
Workgroup: Network Working Group

Internet-Draft:

draft-schulte-amp-mesh-protocol-00

Published: 28 April 2021

Intended Status: Experimental

Expires: 30 October 2021

Authors: A. S. Schulte

Technische Universitaet Berlin

AMP Mesh Protocol

Abstract

This memo describes a decentralized multi-domain mesh networking

protocol for low power embedded systems. Its decentralized

architecture allows for large scale dynamic topologies across

multiple wireless domains. The protocol is optimized for low power

wireless devices by using zero-maintenance addressing algorithms. A

decentralized ad-hoc reactive routing algorithm enables fast route

convergence with low communication overhead.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 30 October 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Motivation

1.2. Scope

1.3. Interfaces

1.4. AMP Terminology

1.5. Requirements Language

2. Protocol Operation

2.1. Operating Environment

2.2. Relation to other Protocols

2.3. Addressing

2.3.1. Address Format and Notation

2.3.2. Domain Separation

2.3.3. Address Acquisition on Boot (ZAL/AQ)

2.3.4. Address Allocation (ZAL/AL)

2.3.5. Address Space Rebalancing (ZAL/DE)

2.3.6. Address Revocation

2.4. Routing

2.4.1. Route Detection

2.4.2. Route Updates

2.4.3. Route Removal

2.4.4. Forwarding

2.5. Datagrams

2.6. Gateways

3. Message Specification

3.1. Message Header

3.2. Addressing Messages

3.2.1. POOL_ADVERTISEMENT

3.2.2. POOL_ACCEPTED

3.2.3. POOL_ASSIGNED

3.2.4. POOL_REVOKED

3.2.5. BIN_CAPACITY_REQUEST

3.2.6. BIN_CAPACITY_REPLY

3.3. Control Messages

3.3.1. HELLO

3.3.2. GOODBYE

3.3.3. GOODBYE_ACK

3.4. Data Messages

3.4.1. DATAGRAM

3.4.2. ACKNOWLEDGED_DATAGRAM

3.4.3. DATAGRAM_ACK

3.5. Routing Messages

3.5.1. ROUTE_DISCOVERY

3.5.2. ROUTE_REPLY

4. IANA Considerations

5. Security Considerations

5.1. Out-of-Scope Attacks

5.2. Denial of Service Attacks

5.3. Attacks on the Addressing Algorithm

5.4. Attacks on the Routing Algorithm

6. References

6.1. Normative References

6.2. Informative References

Author's Address

1. Introduction

1.1. Motivation

Our modern society is heavily influenced by ubiquitous embedded

computing devices. Wearables, smart home, or manufacturing devices

are quite useful on their own, but only live up to their full

potential, when they start to communicate with other devices.

Communication between embedded devices is what makes automated

homes, buildings, or factories smart. Autonomous communication

enables the devices to form a larger system-of-systems. Aggregation

of information from the entire communication domain enables the

system to be aware of its environment and react to it.

Embedded devices often communicate wireless, using technologies such

as WLAN, Bluetooth, or IEEE 802.15.4 based protocols. These

communication stacks are designed and optimized for specific use

cases and environments. In large systems, such as smart factories,

many fundamentally different device classes might be used. This can

range from handbeld mobile devices to large manufacurting equipment.

These have different communication requirements and therefore use

different technologies. This document proposes a dedicated

networking protocol for wireless embedded devices to enable

efficient on-site inter-domain communication.

1.2. Scope

The AMP Mesh Protocol (AMP) is designed to facilitate the formation

of a dynamic and self optimizing ad-hoc network across wireless

domains. It is therefore a layer 3 networking protocol. AMP

transports connection-less datagrams between individual nodes. The

protocol focuses on two main features: addressing and routing.

The protocol adheres to the ISO/OSI layers and does not depend on,

or use, any TCP/IP technology. Features like fragmentation,

congestion control, or Quality-of-Service guarantees are not part of

the protocol and left to other layers. The same is true for name

resolution and node or service discovery.

1.3. Interfaces

To ensure broad compatibility, AMP demands only basic features of

the data link layer. It must provide bidirectional connectivity

¶

¶

¶

¶

between neighboring nodes. There needs to be an automatically

maintained link state for each connection. Each frame on that link

must be able to transport 1024 bytes. Optionally, the data-link

layer may provide a leader-election mechanism to be used in address

distribution.

AMP provides multiple services to upper layers. Each node is

assigned a unique address in the network upon boot. The protocol

provides the information if a remote node with a certain address is

reachable through the network, as well as it's distance as hop

count. Datagrams can be sent with an optional acknowledgment.

1.4. AMP Terminology

Node: A computing device, participating in the network with an

assigned address. A single physical system may incorporate

multiple virtual nodes.

Domain: From AMP's perspective, a domain is any set of nodes,

connected via the same data link layer. This may be for example a

WLAN network, a Bluetooth Mesh, or a wired bus.

Gateway: A gateway consists of two nodes from different domains.

They share a common layer 2 technology to transparently transfer

messages between domains. A gateway may be a single physical

device with multiple interfaces.

Layer: Layers are to be interpreted as in the ISO/OSI convention.

