
SIMPLE H. Schulzrinne
Internet-Draft R. Shacham
Expires: December 27, 2006 Columbia University
 W. Kellerer
 S. Thakolsri
 DoCoMo Eurolabs
 June 25, 2006

Composing Presence Information
draft-schulzrinne-simple-composition-02

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on December 27, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 Composition creates a presence document from multiple components
 published by one or more sources. This document identifies sources
 of information that a compositor might draw on presence composition
 and describes steps for composition. The composing function can be
 complex, so we intentionally restrict the discussion to cases that

Schulzrinne, et al. Expires December 27, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Composition June 2006

 are likely to be common across many users of presence systems. We
 present an XML format for specifying a composition policy, based on
 our discussion.

Table of Contents

1. Introduction . 3
2. Types of Information sources 4
3. Composition Steps . 6
4. Discarding . 7
5. Deriving Presence Information 7
6. Resolving Conflicts . 9
6.1. Sources of Information Conflict 9
6.2. Detecting information conflicts 9
6.3. Handling Information Conflicts 11

7. Tuple Merging . 12
7.1. Service tuples . 13
7.2. Person tuples . 13

8. Default Policy . 14
9. Composition Policy Format 14
9.1. Discard step . 14
9.2. Derive step . 14
9.3. Resolve Conflicts Step 15
9.4. Merging . 16

10. XML Example . 17
11. Security Considerations 17
12. IANA Considerations . 17
13. References . 18
13.1. Normative References 18
13.2. Informative References 18

Appendix A. Acknowledgments 19
 Authors' Addresses . 20
 Intellectual Property and Copyright Statements 21

Schulzrinne, et al. Expires December 27, 2006 [Page 2]

Internet-Draft Composition June 2006

1. Introduction

 Composition combines multiple presence or event sources into one
 view, which is then delivered, after various filtering operations, to
 watchers [6] [7]. Composition is required whenever there are several
 sources contributing information about a single presentity or event.

 [Note: The content in this draft overlaps with the Processing Model
 draft and needs to be reconciled. Here, the emphasis is on
 developing the foundations for a composition policy language, and
 deal with merging <person> tuples.]

 For notational simplicity and since most of the discussion has
 focused on presence rather than general events, we will restrict our
 attention to presence information using the Presence Information Data
 Format (PIDF) [3] and extensions such as the Rich Presence
 Information Data format (RPID) [4], keeping in mind that other types
 of events or status may well be able to use many of the same
 mechanisms. We assume that a presentity is a single human being.
 There are other presentities, such as the collection of customer
 service agents in a call center, where consistency is much harder to
 define.

 We assume that the composition operation does not depend on the
 watcher identity, as there seems little functional gain by
 introducing per-watcher composing operations. The composed document
 contains the maximum set of information, i.e., no watcher can obtain
 more information than is contained in the composed raw presence
 document. (In some cases, a presentity wants to "polite block" a
 person by providing presence information that offers no information
 to the watcher, but avoids indicating that the watcher's subscription
 request has either not yet been processed or that it has been turned
 down. For those cases, a simple template that reflects a minimal
 PIDF document is sufficient, as it does not need to reflect presence
 inputs and does not change over time.)

 Composition at the presence agent is just one component of providing
 useful and correct information to the watcher. We assume that
 composition is algorithmic, although manual composition by the
 presentity is theoretically possible. Given the automated nature of
 composition, there may well be situations where the best course of
 action is to expose the underlying data to the watcher, even though
 it may be contradictory. Indeed, in many cases, a mechanical
 composer may not even be able to detect whether information is
 contradictory or not.

 The goals of composition are to remove information that is either
 stale, contradictory or redundant, to generate inferred presence

Schulzrinne, et al. Expires December 27, 2006 [Page 3]

Internet-Draft Composition June 2006

 state and to represent presence information in a more useful way.
 Stale information has been superseded by other, newer information.
 Contradictory information makes two statements about the presentity
 that cannot both be true. Redundant presence information provides
 information that is no longer of interest. For example, a presentity
 may decide to drop information about services whose status is closed
 if there are open services and may drop a service record referring to
 another person via a <relationship> element if the presentity itself
 is available. Inferred presence state uses presence elements or
 external information to derive new information. Location information
 seems particularly suitable for such inferences. For example, a
 location away from home might generate the activity indication 'away'
 or specific geospatial locations might be mapped to particular
 location types or activities. Presence information may be presented
 in a useful manner by merging non-contradictory information.

