
Workgroup: httpbis

Internet-Draft:

draft-schwartz-httpbis-connect-tcp-latest

Published: 9 March 2023

Intended Status: Standards Track

Expires: 10 September 2023

Authors: B. M. Schwartz

Google LLC

Template-Driven HTTP CONNECT Proxying for TCP

Abstract

TCP proxying using HTTP CONNECT has long been part of the core HTTP

specification. However, this proxying functionality has several

important deficiencies in modern HTTP environments. This

specification defines an alternative HTTP proxy service

configuration for TCP connections. This configuration is described

by a URI Template, similar to the CONNECT-UDP and CONNECT-IP

protocols.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 10 September 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. History

1.2. Problems

1.3. Overview

2. Conventions and Definitions

3. Specification

3.1. In HTTP/1.1

3.2. In HTTP/2 and HTTP/3

3.3. Use of 100 (Continue)

4. Applicability

4.1. Servers

4.2. Clients

4.3. Multi-purpose proxies

5. Security Considerations

6. Operational Considerations

7. IANA Considerations

8. References

8.1. Normative References

8.2. Informative References

Acknowledgments

Author's Address

1. Introduction

1.1. History

HTTP has used the CONNECT method for proxying TCP connections since

HTTP/1.1. When using CONNECT, the request target specifies a host

and port number, and the proxy forwards TCP payloads between the

client and this destination ([RFC9110], Section 9.3.6). To date,

this is the only mechanism defined for proxying TCP over HTTP. In

this specification, this is referred to as a "classic HTTP CONNECT

proxy".

HTTP/3 uses a UDP transport, so it cannot be forwarded using the

pre-existing CONNECT mechanism. To enable forward proxying of HTTP/

3, the MASQUE effort has defined proxy mechanisms that are capable

of proxying UDP datagrams [RFC9298], and more generally IP

datagrams [I-D.ietf-masque-connect-ip]. The destination host and

port number (if applicable) are encoded into the HTTP resource path,

and end-to-end datagrams are wrapped into HTTP Datagrams [RFC9297]

on the client-proxy path.

¶

¶

¶

https://rfc-editor.org/rfc/rfc9110#section-9.3.6

1.2. Problems

Classic HTTP CONNECT proxies are identified by an origin. The proxy

does not have a path of its own. This prevents any origin from

hosting multiple distinct proxy services.

Ordinarily, HTTP allows multiple origin hostnames to share a single

server IP address and port number (i.e., virtual-hosting), by

specifying the applicable hostname in the "Host" or ":authority"

header field. However, classic HTTP CONNECT proxies use these fields

to indicate the CONNECT request's destination ([RFC9112],

Section 3.2.3), leaving no way to determine the proxy's origin from

the request. As a result, classic HTTP CONNECT proxies cannot be

deployed using virtual-hosting, nor can they apply the usual

defenses against server port misdirection attacks (see Section 7.4

of [RFC9110]).

Classic HTTP CONNECT proxies can be used to reach a target host that

is specified as a domain name or an IP address. However, because

only a single target host can be specified, proxy-driven Happy

Eyeballs and cross-IP fallback can only be used when the host is a

domain name. For IP-targeted requests to succeed, the client must

know which address families are supported by the proxy via some out-

of-band mechanism, or open multiple independent CONNECT requests and

abandon any that prove unnecessary.

1.3. Overview

This specification describes an alternative mechanism for proxying

TCP in HTTP. Like [RFC9298] and [I-D.ietf-masque-connect-ip], the

proxy service is identified by a URI Template. Proxy interactions

reuse standard HTTP components and semantics, avoiding changes to

the core HTTP protocol.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Specification

A template-driven TCP transport proxy for HTTP is identified by a

URI Template [RFC6570] containing variables named "target_host" and

"tcp_port". The client substitutes the destination host and port

number into these variables to produce the request URI.

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9112#section-3.2.3
https://rfc-editor.org/rfc/rfc9110#section-7.4

The "target_host" variable MUST be a domain name, an IP address

literal, or a list of IP addresses. The "tcp_port" variable MUST be

a single integer. If "target_host" is a list (as in Section 2.4.2 of

[RFC6570]), the server SHOULD perform the same connection procedure

as if these addresses had been returned in response to A and AAAA

queries for a domain name.

3.1. In HTTP/1.1

In HTTP/1.1, the client uses the proxy by issuing a request as

follows:

The method SHALL be "GET".

The request SHALL include a single Host header field containing

the origin of the proxy.

The request SHALL include a Connection header field with the

value "Upgrade". (Note that this requirement is case-insensitive

as per Section 7.6.1 of [RFC9110].)