Address: An address is a unique identifier assigned to a node in

the network. AMP defines its own address format.

Address Pool: An address pool describes a range of addresses. A

pool is defined by a start address and the address count, i.e.

the pool size.

Parent: In the scope of address assignment (ZAL/AQ and ZAL/DE), a

parent is the node assigning address pools to a child.

Child: In the scope of address assignment (ZAL/AQ and ZAL/DE), a

child is a node requesting address pools from potential parents.

Bin: In scope of distribution equalisation (ZAL/DE), a bin are

the nodes within signal transmission ranges of each other, i.e.

the immediate neighbors of a node.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

1.5. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [1].

2. Protocol Operation

2.1. Operating Environment

To enable the protocol to be used in a broad variety of

environments, it does not require any specific topology of the used

data link layers. The data link layer must provide a bidirectional

link between neighboring nodes.

AMP operates on an undirected, connected, and finite graph. The

preferred topology is a sparse mesh. Within a given scope, there

only ever exists one network. There is no concept of subnets,

partitions, or merges.

All nodes in the network are created equal. The network is fully

decentralized and does not rely on the services of single nodes.

There is no central coordinator. All algorithms are fully

distributed.

The network is self-configuring and self-healing. Nodes may join or

leave the network at runtime. Links between nodes may be formed or

dropped at will. Nodes are expected to be nomadic: They may change

their position, address, and connectivity in the network, but not

very frequently. The routing algorithm reacts to topology changes.

Addresses may be assigned and revoked at any time.

Adhering to the best-effort principle, all nodes should execute the

required networking operations to their best of ability. The network

relies on the cooperation of all nodes. It uses the least amount of

messages, i.e. is most efficient, when all nodes implement the full

standard.

2.2. Relation to other Protocols

AMP is an overlay network, specifically designed to be used atop a

wide variety of communication technologies. It is not exclusively

bound to use classic link-layer technologies. AMP messages may for

example be transported via Ethernet, IP, or ZigBee. In the scope of

this document, technologies used for data transmission are refered

to as "layer 2" or "data link layer". Gateways translate between

these incompatible domains. Gateways are nodes that happen to have

more than one communication interface.

¶

¶

¶

¶

¶

¶

¶

Figure 1: Layers and Gateways

Figure 1 shows a message-flow between two nodes in separate domains.

The data is transferred between domains via the gateway medium.

2.3. Addressing

One of AMP's core features is addressing. This does include the

address format a well as the assignment and management mechanisms.

These mechanisms are fully distributed throughout the network. To

minimize the number of transferred messages, the "Zero-Maintenance

Address Allocation" (ZAL) algorithms by Hu and Li are applied [4].

The paper describes three algorithms to manage address space in a

network: Address Allocation (ZAL/AL), Address Acquisition (ZAL/AQ),

and Distribution Equalization (ZAL/DE).

Following the ZAL approach, address assignment is done in a

decentralized manner, using as few messages as possible. Upon boot,

a node has no address. To participate in the network a node requests

the assignment of an address pool from its neighbors (ZAL/AQ).

Available address pools are selected and assigned (ZAL/AL). This

process continues recursively, so each node re-distributes its

assigned address space to child nodes. Address pools are leased to a

child as long as the link, via which the assignment was performed,

is active. If the number of available addresses in a section of the

network falls under the specified limit, the distribution

equalization (ZAL/DE) algorithm is triggered. If none of the

neighboring nodes has assignable address space, the child assigns a

random temporary address with the reserved prefix to itself (see

Section 3).

Address assignment starts from an an initial node, which holds the

full address pool of the domain. AMP defines the recursive address

assignment algorithm. It does explicitly not define how the initial

node is selected. The initial node and address space should be

configured manually by the network's administrator. Alternatively,

the election of the initial node may be done by layer 2. Many

+-----------+ +-----------+

| Layer 4 | | Layer 4 |

+----+------+ +-----^-----+

 | |

+----v-------+ +------------+ +-----+-----+

| AMP | | AMP | | AMP |

+-----------++ +-^---------++ +-----^-----+

 | | | |

+--------+ +v------+-----+ +v----------+-----+

|Layer 2A| | Gateway | | Layer 2B |

+--------+ +-------------+ +-----------------+

¶

¶

¶

0000:0000:0000:0000

FFFF:FFFF:FFFF:FFFF

FFxx:xxxx:xxxx:xxxx

protocols such as ZigBee or Bluetooth Mesh have an intrinsic leader

which may be used as initial node for the respective domain. The

actual address pool should be defined by the administrator. It can

optionally be assigned automatically by a deterministic algorithm or

an auxiliary protocol. The initial address pool size per domain

should be at least 2^32.

2.3.1. Address Format and Notation

AMP uses 64-bit addresses. This deliberately oversized address space

allows for efficient and robust distributed address assignment.

Large pool sizes result in a lower risk of address depletion. The

probability of duplicated temporary addresses is also reduced

greatly.

The text representation of AMP addresses follows the same

specification as IPv6 addresses as defined in RFC 4291 [2]. The

addresses byte values are written in hexadecimal notation and split

in 4 blocks of 16 bits, separated by a colon. Addresses with leading

zeros should be shortened as described in RFC 4291 [2].

