
httpbis B. Schwartz
Internet-Draft Google
Intended status: Standards Track June 25, 2018
Expires: December 27, 2018

Hybrid Encapsulation Layer for IP and UDP Messages (HELIUM)
draft-schwartz-httpbis-helium-00

Abstract

 HELIUM is a protocol that can be used to implement a UDP proxy, a
 VPN, or a hybrid of these. It is intended to run over a reliable,
 secure substrate transport. It can serve a variety of use cases, but
 its initial purpose is to enable HTTP proxies to forward non-TCP
 flows.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 27, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Schwartz Expires December 27, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft HELIUM June 2018

Table of Contents

1. Overview . 2
2. HELIUM Inner Protocol (HIP) 3
2.1. Terminology . 3
2.2. Requirements . 4
2.3. Abstract Structure 4
2.3.1. Error codes . 6

2.4. CBOR-based Encoding (HIP-CBOR) 7
2.5. Addressing . 8
2.5.1. IP Header . 9
2.5.2. UDP Header . 9

2.6. Example Configurations 9
2.6.1. Single IP tunnel 9
2.6.2. Multiple source IPs in one context 9
2.6.3. Domain-based proxy 10
2.6.4. UDP proxy with PMTUD and traceroute 10
2.6.5. Advanced DNS queries 10
2.6.6. UDP Server Application 11
2.6.7. High-Performance Delay-based Congestion Control . . . 11

2.7. Optimizations . 11
3. WebSocket as a HELIUM Substrate (HELIUM-WebSocket) 12
3.1. Direct Configuration 12
3.2. Implicit Configuration from an HTTP proxy 12
3.3. Optimizations . 13

4. IANA Considerations . 13
5. Acknowledgements . 13
6. References . 13
6.1. Normative References 13
6.2. Informative References 14

 Author's Address . 15

1. Overview

 This proposal describes a network tunnel that is intended as a
 natural extension or complement to existing HTTP proxies. It has two
 components

 o A flexible packet-oriented tunneling protocol that can act as
 either a VPN or a UDP proxy (Section 2)

 o A substrate for this protocol that allows it to run as part of an
 HTTPS server (Section 3)

 This design combines the benefits of several existing protocols, such
 as [OpenConnect] and [TURN]. Like OpenConnect, this protocol gains
 the privacy, authentication, and management benefits of HTTPS. Like

Schwartz Expires December 27, 2018 [Page 2]

Internet-Draft HELIUM June 2018

 TURN, this protocol can be used as a UDP proxy for realtime and P2P
 applications.

2. HELIUM Inner Protocol (HIP)

 The protocol is designed to span two different use cases

 o a UDP tunnel (proxy)

 o an IP tunnel (VPN)

 These two use cases are normally handled by entirely separate
 protocols, like [TURN] and [L2TP]. However, UDP is fundamentally
 very similar to IP (differing mostly by the addition of a 2-byte
 "port number"), so it seems plausible that a single protocol may
 serve both purposes. Additionally, a UDP proxy can be enriched by
 partial support for ICMP (enabling [PMTUD], traceroute, etc.), so
 there may be configurations that benefit from blending these uses.

 The protocol is intended to run between a client and a proxy, on a
 substrate that provides confidentiality, integrity, flow control,
 congestion control, and reliability (at least optionally). It should
 take advantage of substrates that support out-of-order delivery, but
 still function acceptably on strictly ordered transports.

2.1. Terminology

 o Proxy: the server implementing this protocol, acting as a UDP
 proxy or IP tunnel endpoint

 o Client: the endpoint that is implementing this protocol on the
 client side

 o Destination: a service that the client is trying to reach through
 the proxy

 o Context: the identity of the transport session used to transfer
 messages between a client and the proxy (e.g. one WebSocket)

 o Substrate: the transport protocol used to transfer these messages
 (e.g. WebSocket)

 o Flow: a sequence of related packets between the client and a
 single destination

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

Schwartz Expires December 27, 2018 [Page 3]

Internet-Draft HELIUM June 2018

 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2.2. Requirements

 o It shall be possible for a proxy to operate in an environment
 without elevated privileges.

 * Such a proxy might only support operating as a UDP tunnel.

 o It shall be possible for a proxy with elevated privileges to
 operate without any parsing of IP payloads.

 * Such a proxy would operate as an IP tunnel.

 o A client can direct the proxy to send multiple packets from the
 same IP (and UDP port).

 o A client can tell what IP address and port the proxy is using to
 communicate on its behalf.