 Composition is not designed to reduce the size of notification
 messages or to protect information for privacy. Various compression
 schemes and partial notification [10] are better suited to reduce
 message sizes. Privacy filtering [8] has the role of tailoring
 information to individual recipients, based on the presentity's
 privacy policy.

 In our model, the composer is reactive. In other words, it only
 creates a new presence document if one of the publishers updates
 parts of the presence document. An active composer could, for
 example, generate a new presence document after a certain time
 interval has elapsed or when timed presence [5] information is
 transitioning from the future to the presence.

 The goal of this document is to outline options and then to derive a
 composition policy language that allows the user to control the steps
 that produce his presence document according to the aforementioned
 goals. Alternatively, a presence composition language can focus on
 the XML document and its components. Such a general presence
 composition language would have to be a full programming language, as
 it would need to support standard programming constructs such as
 conditionals, operations on XML elements in a document object model,
 history and external sources. This document focuses on content-aware
 policies rather than simple tools for mechanical transformations of
 XML presence documents.

2. Types of Information sources

 Presence information can be contributed by many different sources,
 either directly, by publishers using PUBLISH requests or by a
 presence agent acting as a watcher receiving NOTIFY requests. We

Schulzrinne, et al. Expires December 27, 2006 [Page 4]

Internet-Draft Composition June 2006

 describe each mode of delivery operation in the following. In direct
 mode, the composer has direct access, without presence protocol
 mediation, to this information, e.g., via REGISTER requests or
 layer-2 operations or access to user keyboard activity. Secondly,
 sources can use SIP PUBLISH requests to update presence information.
 Finally, presence agents can in turn subscribe to presence
 information and receive NOTIFY requests. However, the mechanism of
 data delivery is likely to be less important than the original data
 source and how the information was derived. Thus, to the extent
 possible, information about the original source should be preserved
 as otherwise information might become more credible simply because it
 has been re-published. We focus here on the semantic source of the
 data, i.e., how it was derived, not how it was injected into the
 presence system.

 For simplicity, we do not try to assess the veracity of the presence
 document. In order to evaluate the usefulness of a presence
 document, we only care whether the presentity would want the
 information to appear that way, not whether this corresponds to
 observable facts. Thus, a presence document is correct in that sense
 if it indicates that the presentity is in a meeting even though the
 presentity has actually gone fishing if the presentity would like the
 rest of the world to believe that he is at work. It may, however,
 well be the case that composition policies find it easier to maintain
 the truth than keep lies consistent across sources of presence
 information.

 We can distinguish the following sources of presence data:

 Reported current: Reported current information has been provided by
 the presentity within processing time delays of the current time.
 A presentity can update status information manually, by setting
 any of the element in a presence document. This update may be
 made by sending a PUBLISH request, by using XCAP as specified in
 [11] , or by a more direct update, such as editing it in a web
 GUI. We assume that this information is correct when entered, but
 the trustworthiness of the information is likely to decay as time
 goes on, given that most human users will find it difficult to
 continuously keep presence information up-to-date.
 Reported scheduled: For reported scheduled information, a presentity
 indicates its plans for the future rather than the present, e.g.,
 in a calendar. The reliability of this information depends
 largely on the diligence of the user in updating calendars and
 similar sources.

Schulzrinne, et al. Expires December 27, 2006 [Page 5]

Internet-Draft Composition June 2006

 Measured device information: Measured device information uses
 observed user behavior on communication devices, such as the act
 of placing or receiving calls or typing. The main source of error
 is that a device may not be able to tell whether the presentity
 itself is using the device or some other person.
 Measured by sensors: Presence information measured by sensors
 reflects the status of the presentity, e.g., its location, type of
 location, activity or other environmental factors. Examples of
 sensors include Global Positioning System (GPS) information for
 location or a BlueTooth beacon that announces the type of
 location, such as "theater", a person finds itself in. Sensors
 have the advantage that they do not rely on humans to keep the
 information up-to-date, but sensors are naturally subject to
 measurement errors. In particular, in quantum mechanical fashion,
 it is sometimes difficult to ascertain both the measured variable
 and the identity of the presentity. For example, a passive
 infrared sensor (PIR) can detect that somebody is in the office of
 the presentity, but cannot detect whether this is the presentity
 himself, cleaning staff or a dog. A GPS sensor cannot detect
 whether the cell phone is being used by the presentity or has been
 borrowed by the presentity's spouse.
 Derived: Presence information might be derived indirectly from other
 sources of data. For example, the basic open/closed status might
 be algorithmically derived from a variety of other, watcher-
 visible or not, elements.