All addresses are uniquely assigned in a network and used for

unicast. There are no classes or scopes. With the exception of the

following set, all addresses can be assigned.

Unspecified address: Reserved for Address Acquisition.

Is shortened to "::".

Invalid Address. Message must be dropped immediately.

Prefix for temporary addresses.

2.3.2. Domain Separation

Although an AMP network is always interpreted as a single coherent

network, the address assignment algorithm is only ever executed

within the boundaries of a domain. Address management messages must

not be sent via gateways.

This domain separation adds to the robustness of address assignment

and revocation: When the node that assigned an address block goes

offline, the address pool and all derived child-pools become

invalid. When an intermediate node in the addressing tree goes

offline, the branch becomes stale and new addresses need to be

assigned to the affected nodes. If the initial node, the root of the

addressing tree, goes offline, all addresses within the respective

¶

¶

¶

¶

¶

¶

¶

¶

¶

domain become stale. A new initial node needs to be selected and new

pools need to be assigned throughout the entire domain. Keeping the

address assignment within domains reduces the number of necessary

reassignments to a confined part of the larger network.

2.3.3. Address Acquisition on Boot (ZAL/AQ)

Upon boot, a node has neither any knowledge over the network, nor an

address. To participate in the network, it needs to acquire an

address.

The joining node sends HELLO messages via all its available

interfaces. Sender and receiver address must be unspecified (::) to

indicate a ZAL/AQ request. All potential parent nodes should reply

with a set of assignable address pools in a POOL_ADVERTISEMENT

message. If a potential parent does not reply within a timeout

period, this node should be ignored. The child must choose the

advertisement with the highest count of total addresses. If two

advertisements offer the same number of addresses, the child may

choose between them at will.

To accept a set of advertised addresses, the child replies with a

POOL_ACCEPTED message to the selected parent. This should be

acknowledged by the parent with a POOL_ASSIGNED message. Only when

the assignment is explicitly completed, the child must use the

advertised address pools. It must not start doing so any sooner.

When the POOL_ASSIGNED message is received, the child must assign

the lowest of the received addresses to itself. No other address

shall be used for communication. When the assignment is complete,

the child should send HELLO messages to the remaining neighbors. The

sender and receiver address must be populated with the repective

addresses. This indicates to the other neighbors, their

advertisement was not accepted. After the child has an assigned

address, it should recursively advertise and assign address pools

itself.

If the parent is no longer able to assign the previously advertised

address pools, it replies with an empty POOL_ADVERTISEMENT message.

In this case the pools must not be used by the child. The child may

chose another parent or restart the ZAL/AQ algorithm with new HELLO

messages.

The POOL_ADVERTISEMENT and POOL_ASSIGNED messages must contain the

address of the parent as sender address. This means there is an

implicit neighbor discovery mechanism built in to the ZAL/AQ

mechanism. The child knows all of its neighbors, since they

announced their address in the advertisement. The chosen parent

knows that the child did choose the lowest of its assigned

¶

¶

¶

¶

¶

addresses. Any remaining nodes should receive a HELLO message with

the chosen address.

As discussed above, AMP does not define how the initial node and the

root address pool in a domain is chosen. When bootstrapping a new

domain, the ZAL/AQ algorithm is first executed between the initial

node and its neighbors. The algorithm then cascades recursively

throughout the entire domain. Nodes with no immediate connection to

the initial node send out HELLO messages and reply with empty

POOL_ADVERTISEMENT messages. When none of the neighbors replies with

a populated advertisement, the child should continue sending HELLO

messages periodically. The interval may optionally be increased with

a back-off algorithm. This idle state is maintained until one or

more neighbors acquired addresses and answer with populated

advertisements. Optionally, a node can chose random address from the

reserved address space to itself while waiting.

When a node receives a HELLO message with a populated sender address

and an undefined receiver address from a newly established link, the

ZAL/AQ algorithm must not be triggered. This message means that the

neighboring node already has an address and simply announces itself.

The receiving peer should answer with a fully populated HELLO

message to complete the handshake.

2.3.4. Address Allocation (ZAL/AL)

The ZAL/AQ algorithm discussed above defines the communication

pattern between a child and its potential parent. The address

allocation algorithm (ZAL/AL) is triggered during this process in

the potential parent nodes. It defines how the assignable addresses

are safely managed.

The algorithm is designed to prevent address duplication. The pools

are reserved before they are advertised by the parent. They must

only be used by the child when the assignment is completed. If the

confirmation message is lost, the reserved pools might be lost. If a

link goes down, the child must no longer use the addresses assigned

over this link. A parent can therefore safely reassign the pools,

without the risk of address duplication.

A node holds a list of address pools, it was assigned. Each entry

consists of the pool itself and its current state: {AVAILABLE |

RESERVED | ASSIGNED}. Derived from this list, the total count of

available addresses is known. When an assignment request arrives,

half of the available space should reserved for the request. In case

of an uneven count, the number must be rounded down. Reservation of

addresses should start at the numerically highest available address.