 * A client can bind an address (or address:port) and learn it
 before emitting any packets.

 o A client can tell if the proxy doesn't support a feature it's
 trying to use.

 o New connections can be established without waiting for a roundtrip
 between client and proxy.

 o The protocol enables good performance when tunneling streams that
 use delay-based congestion control (e.g. TCP Vegas, [BBR],
 [RMCAT-GCC]).

 o The client has an option to let the proxy resolve DNS names
 itself, with a latency benefit.

 o The proxy can be implemented with tightly bounded memory usage.

2.3. Abstract Structure

 Each HIP message consists of a type, optional metadata, and at most
 one packet (or prefix of a packet). The packet (or prefix) is a
 standard [IPv4] or [IPv6] packet, starting with the IP header.

 There are three message types defined: "outbound", "inbound", and
 "meta".

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Schwartz Expires December 27, 2018 [Page 4]

Internet-Draft HELIUM June 2018

 A message from the client to the proxy is always of type "outbound".
 It always includes a complete packet for the proxy to send to the
 destination (potentially after header modifications). The possible
 metadata fields that this message may contain are as follows:

 o id (integer): An ID number identifying this message. If present,
 the client is implicitly requesting a "meta" message from the
 proxy. A client MUST NOT reuse an ID until a "meta" reply message
 is received.

 o domain (UTF-8 string): A DNS name to override the destination IP.
 The proxy will perform an A or AAAA lookup, depending on the IP
 version of the included packet. The proxy will buffer the packet
 until name lookup completes. The proxy SHOULD avoid creating
 duplicate outstanding DNS queries, and SHOULD cache the result to
 provide a consistent mapping.

 o dns (integer): The presence of this option indicates that the
 client wishes to direct the packet to one of the proxy's preferred
 DNS servers. Its value is an index into the proxy's list of
 preferred recursive resolvers for this IP version, modulo the
 length of the list. This option overrides the destination IP, and
 MUST NOT appear in a message with the "domain" option.

 A message from the proxy to the client may be of type "inbound" or
 "meta". An "inbound" message contains a packet that the proxy
 received from the destination, unmodified, including the IP header.
 It contains one metadata field:

 o timestamp (integer): A timestamp in microseconds modulo 2^32,
 indicating when the proxy received this packet from the
 destination. The absolute base time is unspecified, as this is
 only used for computing time differences. If the proxy
 reassembled the packet from fragments, this timestamp is the time
 when reassembly completed.

 A "meta" message is only sent by the proxy to a client after it
 receives an "outbound" message with an ID from the client. If the
 proxy modified the outbound packet in any way, the "meta" message
 MUST contain a prefix of the outbound packet as sent, including any
 parts that were modified. Changes might include the source IP,
 destination IP, TTL, DSCP priority, UDP source port, etc. If there
 was an error, the proxy MAY include a modified prefix that would not
 have encountered the error (e.g. by changing the protocol ID from an
 unsupported protocol (e.g. TCP) to a supported protocol (e.g.
 UDP)). The message contains the following metadata:

Schwartz Expires December 27, 2018 [Page 5]

Internet-Draft HELIUM June 2018

 o id (integer): This is the ID number of the "outbound" message to
 which this is a reply.

 o error (Array of integer): If present, these error codes indicate
 why the proxy could not send the packet contained in the
 "outbound" message to the destination.

 o timestamp (integer): The time when the outbound packet was sent
 from the proxy to the destination, in the same format used for
 "inbound" messages. If there was an error, this is the time that
 the error was detected.

 If the proxy receives a message from the client of an unrecognized
 type, and the message has an "id" field, the server SHOULD reply with
 a "meta" message matching that ID and indicating an "Unsupported
 message type" error.

 If the proxy receives a message from the client with unknown metadata
 fields, it SHOULD ignore the unknown fields and process the message
 as normal.

 If the proxy receives an "outbound" message with an all-zero
 destination address and no address-overriding metadata, the proxy
 SHOULD rewrite the packet for transmission and establish any required
 address or port mappings, but not attempt to send the packet. If an
 ID number is present, the proxy SHOULD reply with a "meta" message
 indicating success unless a non-address-related error occurred.

 All messages can also include padding. Padding can be represented as
 a metadata field named "padding" whose value is discarded by the
 recipient.

 All integer values defined in this section are non-negative. All
 metadata keys defined here MUST NOT appear more than once.
 Recipients SHOULD treat negative numbers and repeated keys as
 metadata parsing errors.