3. Composition Steps

 In our model, presence takes a presence document, made up of a set of
 <tuple>, <person> and <device> tuples, each tuple consisting of one
 or more elements, and creates another valid presence document based
 on this information. Based on the aforementioned goals of removing
 stale, contradictory or reduntant information, while providing
 additional useful data and representing the information in a useful
 manner, our model includes a sequence of operations on the input
 tuples. These operations are: discarding, derivation, conflict
 resolution and merging. Discarding tuples removes stale and
 redundant information. Derivation provides useful new data.
 Conflict resolution removes contradictory information. Merging
 presents the presence in a useful manner.

 Composition involves adding or removing information from a set of
 sources, and this may be done at a tuple or element granularity.
 Some of the steps operate at one granularity or another. While any
 of the operations may be done on any tuple type, some operations may
 be more likely performed on certain types. This information is
 summarized in Table 1. Each of the steps is listed, along with the

Schulzrinne, et al. Expires December 27, 2006 [Page 6]

Internet-Draft Composition June 2006

 granularity on which it typically operates, and whether it is likely
 or unlikely to be used for each of the tuple types. The specific
 elements in the table will be discussed in later sections.

 +-----------------+----------------+----------+----------+----------+
 | Operation | granularity | <person> | <tuple> | <device> |
 +-----------------+----------------+----------+----------+----------+
Discarding	tuple	likely	likely	likely
Derivation	element	likely	likely	likely
Conflict	tuple or	likely	unlikely	unlikely
Resolution	element			
Merging	element	likely	likely	unlikely
 +-----------------+----------------+----------+----------+----------+

 Table 1

4. Discarding

 Whole tuples may be discarded based on zero or more of the criteria
 below:

 Closed contacts: All <tuple>s with a basic status of 'closed'.
 Old tuples: Tuples (<person>, <tuple>, or <device>) whose age is
 older than a given threshold. Since presence information should
 be automatically removed after its expiration time, this
 discarding applies only to tuples before their expiration.
 Unreferenced tuples: <device> tuples that are not referenced by any
 service <tuple>. (It should be noted that user activity
 information about these devices may still be useful even if the
 device itself is not part of any published service.)

5. Deriving Presence Information

 Certain presence sources may not be capable of publishing all
 relevant information, and users are unlikely to always update all
 information that requires their input. Such information may be
 derived in order to include it in the presence document.

 Derivation of new information makes it easier to identify a conflict
 with another presence source. For example, knowing the locations of
 two presence sources allows the compositor to determine that the user
 is only colocated with one of them, and the information from the
 other one is inaccurate. It can also provide information to the
 watcher indicating communication capability that may not otherwise be
 known. For example, a user's mobile device may easily be able to
 identify and publish that it is in a car. However, more relevant

Schulzrinne, et al. Expires December 27, 2006 [Page 7]

Internet-Draft Composition June 2006

 information for the watcher is that the user is driving, which may be
 derived if this is usually true when the user is in a car (possibly
 during certain times, such as weekday mornings and evenings). The
 user may also wish to indicate that when he is "on-the-phone" (which
 may be published automatically by the UA once he has successfully set
 up a dialog), this means that he is "busy" and shouldn't be called
 except in an emergency. The user may know that a specific place does
 not allow for private communications, and he may automatically
 supplement his location information with privacy information. More
 complex rules could be derived that involve outside information such
 as time of day. For example, when user-input is "idle" between
 certain hours of the night, the user's activity should be set to
 "sleeping".

 Such derivations each have a predicate for defining the conditions of
 the derivation, and an addition of XML content. The predicate is one
 or more elements that must all be present in a tuple in order for the
 content to be added there.

 A special case of this is the supplementing of static information
 that doesn't depend on dynamically changing predicates. For example,
 a device may not support RPID extensions, but they may be added to
 its presence tuple and that of its associated service using
 derivation. Such a derivation would be declared using a specific
 value for the contact address or device-id as the predicate (for a
 service or device, respectively).

