
Workgroup: httpapi

Internet-Draft:

draft-schwartz-httpapi-popup-authentication-00

Published: 17 October 2022

Intended Status: Standards Track

Expires: 20 April 2023

Authors: B. M. Schwartz

Google LLC

Interactive Authentication of Non-Interactive HTTP Requests

Abstract

On the World Wide Web, a rich ecosystem of authentication options

has been developed to support access control for HTTP resources.

However, non-interactive usage of HTTP remains limited to the simple

authentication mechanisms defined in the HTTP standards. This

specification allows non-interactive HTTP contexts to open a

browser-like authentication context when necessary, and close it

when authentication is complete.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-schwartz-httpapi-popup-

authentication/.

Source for this draft and an issue tracker can be found at https://

github.com/bemasc/access-services.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 20 April 2023.

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-schwartz-httpapi-popup-authentication/
https://datatracker.ietf.org/doc/draft-schwartz-httpapi-popup-authentication/
https://datatracker.ietf.org/doc/draft-schwartz-httpapi-popup-authentication/
https://github.com/bemasc/access-services
https://github.com/bemasc/access-services
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Background

2. Overview

3. Conventions and Definitions

4. Specification

4.1. Server requirements

4.2. Client requirements

4.3. Use with proxy servers

5. Example

6. Security Considerations

7. Privacy Considerations

8. IANA Considerations

9. Normative References

Acknowledgments

Author's Address

1. Background

In technical systems today, we can divide usage of HTTP into two

categories. The first category is represented by the World Wide Web,

where browsers load HTML files and their subresources for display to

the user, in response to user actions. We call this category of

usage "interactive".

The second category of usage consists of requests whose results are

not presented interactively to the user ("non-interactive"). Instead

these HTTP requests are used to perform operations needed by a

software system such as a browser, application, or operating system.

These requests are generally not for HTML content, and are often

entirely invisible to the user. Even if the request is user-

initiated, it does not normally present the user with a browser

window.

¶

¶

¶

¶

https://trustee.ietf.org/license-info

In interactive usage, HTTP offers a variety of authentication

options. A simple option is to use HTTP's built-in password

challenge capabilities (carried in Basic or Digest authentication

headers), but this pattern is generally regarded as obsolete on the

web today. Instead, user authentication relies on account

information entered via HTML forms, session cookies to retain login

state, and new device attestation systems like WebAuthn. Third-party

account providers and server-to-server OAuth2 are also widely used

to simplify account management.

In non-interactive usage, the only available generic HTTP

authentication mechanism is the built-in password challenge. In this

mode, the HTTP server responds with a WWW-Authenticate header

requesting Basic or Digest authentication. If the client already

knows a username and password, it can provide those; otherwise, it

might display a login prompt, with an explanation of what subsystem

is requesting these credentials and why.

Client-to-server OAuth2 is commonly used for authentication of non-

interactive HTTP clients, but it is concerned exclusively with

client software that is already registered with a specific service.

This specification aims to define an authentication pattern that

allows interactive authentication of non-interactive HTTP requests

between any participating client and server, without any private

arrangement.

2. Overview

This specification enables a new mode of authentication for non-

interactive HTTP requests. In this mode, the non-interactive request

temporarily becomes interactive, enabling web-like authentication

patterns. The process is as follows:

The user enters a URL into a configuration field in their

system. This could be a field for specifying the URL of a proxy

configuration file, software update server, or any other remote

resource that is understood by the system.

Either immediately or at a later time, the system attempts to

access this resource.

The server sends a response that means "interactive

authentication required".

The system opens a browser-like window, showing HTML content

provided by the server.

The user interacts with the HTML content in that window,

potentially navigating between origins.

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

Eventually, a response from the server indicates that

interactive authentication is complete.

The system closes the browser window and repeats the initial

request with additional authentication headers. The request is

authorized and succeeds.

Subsequent requests retain the authentication state, and

succeed as non-interactive requests.

Eventually, the authentication state may expire, in which case

the server requests interactive authentication again.

3. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

4. Specification

We presume the existence of a desired resource, identified by the

"initial URL". This resource MAY require client authentication. If

client authentication is not required, this specification is not

relevant, and access to the resource proceeds as usual.

4.1. Server requirements

If the request requires authentication, the server SHALL return HTTP

401 "Unauthorized" with a "WWW-Authenticate" header whose auth-

scheme is "interactive" (registered in Section 8). This header field

value MUST also contain a parameter named "location" whose value is

a URL path (the "authentication path"). The server MAY also include

other "WWW-Authenticate" headers indicating other supported

authentication schemes.

Any GET request to the authentication path (on the same origin as

the initial URL) MUST be subject to the same authentication

requirements as the rejected request to the initial URL. Note: the

rejected request may have used a different method, such as POST,

that might have different authentication requirements than a GET

request to the initial URL.

A GET request to the authentication path that fails authentication

MUST return a webpage that guides the user through the

authentication process. This process MUST conclude by causing the

client to repeat the GET request to the authentication path,

6.

¶

7.

¶

8.

¶

9.

¶

¶

¶

¶

¶

returning a 2XX response code (as the client is now including the

necessary authentication headers).

4.2. Client requirements

If the client receives an HTTP 401 "Unauthorized" error with a "WWW-

Authenticate" header whose auth-scheme is "interactive", it SHOULD

notify the user that the initial URL's origin is requesting

interactive authentication, including a reminder of the role for

which this origin is being used noninteractively. With the user's

approval, it SHOULD load the authentication path from the "location"

parameter as a webpage in a browser context. This context SHOULD

have access to the user's credential assistance functions (e.g.

password manager) but MAY otherwise be a blank context.

This browser MUST behave similarly to a normal browser, including

support for navigation between origins. It SHOULD display the

current origin to the user, to reduce the risk of impersonation

attacks.

The client MUST monitor any requests made by the browser to the

authentication path (whether as navigation, subresource, or

javascript-initiated fetch). If any such request succeeds (i.e.

receives a 2XX status code), the client MUST (1) store any

"Authorization" and "Cookie" headers used in this request and (2)

close this browser instance. The client SHOULD also display a

notification that interactive authentication has concluded.

After learning the authorization headers, the client SHOULD retry

the failed request if it is still relevant. For this and all

subsequent requests to the initial URL, the client MUST add the

stored "Authorization" and "Cookie" headers.

If the user closes the browser instance without successfully

retrieving the resource at the authentication path, the system

SHOULD warn the user that authentication has failed. The system

SHOULD avoid spamming the user with repeated authentication

requests, but SHOULD NOT permanently abandon authentication.

Web browsers MUST NOT implement support for the "interactive" auth-

scheme in ordinary usage. This auth-scheme is not meaningful in an

interactive context.

¶

¶

¶

¶

¶

¶

¶

4.3. Use with proxy servers

If the "initial URL" indicates a proxy server, this procedure

applies with the following modifications:

When authenticating requests to the proxy:

The "Proxy-Authorization" header field is used instead of

"Authorization".

The "Cookie" header field is not added.

In replies from the proxy:

The HTTP 407 "Proxy Authentication Required" status code is

used instead of HTTP 401.

The "Proxy-Authenticate" header field is used instead of "WWW-

Authenticate".

5. Example

Suppose that the user has entered an initial URL of "https://

corp.example.com/scan" into a settings panel on their system labeled

"Executable Security Scanner URL". Later, when the user is

installing a new executable, the system attempts to upload it to the

security scanner service:

POST /scan HTTP/1.1

Host: corp.example.com

Accept: application/json

Content-Type: application/x-msdownload

Content-Length: 123456

...

The security scanner is access-controlled by interactive

authentication, so it sends the following reply:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: interactive location=/scanner-login

...

The client displays a notification to the user:

¶

* ¶

-

¶

- ¶

* ¶

-

¶

-

¶

¶

¶

¶

¶

¶

The user approves, and the client loads "https://corp.example.com/

scanner-login" in a browser context:

GET /scanner-login HTTP/1.1

Host: corp.example.com

Accept: text/html,...

Accept-Language: en-US,...