2.3.1. Error codes

 These are the numeric error codes that the proxy may include in a
 "meta" message

Schwartz Expires December 27, 2018 [Page 6]

Internet-Draft HELIUM June 2018

 +------+------------------------------------+
 | Code | Error |
 +------+------------------------------------+
 | 1 | Unsupported message type |
 | | |
 | 2 | Metadata parsing error |
 | | |
 | 3 | Unsupported IP version |
 | | |
 | 4 | Invalid IP header |
 | | |
 | 5 | Can't send fragment |
 | | |
 | 6 | Packet too large |
 | | |
 | 7 | Unsupported IP option |
 | | |
 | 8 | Unsupported protocol |
 | | |
 | 9 | No route to host |
 | | |
 | 10 | Network unreachable |
 | | |
 | 11 | Destination IP not allowed |
 | | |
 | 12 | Destination DNS name not allowed |
 | | |
 | 13 | DNS name has no address (NXDOMAIN) |
 | | |
 | 14 | DNS name resolution failed |
 | | |
 | 15 | General server failure |
 | | |
 | 16 | Usage limit exceeded |
 +------+------------------------------------+

 Additional error codes may be defined in the future.

2.4. CBOR-based Encoding (HIP-CBOR)

 To encode abstract HIP messages into concrete form, we use a [CBOR]-
 based encoding. Other equivalent but incompatible encodings might be
 defined in the future.

 In this encoding, each message is formed by concatenating a one-byte
 type field, the metadata encoded in CBOR, and the packet or packet-
 prefix.

Schwartz Expires December 27, 2018 [Page 7]

Internet-Draft HELIUM June 2018

 +------+----------+
 | Byte | Type |
 +------+----------+
 | 0x01 | outbound |
 | | |
 | 0x02 | inbound |
 | | |
 | 0x03 | meta |
 +------+----------+

 Metadata is encoded in CBOR as a Map. For compactness, keys are
 integer-valued, with the following significance:

 +-----+-----------+
 | Key | Field |
 +-----+-----------+
 | 0 | padding |
 | | |
 | 1 | id |
 | | |
 | 2 | domain |
 | | |
 | 3 | dns |
 | | |
 | 4 | timestamp |
 | | |
 | 5 | error |
 +-----+-----------+

 Additional message types and metadata fields may be defined in the
 future.

 When sending a message, endpoints SHOULD use the most compact
 available encoding of each metadata value. When receiving a message,
 recipients are NOT REQUIRED to accept extremely inefficient or
 obscure encodings that are allowed by CBOR (e.g. Bignums, Decimal
 Fractions).

2.5. Addressing

 There are two major modes of operation that a proxy might use: IP
 tunnel and UDP tunnel. Both operation modes require the proxy to
 inspect and possibly modify the IP header of the packet contained in
 an "outbound" message before sending the packet to the destination.
 The UDP tunnel mode in addition requires the proxy to inspect and
 possibly modify the UDP header in the IP payload.

Schwartz Expires December 27, 2018 [Page 8]

Internet-Draft HELIUM June 2018

2.5.1. IP Header

 Initially, the client does not know the IP address that the proxy
 will use as the source IP for packets it sends to the destination.
 The protocol does not require the client to correctly populate the
 source IP in its outbound packets to the proxy. Rather, the client
 chooses any IP address, and the proxy will rewrite this address into
 one of its own outbound IP addresses. Within a single context, the
 proxy MUST maintain a stable address mapping with a reasonable
 lifetime, similar to Network Address Translation [NAT].

 In IP tunnel mode, the proxy MUST NOT map multiple contexts to the
 same outbound IP address at the same time, as it would then be
 impossible to determine unambiguously where to direct packets
 received from the destination. These outbound IP addresses MAY be
 publicly routable, or they MAY be in a reserved range (e.g.
 [RFC1918], [RFC4193]), using [NAT] to reach the public internet.

2.5.2. UDP Header

 In UDP tunnel mode, the proxy MAY also rewrite the UDP source port of
 a packet before sending it to the destination. The client has no way
 to initially know what source port the proxy will use in this mode,
 so the protocol does not require the client to correctly populate the
 source port in its outbound packets to the proxy. In UDP tunnel
 mode, the proxy MAY map the same outbound IP address to multiple
 contexts with overlapping lifetimes, but the proxy SHOULD ensure that
 each UDP port is only mapped to a single context (i.e. an endpoint-
 independent mapping policy as described in [RFC4787]). A proxy MAY
 violate this condition only if it serves a limited use case in which
 the correct context for an inbound packet will never be ambiguous.