Counting down from this highest value, pools are reserved until the

desired count is reached. If necessary, a pool in the list is split,

¶

¶

¶

¶

¶

to fit the exact count. The state of these pools is changed from

AVAILABLE to RESERVED. The reserved pools are then send in an

POOL_ADVERTISEMENT message to the requesting node. If there are no

addresses available, the advertisement message should be send with

empty payload. Address assignment requests should be processed in

the order they arrive.

If the child answered with a POOL_ACCEPTED message, the state of the

address pools is changed from RESERVED to ASSIGNED. The parent

completes the process by sending a POOL_ASSIGNED message. This

message must only be sent after the internal state is changed. If

the child answered with a HELLO message, the advertisement was

rejected and the address pools can be assigned to other nodes. The

state of the address pools is changed from RESERVED to AVAILABLE.

2.3.5. Address Space Rebalancing (ZAL/DE)

Even with large address pools, the available space can be depleted

quickly in bad conditions. The distribution equalisation (ZAL/DE)

algorithm is designed to redistribute address space throughout the

domain, if a bin has less available address space than the defined

target capacity.

The probability of address space depletion is relatively low,

especially with large address pool sizes. With the recommended

initial pool size of 2^32, the probability is negligible, especially

for smaller domains. Even if the address space is depleted in a

region of the domain, joining nodes use an address from the reserved

pool for temporary addresses. The probability for address

duplications is also negligible. The implementation of the ZAL/DE

algorithm is therefore optional. The decision to omit this feature

should be based on a careful evaluation of the probabilities of

depletion for a given use case.

The algorithm itself as well as the equations to calculate bin

target capacities and probabilities are defined in the paper by Hu

and Li [4] and are not reproduced here. Only the AMP specific

messages and details are described here.

The initialization of ZAL/DE is based on the target bin capacity Se.

The value of Se depends on the size of the initial address pool. To

eliminate the need to distribute Se throughout the domain, it is set

to a fixed value, based on the recommended initial pool size of

2^32. In AMP domains, Se always set to the value 12.

As all addressing algorithms, ZAL/DE is only executed within the

boundaries of a given domain. Associated messages must not be

delivered via gateways.

¶

¶

¶

¶

¶

¶

¶

When a bin falls under its target capacity and the ZAL/DE mechanism

is triggered, the BIN_CAPACITY_REQUEST and BIN_CAPACITY_REPLY

messages are used to determine the distribution of address space. To

redistribute address space, the POOL_ADVERTISEMENT, POOL_ACCEPTED,

and POOL_ASSIGNED messages are used as described in the ZAL/AQ

algorithm. Both source and destination address must be specified at

all times.

When pools are distributed horizontally through the domain, nodes

must keep track from where they received address pools and to where

they were assigned. If the link via which a pool was received goes

offline, the addresses are no longer valid and need to be revoked.

This is done by sending POOL_REVOKED messages to all children, which

were assigned addresses from the now invalid pool. The detailed

revocation process is described below.

2.3.6. Address Revocation

There are three ways for addresses to be revoked: Graceful, with

either a GOODBYE or a POOL_REVOKED message, or ungraceful, by a link

going offline. Revocation means that the revoked address pools are

no longer valid and therefore not usable or assignable. Revocations

must be forwarded to nodes, that were assigned the revoked

addresses. Revocations therefore cascade through the network.

Revocations can happen anytime, even during the ZAL/AQ process.

Graceful revocation happens with GOODBYE or POOL_REVOKED messages.

If a node goes offline in a controlled manner, it must send a

GOODBYE message to all its neighbors, informing them of the imminent

shutdown. The receiving nodes must revoke the associated address

pools and should reply with a GOODBYE_ACK message. The node which is

powering down should wait for these acknowledgments. If an neighbor

did not acknowledge, the GOODBYE message should be resend after a

timeout period.

Receiving a POOL_REVOKED message means, an upstream node has gone

offline, which invalidated the associated address pools. Child nodes

which were assigned the now invalid addresses must immediately be

notified with a POOL_REVOKED message.

Ungraceful shutdown or connection loss can happen at any time. Since

the layer 2 infrastructure is required to maintain and provide a

link state, nodes immediately know when a neighbor is no longer

available. In this case, all address pools which were assigned over

the now unavailable link, are invalid. This is true for pools

retrieved via the ZAL/AQ algorithm at startup and redistributed

pools via ZAL/DE. POOL_REVOKED messages must be send to the affected

neighbors.

¶

¶

¶

¶

¶

¶

2.4. Routing

AMP uses a decentralized reactive ad-hoc routing algorithm, similar

to AODV [3]. The distance vector routing algorithm uses the hop

count as metric. A route is represented by its destination, the

associated interface, the hop count and a timeout. By using a

timeout, unused routes are removed after a while. Also stale routes,

where the nodes are no longer active, are eventually removed. The

timeout counter is started along with the creation of the route and

should be reset, every time a route is used. Nodes start with zero

knowledge over the network and continuously build up a routing table

on demand. Routing tables are considered volatile and must not be

reused when a node restarts, rejoins, or moves within a network.