 There is another way that this static information can be
 supplemented. The XCAP mechanism described in [11] is used for
 updating a user's presence. XCAP does not manipulate the user's
 complete presence document, but, rather, a single presence document
 which is one of the sources input to the compositor, along with
 information sent by other presence sources, through PUBLISH or event
 notifications. XCAP may be used to create <tuple> and <device>
 tuples containing static information about the service or device.
 During the composition process, multiple reports for a single service
 (those containing identical <contact>s) and for a single device
 (those <device> tuples containing identical <device-ID>s) are merged
 together. If no identical <tuple> or <device> tuple has been
 received from any other source, the static tuple will appear in the
 resulting raw presence document. If there is another identical
 tuple, the static and dynamic elements will be merged into a single
 tuple. The <basic> status of any service appearing in the XCAP
 document should be "closed" so that this becomes the default status
 and, when the service is published by another source with a status of
 "open", the resulting status will be "open", which is the union of
 the two. It should be noted that the technique described here is
 predicated on the merging of service <tuples>s, which we are

Schulzrinne, et al. Expires December 27, 2006 [Page 8]

Internet-Draft Composition June 2006

 currently leaving out of our model as discussed in Section 9.4, and
 plan to specify in the future.

6. Resolving Conflicts

6.1. Sources of Information Conflict

 Information conflict occurs when multiple sources give different
 views of the presentity, some of which may be outdated or incorrect.
 Information can be incorrect for any number of reasons, but some
 examples include:

 Location divergence: The publisher collecting the information may not
 be colocated with the presentity at this particular time. For
 example, Alice's home PC may report that the user is idle (not
 typing), but Alice is using the office PC.
 Update diligence: Some sources, particularly those updated manually,
 are prone to only approximate reality. For example, few users
 record all appointments or meetings in their calendar or,
 conversely, remove all canceled meetings. This is particularly
 true for regularly scheduled activities such as meals or commute
 times.
 Sensor failure: Sources that report their information differentially
 are subject to silence ambiguity. If such a source does not
 report new data, the receiver cannot tell whether the sensor is
 malfunctioning or whether the information last received is still
 current. This can be partially mitigated by requiring sources to
 report when they are no longer confident of the data. However,
 this does not deal with sudden source failures. Thus, some form
 of keep-alive mechanism may well be needed that overrides
 differential notification mechanisms. Even with keep-alive, there
 is likely to be a substantial period of time between source
 failure and failure detection, causing stale information.

6.2. Detecting information conflicts

 We would like to be able to detect information conflicts, so that
 appropriate processing logic can remove inaccurate information.
 There are many elements in <person> tuples that could end up having
 conflicting values from different sources. However, this step is
 less relevant for service tuples. The elements found there are not
 likely to conflict, even if multiple tuples report information about
 the same service. For example, the basic status in a service tuple
 cannot be said to conflict with the status sent for a service on
 another device. In fact, for the static information derivation
 described in Section 5, the different values must not be treated as
 conflicting so that the tuples can be merged in the next step.

Schulzrinne, et al. Expires December 27, 2006 [Page 9]

Internet-Draft Composition June 2006

 <deviceID>, <privacy>, and <user-input> describe a specific instance
 of the service and can all be true. Of course, if service tuples are
 merged as described in Section 7, the multiple values must be handled
 in some way, such as listing all of them or choosing one. Our
 discussion of conflict resolution is focused primarily on person
 information.

 Information conflicts can be classified as to whether they are
 detectable in a single element or only across elements and how easy
 it is to detect them.

 Single-element conflicts occur if two elements, say <activities> in
 RPID, in two sources cannot both be true or are highly unlikely to be
 true, without having to inspect any other element. A multi-element
 conflict occurs if only the combination of multiple elements
 indicates a conflict.

 Multi-element conflicts often have location, and properties known for
 this location, as the common element. For example, certain
 geospatial locations are known not to contain certain types of
 places. Thus, both the location and the <place-type> information
 are, by themselves, each credible and possible, but are detectably
 wrong once considered together. These conflicts can be detected if
 location or time can be mapped to reliable information from external
 sources. As mentioned above, derived information can make conflict
 detection easier by supplementing information to create a single-
 element conflict.

 We distinguish three types of information conflict: obvious, probable
 and undetectable, described in turn below.

 For some pieces of presence information, information conflicts are
 obvious and readily detectable. For example, under the one-person-
 per-presentity assumption and common assumptions of physics, a single
 presentity can only be in one place at a time. Thus, if two sources
 report location information that differs by more than the margin of
 error, one must be wrong. In RPID, the <place-is>, <privacy>,
 <relationship>, <time-offset>, and <user-input> elements have
 exlusive values, although in some cases, below the element level.
 For example, the <privacy> field has information for both audio and
 video, and thus two sources may report different information for
 <privacy> and still both be correct as long as they refer to
 different media types.