2.6. Example Configurations

2.6.1. Single IP tunnel

 The client sends outbound IP packets to the server with empty
 metadata, and with various destinations and protocols (e.g. ICMP,
 TCP, UDP). The proxy rewrites the source address of all packets to
 match the reserved IP address for this client, and forwards all
 incoming packets to the client.

2.6.2. Multiple source IPs in one context

 A client sends IP packets to the proxy with various source addresses,
 and includes an ID number in each one. For each ID number, the
 server's "meta" reply reveals the proxy source IP that was mapped to
 the client's chosen source IP. Once the client has learned the

https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc4193
https://datatracker.ietf.org/doc/html/rfc4787

Schwartz Expires December 27, 2018 [Page 9]

Internet-Draft HELIUM June 2018

 mapping, the client stops including an ID number in subsequent
 messages.

2.6.3. Domain-based proxy

 The client sends its initial flight of packets with an ID number and
 a domain in the metadata, and all zeroes in the destination IP
 address. The "meta" replies indicate the rewritten destination IP
 address, which is the resolved location of the destination. The
 client then emits subsequent packets with this destination IP
 address, and omits all metadata.

 If the proxy does not know the exact IP header used (e.g. because it
 is using the network through a UDP socket API), it will synthesize an
 approximate IP header for the "meta" replies.

2.6.4. UDP proxy with PMTUD and traceroute

 The client sends "outbound" UDP packets with the ID set and varying
 size or TTL. The proxy MUST NOT fragment unless the packet is IPv4
 and the DONT-FRAGMENT bit is unset.

 If the proxy could not send the packet because it was too large, it
 MUST reply with an error (Packet too large) and SHOULD include a
 rewritten header indicating the maximum size.

 If the proxy fragmented the packet, it will reply with success and a
 prefix including the size of the first fragment.

 If the proxy modified the outbound TTL, it will indicate this in the
 reply prefix.

 If the proxy receives an ICMP response (e.g. Time Exceeded,
 Fragmentation Needed), it MAY forward it to the client. To support
 this use case, it MUST do so.

 A proxy with this behavior can be implemented without elevated
 permissions on most common operating systems (see
 [I-D.martinsen-tram-stuntrace]).

2.6.5. Advanced DNS queries

 The client sends an "outbound" UDP packet to port 53 with an ID
 number set, and a "dns" metadata value of 0. This packet is a DNS
 query, perhaps for a DNSKEY, TLSA, or TXT record.

 The proxy overwrites the destination IP address with the IP of its
 first DNS server and sends the outbound packet. It also sends a

Schwartz Expires December 27, 2018 [Page 10]

Internet-Draft HELIUM June 2018

 "meta" message to the client, containing the IP header with this
 destination address, as well as the modified source address and port.

 The client is now waiting for an "inbound" message containing a reply
 from this DNS server to the modified source address and port. If no
 reply is received within some timeout, the client retries. This
 time, it sets a "dns" value of 1, indicating that the retry should
 use the proxy's second DNS server, if one exists.

2.6.6. UDP Server Application

 The client sends an "outbound" UDP packet with an ID number set and
 all zeros in the destination IP. The "meta" reply includes the
 rewritten source IP and port, which is bound to this context. The
 client can now inform third parties to send data to this IP and port.

2.6.7. High-Performance Delay-based Congestion Control

 The client is sending and receiving a flow that uses delay-based
 congestion control. Between client and proxy, this flow is
 transmitted according to the congestion control behaviors of the
 HELIUM substrate. From the proxy to the destination, congestion
 control is the responsibility of the client and destination.

 To monitor delay on the proxy-destination path, the client can
 include an ID number in every outbound message. This will cause the
 proxy to reply with a "meta" message, including the send timestamp.
 By comparing these send timestamps with the receive timestamps in
 inbound messages, the client can accurately monitor the round-trip
 time between proxy and destination.

 If the proxy-destination roundtrip time is gradually increasing, the
 client can reduce its send rate below the limit imposed by the HELIUM
 substrate.

2.7. Optimizations

 Proxies are NOT REQUIRED to perform reassembly of inbound IP
 fragments. Proxies MAY reassemble IP fragments, or they MAY forward
 each fragment independently to the client. This helps to limit proxy
 memory usage.