The routing algorithm is designed for low communication overhead,

fast convergence and passive route maintenance and optimization.

Upon boot, a node initiates the ZAL/AQ algorithm and subsequently

knows its immediate neighbors. These are added to the routing table

with a hop count of 1. Since the connectivity to the neighbours is

monitored via the layer 2 link state, there must not be a timeout

for these routes.

2.4.1. Route Detection

When a node has no route for a desired destination, it should

initiate a route discovery. A ROUTE_DISCOVERY message should be send

via all interfaces. The destination node should respond with a

ROUTE_REPLY. Route discoveries should be flooded by all nodes, but

not to the interface it was received from. A node may receive

multiple replies on different interfaces. Only the route with the

least hops should be kept. If multiple interfaces have the same hop

count to a destination, only one should be kept. If no reply to the

discovery message was received, the node should not send any data

messages to the irresponsive destination address. Optionally, the

hop limit of the discovery message can be set to a low count and

increased in subsequent runs, to limit the range of the request and

therefore the number of generated messages.

When a forwardable message is received, the routing table should

always be validated against it. This allows for passive route

discovery and maintenance. If source address of the message is not

known yet, a route should be created. If a route is already known,

but the hop count of the received message is lower than the known

one, the route should be updated. If a route is used or updated, the

timeout should be reset.

When a ROUTE_DISCOVERY message is received, the node should add the

source address to its routing table. If the source is already

¶

¶

¶

¶

¶

present in the routing table, the node should only reply, if the hop

count of the discovery message is equal or less than in the existing

route. This reduces communication overhead for nonoptimal routes.

2.4.2. Route Updates

A nodes routing table should be updated with every incoming message,

regardless of the type and recipient. If there is no entry for the

source-address of the message, a new route with the address,

receiving interface, hop count, and a timeout should be created. If

there is an entry in the table, the hop count should be validated.

If it is lower than the stored value, it should be updated. If the

receiving interface is different to the old route, it should also be

changed. When a route is used or updated, the timeout should be

reset.

2.4.3. Route Removal

Routes may be deleted on three different occasions: timeout, address

revocation, or a link going offline. When a route times out, it

should be removed from the table, since it is no longer in active

use. When address pools are revoked via a GOODBYE or POOL_REVOKED

message, routes to these addresses must be removed. The subsequent

assignments are no longer valid and must therefore no longer be

forwarded to. When a link goes offline, all routes associated with

that interface must be removed. Also routes to addresses which are

actively or passively revoked by the link going down must be

removed.

2.4.4. Forwarding

Of the four message categories (see Section 3), only data and route-

discovery messages are forwardable. Addressing and control messages

must never be forwarded.

When a message is received which is not addressed to the receiving

node, the message should be forwarded. The messages hop count must

be incremented. If a route is found in the local routing table, the

timeout of the used route should be reset. The message is then

transmitted via the link, associated with the route's interface. If

there is no known route for the desired destination, the message

should be flooded to all interfaces, except the one, the message was

received from. The routing table should be updated before forwarding

a message.

There are several measures in place to prevent loops, duplicates,

and redundant messages: Route discoveries with a higher hop count

than the locally stored route should be dropped. If the shortest

route to a destination is associated with the same interface a

message is received from, the message should be dropped to avoid

¶

¶

¶

¶

¶

loops. A node must not initiate a route discovery for a destination

of a forwardable message it received. If incrementing the hop count

would exceed the hop limit, the message must be dropped.

Nodes with tight processing or memory budget may omit the routing

algorithm entirely. Instead of selecting the best interface,

messages may be flooded via all interfaces. Although this behaviour

is legal, it is not recommended, since it produces higher message

load on the network.

2.5. Datagrams

The main purpose of this protocol is the delivery of payload data

between nodes. Data is transported in connectionless DATAGRAM

messages. Datagrams are standalone messages, comparable to UDP. AMP

does not add any further context to the message, other than the

header fields needed for the network operation. A datagram can

transport up to 1003 bytes of payload.

Many applications might rely on a delivery guarantee. To eliminate

the need for every application to implement such a mechanism, AMP

offers the ACKNOWLEDGED_DATAGRAM. This message adds an

identification code to a datagram. When a node receives a

ACKNOWLEDGED_DATAGRAM, it should reply with a DATAGRAM_ACK message

to the sender. This acknowledges the successful transfer of the

datagram, by including the received identification code. The

transaction is uniquely identified by the combination of the source

address, the destination address, and the identification code.

The 16-bit identification code allows for up to 65536 in-flight

messages per node pair. The sender must keep track of the used

identification codes and ensure their uniqueness.

AMP does provide the messages for acknowledgment, but no redelivery

or timeout algorithms. The implementation of these mechanisms is

left to upper layers or the application itself.

2.6. Gateways

Gateways are a core component of AMP, enabling inter-domain

communication. Gateways consist of two nodes in different domains,

connected by a common interface.

In the scope of addressing, a gateway link is special and needs to

be treated with care. Gateway nodes must be aware of the fact they

are a gateway. A gateway link is not part of a domain, addressing

messages must therefore not be transmitted via this link. Gateway

links must only be used after a node has acquired a valid address.

