recommended RTO management proposed in [RFC2988]
 double the RTO after each retransmission attempt until it exceeds 60
 seconds. This scheme causes a host to attempt to retransmit across
 established connections roughly once a minute. (More frequently
 during the first minute or two of the connectivity disruption, while
 the RTO is still being backed off.)

 When the long connectivity disruption ends, standard TCP
 implementations still wait until the RTO expires before attempting
 retransmission. Figure 6 illustrates this behavior. Depending on
 when connectivity becomes available again, this can waste up to a
 minute of connectivity for TCPs that implement the recommended RTO
 management described in [RFC2988]. For TCP implementations that do
 not implement [RFC2988], even longer connectivity periods may be
 wasted. For example, Linux uses 120 seconds as the maximum RTO by
 default.

https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2988

Schuetz, et al. Expires August 25, 2008 [Page 27]

Internet-Draft TCP Response to Connectivity Indications February 2008

 Sequence
 number X = Successfully transmitted segment
 ^ O = Lost segment
 | : : : X
 | : : :X
 | OO O O O O : X
 | X: : :
 | X : :<------------>:
 | X : : Wasted :
 | X : : connection :
 |X : : time :
 +-----:---------------------:--------------:-------->
 : : : Time
 Connectivity Connectivity TCP
 gone back retransmit

 Figure 6: Standard TCP behavior in the presence of disrupted
 connectivity.

 This retransmission behavior is not efficient, especially in
 scenarios where connectivity periods are short and connectivity
 disruptions are frequent [OTT]. Experiments show that TCP
 performance across a path with frequent disruptions is significantly
 worse, compared to a similar path without disruptions [SCHUETZ].

 In the ideal case, TCP would attempt a retransmission as soon as
 connectivity to its peer was re-established. Figure 7 illustrates
 the ideal behavior.

 Sequence
 number X = Successfully transmitted segment
 ^ O = Lost segment
 | : : X :
 | : :X :
 | OO O O O O X :
 | X: : :
 | X : :<------------>:
 | X : : Efficiency :
 | X : : improvement :
 |X : : :
 +-----:---------------------:--------------:-------->
 : : : Time
 Connectivity Connectivity Next
 gone back := immediate scheduled
 TCP retransmit retransmit

 Figure 7: Ideal TCP behavior in the presence of disrupted
 connectivity

Schuetz, et al. Expires August 25, 2008 [Page 28]

Internet-Draft TCP Response to Connectivity Indications February 2008

 The ideal behavior is difficult to achieve for arbitrary connectivity
 disruptions. One obviously problematic approach would use higher-
 frequency retransmission attempts to enable earlier detection of
 whether connectivity has returned. This can generate significant
 amounts of extra traffic. Other proposals attempt to trigger faster
 retransmissions by retransmitting buffered or newly-crafted segments
 from inside the network
 [SCOTT][I-D.dawkins-trigtran-linkup][DUKE][RFC3819].

 Note that scenarios exist where path characteristics remain unchanged
 after long connectivity disruptions. In this case, even an
 intelligently scheduled slow-start is inefficient, because TCP could
 safely resume transmitting at the old rate instead of slow-starting.
 Although originally developed to avoid line-rate bursts, techniques
 for the well-known "slow-start after idle" case
 [I-D.ietf-tcpimpl-restart] may be useful to further improve
 performance after a disruption ends in such a scenario. This
 document does not currently describe this additional optimization,
 and an open question remains on how unchanged path characteristics
 after long connectivity disruptions could be validated by an end
 host.

Appendix B. Document Revision History

 +----------+--+
 | Revision | Comments |
 +----------+--+
03	Mainly editorial and textual changes according to
	feedback received since last version.
02	Major modification to the RLCI mechanism for
	implementing a 3-way handshake that ensures that both
	peers are informed about a connectivity-change
	indication. CCI option format, RLCI variables
	maintained by the TCP peers and the related state
	machines are affected by that modification.
01	Major revision of the description of the
	connectivity-change indication TCP option and its
	processing in Section 5. Other formatting changes to
	the document include moving some background material
	to the appendix.
00	Initial version. This document is a merge of and
	obsoletes [I-D.eggert-tcpm-tcp-retransmit-now] and
	[I-D.swami-tcp-lmdr].
 +----------+--+

Schuetz, et al. Expires August 25, 2008 [Page 29]

Internet-Draft TCP Response to Connectivity Indications February 2008

Authors' Addresses

 Simon Schuetz
 NEC Laboratories Europe
 Kurfuerstenanlage 36
 Heidelberg 69115
 Germany

 Phone: +49 6221 4342 165
 Email: simon.schuetz@nw.neclab.eu
 URI: http://www.nw.neclab.eu

 Nikolaos Koutsianas
 Nokia Research Center

 Email: nkout@mobile.ntua.gr

 Lars Eggert
 Nokia Research Center
 P.O. Box 407
 Nokia Group 00045
 Finland

 Phone: +358 50 48 24461
 Email: lars.eggert@nokia.com
 URI: http://research.nokia.com/people/lars_eggert/

 Wesley M. Eddy
 Verizon Federal Network Systems
 NASA Glenn Research Center
 21000 Brookpark Road, MS 54-5
 Cleveland, OH 44135
 USA

 Email: weddy@grc.nasa.gov

http://www.nw.neclab.eu
http://research.nokia.com/people/lars_eggert/

Schuetz, et al. Expires August 25, 2008 [Page 30]

Internet-Draft TCP Response to Connectivity Indications February 2008

 Yogesh Prem Swami
 Nokia Research Center, Dallas
 955 Page Mill Road
 Palo Alto, California 94304
 USA

 Phone: +1 972 374 0669
 Email: yogesh.swami@nokia.com

 Khiem Le
 Nokia Siemens Networks
 6000 Connection Drive
 Irving, TX 75039
 USA

 Phone: +1 972 342 3502
 Email: khiem.le@nsn.com

Schuetz, et al. Expires August 25, 2008 [Page 31]

Internet-Draft TCP Response to Connectivity Indications February 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Schuetz, et al. Expires August 25, 2008 [Page 32]