 For other types of information, an automaton can guess with some
 probability that two sources of information contradict each other,
 but this may well depend on the values themselves. For example, the
 <activities> combination of

Schulzrinne, et al. Expires December 27, 2006 [Page 10]

Internet-Draft Composition June 2006

 away, appointment, in-transit, meeting, on-the-phone, steering

 incrementally reported by different sources may well reflect the
 activity of the typical Wall Street commuter in the Lincoln Tunnel,
 speaking on his cell phone. One would hope, however, that
 combinations such as "steering, sleeping" are rarely true, although
 "sleeping, meeting" indicates that there are few activities that
 completely rule out others. The <place-type> element is another one
 that may take different values, sometimes, but not always,
 contradictory. For example, the values "outdoors" and "stadium"
 differ only in their specificity. For these types of elements, two
 options seem possible. A table may be constructed with each value in
 both a separate row and a separate column, so that their
 relationships may be charted. The relationship of value A to B may
 be contradictory, more or less specific, or have no relationship.
 Alternatively, different values may always be treated as
 contradictory. The latter approach seems better suited for an
 element like <place-type> where a single source is likely to have all
 relevant information and can be fully accurate by itself. However,
 this works less effectively for <activity>, for instance, where
 different sources inherently give different types of information.
 For example, a cell-phone says that the user is "on-the-phone", a
 sensor says the user is "steering", and a calendar says that the user
 is in a "meeting".

 Undetectable information conflicts are those where a machine lacking
 human intelligence cannot reliable detect that the two pieces of
 information cannot both be true. For example, an automaton is
 unlikely to be able to decide which of several notes or free-text
 fields is valid, without basing this on other information in the
 tuple, person or device element.

6.3. Handling Information Conflicts

 Once an information conflict is detected, a choice must be made about
 how to handle it. In some cases, no action should be taken. For an
 element such as <activities> or <mood>, for which different reported
 values makes sense and it is hard to distinguish which values really
 conflict, as mentioned above, the different values can be treated as
 non-conflicting. This means that both tuples are retained, and
 handling is deferred to the merging step, during which the multiple
 values will be unioned within a single tuple.

 For other elements, however, conflict is more easily detectable and
 multiple values are not sensical. A conservative approach to
 handling such a conflict would be to simply list all values. This is
 different from the approach mentioned earlier, because the tuples are
 kept distinct and not merged in the next step. Multiple versions are

Schulzrinne, et al. Expires December 27, 2006 [Page 11]

Internet-Draft Composition June 2006

 presented which are admittedly conflicting, and the watcher may make
 a judgment about which is more correct. To limit the amount of
 information that the watcher must digest, it may be more useful to
 choose one value over the other. For this decision, a number of
 common heuristics may be used, which are listed below:

 Choose recent tuple: Choose the value from the tuple that was more
 recently published for the first time. Simply choosing the most
 recently updated value is likely to cause flip-flopping between
 dueling publishers.
 Choose trustworthy tuple: Choose the element from the more
 trustworthy tuple. Trustworthiness may be based on the source
 identity, such as a user's cell phone. Alternatively, it is based
 on the types of reporting listed in Section 2. For example, they
 may be ranked in the order "reported current", "measured device
 information", "measured by sensors", "reported scheduled", and
 finally "derived".
 Value of another element: Other elements may indicate that one
 version of the information should be trusted. For example, <user-
 input> may indicate that one device that provides presence is
 being used by the user, and another is not. As a special case of
 this policy, tuples belonging to a certain sphere may be given
 precedence. For example, after a certain hour, it is more likely
 that the tuple with the <home> sphere is up-to-date.

 Specific heuristics may be combined with external information, such
 as time of day.

 As new elements are added, they are likely to either fall into the
 category of elements where collecting all values makes most sense,
 such as activities and mood above, or where a choice among values
 needs to be made.

 When one value is chosen over another, the resulting presence
 document may be affected on the tuple level or on the element level.
 On the tuple level, the more trusted tuple is chosen and the other is
 discarded. On the element level, both tuples are maintained, but
 only the more trusted element is kept, while the other is discarded.

 Either of these approaches may have advantages in certain situations.
 However, we propose using only tuple-level conflict resolution to
 avoid inconsistencies in the final document.