The request SHALL include an "Upgrade" header field with the

value "connect-tcp".

The request's target SHALL correspond to the URI derived from

expansion of the proxy's URI Template.

If the request is well-formed and permissible, the proxy MUST

attempt the TCP connection before returning its response header. If

the TCP connection is successful, the response SHALL be as follows:

The HTTP status code SHALL be 101 (Switching Protocols).

The response SHALL include a Connection header field with the

value "Upgrade".

The response SHALL include a single Upgrade header field with the

value "connect-tcp".

If the request is malformed or impermissible, the proxy MUST return

a 4XX error code. If a TCP connection was not established, the proxy

MUST NOT switch protocols to "connect-tcp".

From this point on, the connection SHALL conform to all the usual

requirements for classic CONNECT proxies in HTTP/1.1 ([RFC9110],

Section 9.3.6). Additionally, if the proxy observes a connection

error from the client (e.g., a TCP RST, TCP timeout, or TLS error),

it SHOULD send a TCP RST to the target. If the proxy observes a

connection error from the target, it SHOULD send a TLS

¶

¶

* ¶

*

¶

*

¶

*

¶

*

¶

¶

* ¶

*

¶

*

¶

¶

https://rfc-editor.org/rfc/rfc6570#section-2.4.2
https://rfc-editor.org/rfc/rfc9110#section-7.6.1
https://rfc-editor.org/rfc/rfc9110#section-9.3.6

"internal_error" alert to the client, or set the TCP RST bit if TLS

is not in use.

Figure 1: Templated TCP proxy example in HTTP/1.1

3.2. In HTTP/2 and HTTP/3

In HTTP/2 and HTTP/3, the client uses the proxy by issuing an

"extended CONNECT" request as follows:

The :method pseudo-header field SHALL be "CONNECT".

The :protocol pseudo-header field SHALL be "connect-tcp".

The :authority pseudo-header field SHALL contain the authority of

the proxy.

The :path and :scheme pseudo-header fields SHALL contain the path

and scheme of the request URI derived from the proxy's URI

Template.

From this point on, the request and response SHALL conform to all

the usual requirements for classic CONNECT proxies in this HTTP

version (see Section 8.5 of [RFC9113] and Section 4.4 of [RFC9114]).

Figure 2: Templated TCP proxy example in HTTP/2

¶

Client Proxy

GET /proxy?target_host=192.0.2.1&tcp_port=443 HTTP/1.1

Host: example.com

Connection: Upgrade

Upgrade: connect-tcp

** Proxy establishes a TCP connection to 192.0.2.1:443 **

 HTTP/1.1 101 Switching Protocols

 Connection: Upgrade

 Upgrade: connect-tcp

¶

* ¶

* ¶

*

¶

*

¶

¶

HEADERS

:method = CONNECT

:scheme = https

:authority = request-proxy.example

:path = /proxy?target_host=192.0.2.1,2001:db8::1&tcp_port=443

:protocol = connect-tcp

...

https://rfc-editor.org/rfc/rfc9113#section-8.5
https://rfc-editor.org/rfc/rfc9114#section-4.4

3.3. Use of 100 (Continue)

This protocol is compatible with the use of an "Expect: 100-

continue" request header ([RFC9110], Section 10.1.1) in any HTTP

version. The "100 Continue" response confirms receipt of a request

at the proxy without waiting for the proxy-destination TCP handshake

to succeed or fail. This may be particularly helpful when the

destination host is not responding, as TCP handshakes can hang for

several minutes before failing.

4. Applicability

4.1. Servers

For server operators, template-driven TCP proxies are particularly

valuable in situations where virtual-hosting is needed, or where

multiple proxies must share an origin. For example, the proxy might

benefit from sharing an HTTP gateway that provides DDoS defense,

performs request sanitization, or enforces user authorization.

The URI template can also be structured to generate high-entropy

Capability URLs [CAPABILITY], so that only authorized users can

discover the proxy service.

4.2. Clients

Clients that support both classic HTTP CONNECT proxies and template-

driven TCP proxies MAY accept both types via a single configuration

string. If the configuration string can be parsed as a URI Template

containing the required variables, it is a template-driven TCP

proxy. Otherwise, it is presumed to represent a classic HTTP CONNECT

proxy.

4.3. Multi-purpose proxies

The names of the variables in the URI Template uniquely identify the

capabilities of the proxy. Undefined variables are permitted in URI

Templates, so a single template can be used for multiple purposes.

Multipurpose templates can be useful when a single client may

benefit from access to multiple complementary services (e.g., TCP

and UDP), or when the proxy is used by a variety of clients with

different needs.