Sec-Fetch-Dest: document

Sec-Fetch-Mode: navigate

Sec-Fetch-Site: none

Sec-Fetch-User: ?1

...

This request is still unauthorized, so the server replies with HTTP

401 again:

HTTP/1.1 401 Unauthorized

Content-Type: text/html

...

The content of the HTTP 401 response is a login page. The user logs

in, perhaps via third-party OAuth or using WebAuthn. Once login is

complete, the final step navigates back to the authorization path.

This time, the request includes an additional Cookie header:

GET /scanner-login HTTP/1.1

Host: corp.example.com

Accept: text/html,...

Accept-Language: en-US,...

Sec-Fetch-Dest: document

Sec-Fetch-Mode: navigate

Sec-Fetch-Site: same-origin

Sec-Fetch-User: ?1

Cookie: login=6bb0e2c8-874e-44c8-b8e0-25e12f339b46

...

+-----------------------------------+

| Your security scanner service, |

| "corp.example.com", has requested |

| interactive authentication. |

| |

| CONTINUE CANCEL |

+-----------------------------------+

¶

¶

¶

¶

¶

¶

¶

HTTP/1.1 200 OK

Content-Type: text/html

...

The client detects this response and closes the browser context.

Instead, it displays a notification:

The client then retries the initial request, with the additional

Cookie header:

POST /scan HTTP/1.1

Host: corp.example.com

Accept: application/json

Content-Type: application/x-msdownload

Content-Length: 123456

Cookie: login=6bb0e2c8-874e-44c8-b8e0-25e12f339b46

...

The server accepts the cookie as authorization and replies with its

scan results:

HTTP/1.1 200 OK

Content-Type: application/json

...

{"scan_result": "safe"}

6. Security Considerations

This specification grants noninteractive HTTP origins the ability to

become interactive, surfacing arbitrary content to the user. This

raises a number of security concerns.

One important concern is "domain impersonation", in which the

initial URL's origin poses as a different origin, in order to trick

the user into revealing their password or taking some other harmful

action. This is mitigated by displaying the current origin's

¶

¶

+---------------------------------+

| You have successfully logged in |

| to "corp.example.com". |

| |

| OK |

+---------------------------------+

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC8174]

hostname to the user in the browser context (as normally done by

browsers and recommended in Section 4.2).

Another concern is related to "clickjacking" attacks, in which a

hostile origin causes a user to interact with the wrong user

interface. For example, if the hostile origin places an "OK" button

at the expected location of a system security setting, the origin

might be able to close the browser window just before the user

clicks, causing them to change the security setting instead.

Clickjacking is prevented by the interstitial notifications when

entering and exiting interactive mode (recommended in Section 4.2).

Web browsers also offer an expanded attack surface related to

software vulnerabilities. If the "initial URL" has significant

potential to be malicious, and an up-to-date web browser is not

available, this specification may not be appropriate to implement.

7. Privacy Considerations

Authenticating noninteractive requests also makes them more

identifiable and linkable. Standards developers should consider

whether authentication is necessary and appropriate before

incorporating this procedure into their standard.

TODO: Language on clearing cookies. If the authentication is

allowed to use an ephemeral browser context, what does it mean to

clear cookies?

8. IANA Considerations

IF APPROVED, IANA is requested to add the following entry to the

"HTTP Authentication Schemes" registry:

Authentication Scheme Name: "interactive"

Reference: (This document)

9. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

¶

¶

¶

¶

¶

¶

* ¶

* ¶

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174

Acknowledgments

TODO acknowledge.

Author's Address

Benjamin M. Schwartz

Google LLC

Email: bemasc@google.com

¶

mailto:bemasc@google.com

	Interactive Authentication of Non-Interactive HTTP Requests
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Background
	2. Overview
	3. Conventions and Definitions
	4. Specification
	4.1. Server requirements
	4.2. Client requirements
	4.3. Use with proxy servers

	5. Example
	6. Security Considerations
	7. Privacy Considerations
	8. IANA Considerations
	9. Normative References
	Acknowledgments
	Author's Address