7. Tuple Merging

 Merging combines several tuples that logically represent the same
 information. For example, a presence document should only contain

Schulzrinne, et al. Expires December 27, 2006 [Page 12]

Internet-Draft Composition June 2006

 one report of <person> information, so the multiple reports from
 different sources should be merged. It may also be useful to merge
 service <tuple>s that have the same contact URI. (We leave aside for
 now the difficulty of deciding whether two URIs that are not
 lexically identical are indeed functionally the same) This may occur
 when the same service is being provided by a variety of devices, or
 in the example of static information in Section 5. Sometimes, it is
 better not to merge tuples. For example, some elements can contain
 timing information indicating the range of time that the information
 is believed to be valid. It is probably not a good idea to combine
 elements that cover different, although maybe overlapping, time
 intervals.

 In any of the above cases, the elements in the resulting tuple must
 be based on the original tuples. Although the original values should
 not conflict, following the previous step, some elements will have
 multiple non-conflicting values, when multiple services are merged or
 person tuples are merged which contain elements which are treated as
 non-conflicting, as described above. When this occurs, either
 element must be selected or they should be unioned. We discuss
 appropriate techniques for each element type below.

7.1. Service tuples

 When composing <service> tuples, the following rules apply to their
 PIDF and RPID elements:
 basic status: The union of all values should be returned, so that the
 service is 'open' as long as one source reports 'open'.
 class: A single value needs to be chosen.
 deviceID: If a service is offered by multiple devices, it makes sense
 to enumerate all the device identifiers.
 privacy: Since the caller cannot select the device that satisfies
 specific privacy requirements, the appropriate choice is to
 provide the most conservative indication of the privacy to be
 expected, i.e., the least privacy indicated among all the tuples
 for the contact URI.
 relationship: If two tuples with the same contact URI differ in their
 relationship, the relationship element needs to be dropped.
 status icon: It is a local choice whether to present all status
 icons, as they may reflect specific capabilities, or choose one.
 user input: In a combined <tuple>, it makes sense to reflect the most
 recent user input.

7.2. Person tuples

 As noted in the section on conflict handling, there are elements for
 which different values may be treated as non-conflicting. These may
 include <activities>, <mood>, and <place-type>. For such elements,

Schulzrinne, et al. Expires December 27, 2006 [Page 13]

Internet-Draft Composition June 2006

 all values are unioned in this step.

8. Default Policy

 The default composition policy is designed to lose no information, at
 the expense of presenting possibly contradictory information to
 watchers.

 This composition policy performs a union with replacement. Newly
 published elements replace earlier elements with the same 'id'
 attribute. We assume that each source chooses their own 'id' values.

 Other than this, all elements are simply enumerated as is, sorted by
 type (person, tuple, device). Elements within the <person>, <tuple>
 and <device> elements are not modified at all, except possibly
 annotated with a source description (and timestamp?). This policy
 can also be seen as providing input to the following steps.

9. Composition Policy Format

 We define an XML format for specifying a policy for composition. It
 is expected that this format will be used by users themselves, and
 that standard composition documents be created by network
 administrators. The document is a sequence of composition steps,
 each with its own options for customization. The steps are
 "discard", "derive", "resolve-conflicts", and "merge".

9.1. Discard step

 This step allows for discarding of tuples. Three types of discarding
 may be specified: discard all service tuples with closed contacts,
 all tuples whose timestamps are older than a certain amount of time,
 and all device tuples not associated with a service.

9.2. Derive step

 This step contains rules for deriving new information based on
 existing information. The XML Patch format [12] is used to express
 the derivation of new content, using the <add> element. The XML
 content following the <add> element is the new content to be added,
 while the derivation conditions are expressed in the 'sel' attribute
 of that element. This attribute takes as its value an XPath [13]
 expression which identifies the location where the content is to be
 added. Xpath predicates can be used to select only tuples with
 specific children, which forms the condition of the derivation
 expression.

Schulzrinne, et al. Expires December 27, 2006 [Page 14]

Internet-Draft Composition June 2006

 For example, the following Patch operation:

 <add sel='//person[place-type/car]'>
 <activities>
 <driving />
 </activities>
 </add>

 adds the 'driving' activity to any person tuple that shows the
 'place-type' as 'car'.

 In order to make derivation dependent on the time of day, the
 selecting Xpath expression may refer to the tuple's timestamp in the
 predicate. Functions built into Xpath 2.0 may be used to retrieve
 the desired part of the date/time expression. For example, if
 someone sleeps between the hours of midnight and 7 am unless he is
 working on a deadline, a derivation of his sleep based on his user-
 input may be expressed as follows:

 <add sel='//person[user-input="idle"] \
 [fn:hours-from-dateTime(timestamp) > 0 \
 and fn:hours-from-dateTime(timestamp) < 7]'>
 <activities>
 <sleeping>
 </activities>
 </add>

 This states that if the user-input is 'idle' during normal sleeping
 hours, the user is sleeping. If the value is not 'idle' during those
 hours, he is likely working on a deadline.