Figure 3: Example multipurpose template for a combined TCP, UDP, and IP

proxy and DoH server

¶

¶

¶

¶

¶

¶

https://proxy.example/{?target_host,tcp_port,target_port,

 target,ipproto,dns}

https://rfc-editor.org/rfc/rfc9110#section-10.1.1

[RFC2119]

[RFC6570]

[RFC8174]

[RFC9110]

5. Security Considerations

TODO

6. Operational Considerations

Templated TCP proxies can make use of standard HTTP gateways and

path-routing to ease implementation and allow use of shared

infrastructure. However, current gateways might need modifications

to support TCP proxy services. To be compatible, a gateway must:

support Extended CONNECT.

convert HTTP/1.1 Upgrade requests into Extended CONNECT.

allow the Extended CONNECT method to pass through to the origin.

forward Proxy-* request headers to the origin.

7. IANA Considerations

IF APPROVED, IANA is requested to add the following entry to the

HTTP Upgrade Token Registry:

Value: "connect-tcp"

Description: Proxying of TCP payloads

Reference: (This document)

8. References

8.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,

and D. Orchard, "URI Template", RFC 6570, DOI 10.17487/

RFC6570, March 2012, <https://www.rfc-editor.org/rfc/

rfc6570>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP Semantics", STD 97, RFC 9110, DOI 10.17487/

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc6570
https://www.rfc-editor.org/rfc/rfc6570
https://www.rfc-editor.org/rfc/rfc8174

[RFC9113]

[RFC9114]

[CAPABILITY]

[I-D.ietf-masque-connect-ip]

[RFC9112]

[RFC9297]

[RFC9298]

RFC9110, June 2022, <https://www.rfc-editor.org/rfc/

rfc9110>.

Thomson, M., Ed. and C. Benfield, Ed., "HTTP/2", RFC

9113, DOI 10.17487/RFC9113, June 2022, <https://www.rfc-

editor.org/rfc/rfc9113>.

Bishop, M., Ed., "HTTP/3", RFC 9114, DOI 10.17487/

RFC9114, June 2022, <https://www.rfc-editor.org/rfc/

rfc9114>.

8.2. Informative References

"Good Practices for Capability URLs", February 2014,

<https://www.w3.org/TR/capability-urls/>.

Pauly, T., Schinazi, D., Chernyakhovsky, A., Kühlewind,

M., and M. Westerlund, "Proxying IP in HTTP", Work in

Progress, Internet-Draft, draft-ietf-masque-connect-

ip-08, 1 March 2023, <https://datatracker.ietf.org/doc/

html/draft-ietf-masque-connect-ip-08>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP/1.1", STD 99, RFC 9112, DOI 10.17487/RFC9112,

June 2022, <https://www.rfc-editor.org/rfc/rfc9112>.

Schinazi, D. and L. Pardue, "HTTP Datagrams and the

Capsule Protocol", RFC 9297, DOI 10.17487/RFC9297, August

2022, <https://www.rfc-editor.org/rfc/rfc9297>.

Schinazi, D., "Proxying UDP in HTTP", RFC 9298, DOI

10.17487/RFC9298, August 2022, <https://www.rfc-

editor.org/rfc/rfc9298>.

Acknowledgments

Thanks to Amos Jeffries for close review.

Author's Address

Benjamin M. Schwartz

Google LLC

Email: ietf@bemasc.net

¶

https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9113
https://www.rfc-editor.org/rfc/rfc9113
https://www.rfc-editor.org/rfc/rfc9114
https://www.rfc-editor.org/rfc/rfc9114
https://www.w3.org/TR/capability-urls/
https://datatracker.ietf.org/doc/html/draft-ietf-masque-connect-ip-08
https://datatracker.ietf.org/doc/html/draft-ietf-masque-connect-ip-08
https://www.rfc-editor.org/rfc/rfc9112
https://www.rfc-editor.org/rfc/rfc9297
https://www.rfc-editor.org/rfc/rfc9298
https://www.rfc-editor.org/rfc/rfc9298
mailto:ietf@bemasc.net

	Template-Driven HTTP CONNECT Proxying for TCP
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. History
	1.2. Problems
	1.3. Overview

	2. Conventions and Definitions
	3. Specification
	3.1. In HTTP/1.1
	3.2. In HTTP/2 and HTTP/3
	3.3. Use of 100 (Continue)

	4. Applicability
	4.1. Servers
	4.2. Clients
	4.3. Multi-purpose proxies

	5. Security Considerations
	6. Operational Considerations
	7. IANA Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Acknowledgments
	Author's Address