In the scope of routing and forwarding, gateway links are treated as

every other link in the network graph.

¶

¶

¶

¶

¶

¶

¶

¶

Type:

Gateway links may be formed and dropped at any time. To initiate a

gateway, a node sends a HELLO message with its source address and

unspecified destination address. If the second node replies with a

fully populated HELLO message, the neighbor discovery is complete

and the gateway is operational. A gateway is terminated, when the

link goes offline or one of the nodes sends a GOODBYE message.

Gateways may consist of two separate nodes in two domains, connected

by a common physical interface. Alternatively a single physical node

with interfaces to multiple domains may behave as soft gateway. Data

can be transferred internally, instead of a common interface. In any

other regard, soft gateways must behave as if they were physically

separate nodes.

There may be multiple gateways between two domains. This is

recommended, since gateways can be a potential bottle-neck and

single-point-of failure. More gateways between domains result in a

more robust network.

3. Message Specification

Sets of transmittes bits in the AMP Mesh Protocol are called

messages. There are four message classes for different features of

the protocol. These message classes, the message header and common

features are specified here.

The network byte ordering is big-endian. Messages must not be longer

than 1024 bytes, including the header. If necessary, zeroes should

be added as padding.

3.1. Message Header

All messages have a common header. It contains the minimal data set

needed for the operation of the network. The three header fields

required by all messages are the message type, the source address,

and destination address. Some message types may add additional

header fields and payload.

Figure 2: Message Header

Unsigned 8-bit integer

Specifies the message type

¶

¶

¶

¶

¶

¶

 8 Bit 64 Bit 64 Bit max. 1007 Bytes

+--------+------------+---------------+-----------------------------

| Type | Source | Destination | opt. Headers & Payload ...

+--------+------------+---------------+-----------------------------

¶

¶

Source:

Destination:

Payload:

Unsigned 64-bit integer

Source address of the message

Unsigned 64-bit integer

Destination address of the message

Up to 1007 bytes

Optional auxiliary headers and payload

The first 8 bit define the messages type. The notation for message

types is hexadecimal. The first nibble indicates the message class,

the second nibble defines the type. This structure allows for future

additions. The class distinction in the first nibble using

hexadecimal letters also increases readability for humans.

After the message type, source and destination address are given as

64-bit unsigned integers. If not explicitly stated otherwise in the

message specification, both header fields must always be populated

with valid addresses.

Not all messages add a payload. Some messages, such as HELLO, do not

need more data than type and addresses. Detailed specifications for

all messages are given below.

A distinction is to be made between forwardable and non-forwardable

messages. Addressing and control messages must never be forwarded.

They are only ever exchanged between neighbors. Address and control

messages with other addresses than the two peer's or the unspecified

(::) address must be dropped immediately. Data and routing messages

may be forwarded. The header must always be fully populated. If it

contains an invalid or unspecified address, the message must be

dropped immediately.

Forwardable messages add hop counter and hop limit fields. The hop

counter must start with zero and must be incremented on every hop.

If incrementing the hop count would exceed the hop limit, the

message must be dropped.

3.2. Addressing Messages

Addressing messages must only be exchanged between neighboring

nodes. Addressing messages must not be forwarded. Source and

destination address must only contain the unspecified or the peers'

addresses.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Message type 0xA1

Count:

1 to 62 message pools, each consisting of:

Address pool start address:

Address pool size:

Addressing messages must never be exchanged over a gateway link.

Addressing messages are only valid within the same domain.

Addressing messages are identified by a hexadecimal "A" in the high

nibble of the message type.

3.2.1. POOL_ADVERTISEMENT

This message is used in ZAL/AQ and ZAL/DE algorithms. It advertises

assignable address pools to a neighboring node.

The advertisement adds a list of assignable address pools to the

payload of the message. First, the count of message pools is given,

then the pools are listed. Each pool is defined by the starting

address and the size of the pool. Restricted by the message size, up

to 62 address pools can be added. If there are no assignable pools

available, the message should be send with an empty payload.

If used during the ZAL/AQ algorithm, the destination address must be

unspecified. In all other cases, address fields must be populated.

The POOL_ADVERTISEMENT adds the following fields to the message:

Unsigned 8-bit integer

Gives the number of message pools

Unsigned 64-bit integer

Unsigned 64-bit integer

3.2.2. POOL_ACCEPTED

This message is used in ZAL/AQ and ZAL/DE algorithms. It indicates

that a node accepted the address pool advertisement of a parent. No

additional header fields or payload are added to the message.

If used during the ZAL/AQ algorithm, the source address must be

unspecified. In all other cases, address fields must be populated.

Message type 0xA2

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Message type 0xA3

Count:

1 to 62 message pools, each consisting of:

Address pool start address:

Address pool size:

Message type 0xA5

Count:

1 to 62 message pools, each consisting of:

3.2.3. POOL_ASSIGNED

This message is used in ZAL/AQ and ZAL/DE algorithms. It indicates

that address pools are assigned to a child node.