9.3. Resolve Conflicts Step

 In this step, conflicts are identified and resolved using one of a
 number of policies. Identifying conflicts is a matter of local
 policy as it is not seen as something that users should specify.

 The <resolve-conflicts> element contains possibly several <conflict>
 elements, each defining how conflict is to be resolved. An "element"
 attribute may be included so that the included policy applies only to
 that element. When this attribute is omitted, or has a value of
 "all", it applies to all elements.

 Options for resolution are "merge", "union", "most-recently-
 published", "source-precedence", or "other-attribute". Several
 policies may be listed, and conflict resolution is attempted with
 each in the order that they appear, until one succeeds.

Schulzrinne, et al. Expires December 27, 2006 [Page 15]

Internet-Draft Composition June 2006

 <merge>, in effect, defines the given element as non-conflicting.
 Examples of elements appropriate for this are <activities> and
 <mood>. It is useful for this format be used to define these so that
 new presence elements may also be easily taken into account without
 requiring a configuration of the Presence Server. The use of <merge>
 for a given element precludes any other conflict resolution policy
 for that element.

 Choosing "union" causes both conflicting tuples to be included, and
 precludes any other policy for conflict resolution for the specified
 elements. It also ensures that the two tuples will remain distinct,
 even after the merging step, so that multiple versions will be
 represented, and the human watcher will be able to decide which is
 more likely to be accurate. This is the default value for the
 resolution of a conflict for any given element when an alternative
 policy is not given.

 The <most-recently-published> element directs the compositor to
 choose the tuple which was most recently published for the first
 time. This does not choose a tuple simply because it was refreshed
 more recently.

 The <source-precedence> element lists a number of source types. This
 list may contain any of the following tokens at most once: "reported
 current", "reported scheduled", "measured device information",
 "measured by sensors", "derived". If each of the conflicting tuples
 is from one of the sources listed, the one with a higher value is
 chosen. If only one of the tuples is from a source with a listed
 value, that one is chosen. If neither of them are, the conflict is
 not resolved by this method.

 The <other-element> element specifies that resolution be done based
 on another element besides the one in conflict. An attribute is
 included to specify the element. A list of elements gives the
 ordered preference of various values.

9.4. Merging

 This final step merges multiple tuples to present a final view of the
 user's presence before continuing to later steps such as privacy
 filtering. We currently consider only merging of <person> tuples as
 this is the most likely to be useful.

 When multiple tuples are merged, they may have different values for
 the same attribute. The conflict resolution step is used to declare
 for which elements, such as <activities> multiple values should be
 listed, rather than be treated as conflicting. Therefore, no real
 specification is required by the user in this step for <person>

Schulzrinne, et al. Expires December 27, 2006 [Page 16]

Internet-Draft Composition June 2006

 tuples. It is expected that for the merging of service <tuple>s,
 input from the user will be desired regarding whether to merge them
 and, if so, how to handle multiple values of elements.

10. XML Example

 <discard>
 <old-tuples age="00:30:00.000" />
 <tuples-with-closed-contacts />
 </discard>
 <derive>
 <add sel='//person[place-type/car]'>
 <activities>
 <driving>
 </activities>
 </add>
 </derive>
 <resolve-conflicts>
 <conflict element="activities">
 <merge />
 </conflict>
 <conflict element="mood">
 <merge />
 </conflict>
 <conflict element="place-type">
 <source-precedence>
 <source>reported current</source>
 <source>reported scheduled</source>
 </source-precedence>
 <other-attribute attribute='person/user-input'>
 <value>active</value>
 <value>idle</value>
 </other-attribute>
 </conflict-element>
 </resolve-conflicts>

11. Security Considerations

 Composition itself does not create new data types, although it might
 create new elements by derivation. Thus, the security considerations
 are the same as those for the constituent presence information
 elements.

12. IANA Considerations

Schulzrinne, et al. Expires December 27, 2006 [Page 17]

Internet-Draft Composition June 2006

 This document does not request any IANA actions.

13. References

13.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Day, M., Rosenberg, J., and H. Sugano, "A Model for Presence and
 Instant Messaging", RFC 2778, February 2000.