Adds a list of the assigned address pools to the payload of the

message. This must be the same set of pools as in the original

advertisement. First, the count of message pools is given, then the

pools are listed. Each pool is defined by the starting address and

the size of the pool. Restricted by the message size, up to 62

address pools can be added.

If used during the ZAL/AQ algorithm, the destination address must be

unspecified. In all other cases, address fields must be populated.

Unsigned 8-bit integer

Gives the number of message pools

Unsigned 64-bit integer

Unsigned 64-bit integer

3.2.4. POOL_REVOKED

Indicates that a set of address pools is no longer valid and

routable. Their usage for routing and communication must immediately

be stopped.

Adds a list of the revoked address pools to the payload of the

message. First, the count of message pools is given, then the pools

are listed. Each pool is defined by the starting address and the

size of the pool. Restricted by the message size, up to 62 address

pools can be added.

Unsigned 8-bit integer

Gives the number of message pools

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Address pool start address:

Address pool size:

Message type 0xA6

Bin capacity:

Unsigned 64-bit integer

Unsigned 64-bit integer

3.2.5. BIN_CAPACITY_REQUEST

This message is used in the ZAL/DE algorithm. It is used to

determine the available address space in the local bin.

This message type does not add any payload.

Message type 0xA5

3.2.6. BIN_CAPACITY_REPLY

This message is used in the ZAL/DE algorithm. It is a reply to the

BIN_CAPACITY_REQUEST. The message adds the amount of available

address space as payload.

Unsigned 64-bit integer

3.3. Control Messages

Control messages must not be forwarded. There is no payload in

control messages.

Control messages are identified by a hexadecimal "C" in the high

nibble of the message type.

3.3.1. HELLO

This message is used by to announce the existence and address of a

node to its neighbors. If the source address is empty, the ZAL/AQ

algorithm is initiated.

This message type does not add any payload.

Message type 0xC1

3.3.2. GOODBYE

This message is used to indicate the graceful shutdown of a node or

the termination of a link.

This message type does not add any payload.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Message type 0xD1

Hop count:

Hop limit:

Payload length:

Payload:

Message type 0xD2

Message type 0xC2

3.3.3. GOODBYE_ACK

This message is used as acknowledgement for a GOODBYE message, so

the retiring node knows that its GOODBYE message was received and

processed.

This message type does not add any payload.

Message type 0xC3

3.4. Data Messages

Data is transported through the network as datagrams. Data messages

are forwardable. They add hop counter and hop limit header fields.

Data messages are identified by a hexadecimal "D" in the high nibble

of the message type.

3.4.1. DATAGRAM

This message is used to transport data through the network.

Unsigned 8-bit integer

Unsigned 8-bit integer

Unsigned 16-bit integer

Gives the length of the payload in bytes

Up to 1003 bytes of payload

3.4.2. ACKNOWLEDGED_DATAGRAM

This message adds an identification code to a datagram. This enables

the receiver of the message to acknowledge the successful transfer

of the message to the sender. The message can be uniquely identified

by the combination of source address, destination address, and

identification code.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Hop count:

Hop limit:

Identification Code:

Payload length:

Payload:

Message type 0xD3

Hop count:

Hop limit:

Identification Code:

Unsigned 8-bit integer

Unsigned 8-bit integer

Unsigned 16-bit integer

Used to uniquely identify the message

Unsigned 16-bit integer

Gives the length of the payload in bytes

Up to 1001 bytes of payload

3.4.3. DATAGRAM_ACK

This message is used to acknowledge, that a ACKNOWLEDGED_DATAGRAM

was successfully received. Although this message is in the class of

data messages, it does not add any payload other than the header

fields listed below.

Unsigned 8-bit integer

Unsigned 8-bit integer

Unsigned 16-bit integer

Used to uniquely identify the message

3.5. Routing Messages

Routing messages are used to discover routes between two nodes in

the network. Routing messages are forwardable, but do not transport

any payload other than hop counter and hop limit header fields.

Routing messages are identified by a hexadecimal "F" (for "find") in

the high nibble of the message type.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Message type 0xF1

Hop count:

Hop limit:

Message type 0xF2

Hop count:

Hop limit:

3.5.1. ROUTE_DISCOVERY

This message is used to initiate a route discovery.

Unsigned 8-bit integer

Unsigned 8-bit integer

3.5.2. ROUTE_REPLY

This message is the reply to a ROUTE_DISCOVERY. The hop limit must

be set equal the hop counter of the received ROUTE_DISCOVERY

message.

Unsigned 8-bit integer

Unsigned 8-bit integer

4. IANA Considerations

This memo includes no request to IANA.

5. Security Considerations

To keep wide compatibility with low power devices, the protocol does

not have any built-in security features. The protocol is therefore

vulnerable to malicious nodes. Both the addressing and the routing

algorithm can be interfered with by modified or malicious messages.

AMP is to be considered inherently insecure.

5.1. Out-of-Scope Attacks

Data integrity is left to the underlying layers. There are no

encryption or authentication features. If needed, they must be added

by higher layers. Without added security by other layers in the

communication stack, AMP is susceptible for eavesdropping, replay,

message insertion, deletion, modification, and man-in-the-middle

attacks.

¶

¶

¶

¶

¶

¶

¶

¶

¶

5.2. Denial of Service Attacks

Both direct and distributed denial of service attacks are possible.

A node can force its direct neighbours to invest memory and

processing resources by sending large datagrams with malicious

header fields. This can be invalid addresses or a hop count/hop

limit which require the message to be dropped. To prevent this

attack, the attacked node can simply drop the connection to the

malicious neighbor. This is fully compliant with the best-effort

principle. The routing algorithm will adapt to the change in

topology.

A distributed denial of service attack can be executed by forging

the source address of a ROUTE_REQUEST. When a malicious node sends

route requests to multiple nodes in the network, they all send

responses to the node with the forged source address. This attack is

somewhat dampened by the routing algorithm. ROUTE_REQUEST messages

with a non-ideal route are dropped. A successful DDoS attack

therefore requires inferred knowledge about the networks topology.

The hop limit field can be forged by malicious nodes. If it is set

to a higher value than intended by the sender, this can result in

network congestion. This is especially true for ROUTE_DISCOVERY

messages, which are selectively flooded. This attack is confined to

the boundaries of a domain.

5.3. Attacks on the Addressing Algorithm

The addressing algorithms can be interfered with, by provoking

duplicate addresses. A malicious node can advertise address pools,

which it was not officially assigned. Alternatively, the same pool

can be assigned to multiple nodes.

Address revocations can also be malicious. Therefore messages must

only be processed, if they are received over the link the addresses

were originally assigned over. This contains the impact of a

misbehaving node to a single branch of the addressing tree.

5.4. Attacks on the Routing Algorithm

Manipulated hop count header fields can interfere with the routing

algorithm. Off-path attackers can direct selected message flow

towards them by decrementing the hop count, which enables MITM

attacks.

Maliciously incremented hop counts can lead to route diversions.

Traffic can be diverted to other parts of the network, which can

result in higher overall network load and lead to congestion. This

attack requires at least some knowledge over the networks topology.

¶

¶

¶

¶

¶

¶

¶

[1]

[2]

[3]

[4]

6. References

6.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Hinden, R. and S. Deering, "IP Version 6 Addressing

Architecture", RFC 4291, DOI 10.17487/RFC4291, February

2006, <https://www.rfc-editor.org/info/rfc4291>.

Perkins, C., Belding-Royer, E., and S. Das, "Ad hoc On-

Demand Distance Vector (AODV) Routing", RFC 3561, DOI

10.17487/RFC3561, July 2003, <https://www.rfc-editor.org/

info/rfc3561>.

6.2. Informative References

Hu, Z. H. and B. L. Li, "ZAL: Zero-Maintenance Address

Allocation in Mobile Wireless Ad Hoc Networks", March

2005, <https://doi.org/10.1109/ICDCS.2005.87>.

Author's Address

Aljoscha Schulte

Technische Universitaet Berlin

Email: a.schulte@tu-berlin.de

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4291
https://www.rfc-editor.org/info/rfc3561
https://www.rfc-editor.org/info/rfc3561
https://doi.org/10.1109/ICDCS.2005.87
mailto:a.schulte@tu-berlin.de

	AMP Mesh Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Motivation
	1.2. Scope
	1.3. Interfaces
	1.4. AMP Terminology
	1.5. Requirements Language

	2. Protocol Operation
	2.1. Operating Environment
	2.2. Relation to other Protocols
	2.3. Addressing
	2.3.1. Address Format and Notation
	2.3.2. Domain Separation
	2.3.3. Address Acquisition on Boot (ZAL/AQ)
	2.3.4. Address Allocation (ZAL/AL)
	2.3.5. Address Space Rebalancing (ZAL/DE)
	2.3.6. Address Revocation

	2.4. Routing
	2.4.1. Route Detection
	2.4.2. Route Updates
	2.4.3. Route Removal
	2.4.4. Forwarding

	2.5. Datagrams
	2.6. Gateways

	3. Message Specification
	3.1. Message Header
	3.2. Addressing Messages
	3.2.1. POOL_ADVERTISEMENT
	3.2.2. POOL_ACCEPTED
	3.2.3. POOL_ASSIGNED
	3.2.4. POOL_REVOKED
	3.2.5. BIN_CAPACITY_REQUEST
	3.2.6. BIN_CAPACITY_REPLY

	3.3. Control Messages
	3.3.1. HELLO
	3.3.2. GOODBYE
	3.3.3. GOODBYE_ACK

	3.4. Data Messages
	3.4.1. DATAGRAM
	3.4.2. ACKNOWLEDGED_DATAGRAM
	3.4.3. DATAGRAM_ACK

	3.5. Routing Messages
	3.5.1. ROUTE_DISCOVERY
	3.5.2. ROUTE_REPLY

	4. IANA Considerations
	5. Security Considerations
	5.1. Out-of-Scope Attacks
	5.2. Denial of Service Attacks
	5.3. Attacks on the Addressing Algorithm
	5.4. Attacks on the Routing Algorithm

	6. References
	6.1. Normative References
	6.2. Informative References

	Author's Address