 [3] Sugano, H., Fujimoto, S., Klyne, G., Bateman, A., Carr, W., and
 J. Peterson, "Presence Information Data Format (PIDF)",

RFC 3863, August 2004.

13.2. Informative References

 [4] Schulzrinne, H., "RPID: Rich Presence Extensions to the
 Presence Information Data Format (PIDF)",

draft-ietf-simple-rpid-10 (work in progress), December 2005.

 [5] Schulzrinne, H., "Timed Presence Extensions to the Presence
 Information Data Format (PIDF) to Indicate Status Information
 for Past and Future Time Intervals",

draft-ietf-simple-future-05 (work in progress), December 2005.

 [6] Rosenberg, J., "A Data Model for Presence",
draft-ietf-simple-presence-data-model-07 (work in progress),

 January 2006.

 [7] Rosenberg, J., "A Processing Model for Presence",
draft-rosenberg-simple-presence-processing-model-01 (work in

 progress), August 2005.

 [8] Schulzrinne, H., "Common Policy: An XML Document Format for
 Expressing Privacy Preferences",

draft-ietf-geopriv-common-policy-10 (work in progress),
 May 2006.

 [9] Peterson, J., "A Presence-based GEOPRIV Location Object
 Format", draft-ietf-geopriv-pidf-lo-03 (work in progress),
 September 2004.

 [10] Lonnfors, M., "Session Initiation Protocol (SIP) extension for
 Partial Notification of Presence Information",

draft-ietf-simple-partial-notify-07 (work in progress),

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2778
https://datatracker.ietf.org/doc/html/rfc3863
https://datatracker.ietf.org/doc/html/draft-ietf-simple-rpid-10
https://datatracker.ietf.org/doc/html/draft-ietf-simple-future-05
https://datatracker.ietf.org/doc/html/draft-ietf-simple-presence-data-model-07
https://datatracker.ietf.org/doc/html/draft-rosenberg-simple-presence-processing-model-01
https://datatracker.ietf.org/doc/html/draft-ietf-geopriv-common-policy-10
https://datatracker.ietf.org/doc/html/draft-ietf-geopriv-pidf-lo-03
https://datatracker.ietf.org/doc/html/draft-ietf-simple-partial-notify-07

Schulzrinne, et al. Expires December 27, 2006 [Page 18]

Internet-Draft Composition June 2006

 June 2006.

 [11] Isomaki, M., "An Extensible Markup Language (XML) Configuration
 Access Protocol (XCAP) Usage for Manipulating Presence
 Document Contents",

draft-ietf-simple-xcap-pidf-manipulation-usage-02 (work in
 progress), October 2004.

 [12] Urpalainen, J., "An Extensible Markup Language (XML) Patch
 Operations Framework Utilizing XML Path Language (XPath)
 Selectors", draft-ietf-simple-xml-patch-ops-02 (work in
 progress), March 2006.

 [13] "XML Path Language (XPath) 2.0", W3C Candidate Recommendation 8
 20060608, June 2006.

Appendix A. Acknowledgments

 This document is based on discussions within the IETF SIMPLE working
 group. Paul Kyzivat provided helpful input.

https://datatracker.ietf.org/doc/html/draft-ietf-simple-xcap-pidf-manipulation-usage-02
https://datatracker.ietf.org/doc/html/draft-ietf-simple-xml-patch-ops-02

Schulzrinne, et al. Expires December 27, 2006 [Page 19]

Internet-Draft Composition June 2006

Authors' Addresses

 Henning Schulzrinne
 Columbia University
 Department of Computer Science
 450 Computer Science Building
 New York, NY 10027
 US

 Phone: +1 212 939 7004
 Email: hgs+simple@cs.columbia.edu
 URI: http://www.cs.columbia.edu

 Ron Shacham
 Columbia University
 Department of Computer Science
 450 Computer Science Building
 New York, NY 10027
 US

 Email: shacham@cs.columbia.edu

 Wolfgang Kellerer
 DoCoMo Eurolabs
 Landsberger Str. 312
 Munich 80687
 Germany

 Email: kellerer@docomolab-euro.com

 Srisakul Thakolsri
 DoCoMo Eurolabs
 Landsberger Str. 312
 Munich 80687
 Germany

 Email: thakolsri@docomolab-euro.com

http://www.cs.columbia.edu

Schulzrinne, et al. Expires December 27, 2006 [Page 20]

Internet-Draft Composition June 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Schulzrinne, et al. Expires December 27, 2006 [Page 21]