 When the client sends an "outbound" message with the "domain"
 metadata, the proxy has to buffer the corresponding packet until the
 domain name is resolved. To limit memory usage, the proxy can "peek"
 at the query without removing it from the transport's receive buffer.
 The transport's flow control will then limit the amount of memory
 that the client can consume.

Schwartz Expires December 27, 2018 [Page 11]

Internet-Draft HELIUM June 2018

3. WebSocket as a HELIUM Substrate (HELIUM-WebSocket)

 The HELIUM Inner Protocol (Section 2) requires a substrate transport
 to deliver messages between client and proxy. The WebSocket protocol
 is a suitable substrate. Each HIP-CBOR message (Section 2.4) can be
 sent as a WebSocket message of type "binary".

 If a browser is configured to act as a HELIUM client, communicating
 with the proxy over a WebSocket, the WebSocket is controlled and
 terminated by the browser itself, not associated with any particular
 origin or webpage.

3.1. Direct Configuration

 The location of a WebSocket HELIUM proxy is defined by a WebSocket
 URL, e.g. "wss://proxy.example/example-path". If the client knows
 the address of a WebSocket HELIUM proxy, then the client may simply
 connect to the proxy by establishing a WebSocket connection. The
 client's WebSocket handshake request MUST contain the "Sec-WebSocket-
 Protocol" header with value "helium-cbor" as well as an authorization
 header (e.g. Proxy-Authorization) if needed.

3.2. Implicit Configuration from an HTTP proxy

 Operators that run both an HTTP proxy, defined by some http or https
 URL, as well as a WebSocket HELIUM proxy, SHOULD return a response
 containing a new header, "Helium-Proxy-URL", when a client sends a
 proxy-specific request (e.g. HTTP CONNECT) to the operator's HTTP
 proxy. This new header, containing the WebSocket address of the
 HELIUM proxy, allows clients to discover the existence and location
 of a HELIUM proxy when they already know about an associated HTTP
 proxy. Clients can then connect to the discovered HELIUM proxy as
 described above.

 In cases where user-facing proxy configuration options are limited
 (e.g. a web browser's settings menu), a user may not be able to
 directly configure a HELIUM proxy even if they know its address. If
 an option for configuring a HTTP(S) proxy is available, however, the
 Helium-Proxy-URL header will allow a user to implicitly configure a
 WebSocket HELIUM proxy by entering an associated HTTP(S) proxy
 address.

 A client with access to both an HTTP(S) proxy and a HELIUM proxy
 SHOULD use the HTTP(S) proxy for all connections that it can support,
 and use the HELIUM proxy for all other network activity.

Schwartz Expires December 27, 2018 [Page 12]

Internet-Draft HELIUM June 2018

3.3. Optimizations

 After initiating the WebSocket connection, a client MAY send its
 initial HIP messages without waiting for the server's reply. This
 saves 1 RTT, similar to TLS False Start [FALSESTART].

 Clients and proxies MAY negotiate WebSocket DEFLATE compression with
 context takeover (see Section 7 of [RFC7692]). This will replace
 consistent headers with back-references to the previous matching
 packet. On typical streams, this removes most of the IP and HIP-CBOR
 overhead, and can even compress the payload if it contains patterns
 that appear in each packet. However, implementers should use caution
 when combining compression and padding, as compression can render
 some padding schemes ineffective.

4. IANA Considerations

 The names and numbers of the HIP message types, metadata fields, and
 error codes will each require a new IANA registry. Additionally,
 HELIUM-WebSocket will require registration of a new WebSocket
 Protocol ("helium-cbor") and a new HTTP header ("Helium-Proxy-URL").

5. Acknowledgements

 Many thanks to Katharine Daly and Lucas Pardue for their early and
 extensive review of this proposal.

6. References

6.1. Normative References

 [CBOR] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [IPv4] Postel, J., "Internet Protocol", STD 5, RFC 791,
 DOI 10.17487/RFC0791, September 1981, <https://www.rfc-

editor.org/info/rfc791>.

 [IPv6] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017, <https://www.rfc-

editor.org/info/rfc8200>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-

editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/rfc7692#section-7
https://datatracker.ietf.org/doc/html/rfc7049
https://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc791
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc791
https://datatracker.ietf.org/doc/html/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

Schwartz Expires December 27, 2018 [Page 13]

Internet-Draft HELIUM June 2018

 [RFC7692] Yoshino, T., "Compression Extensions for WebSocket",
RFC 7692, DOI 10.17487/RFC7692, December 2015,

 <https://www.rfc-editor.org/info/rfc7692>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

6.2. Informative References

 [BBR] Cardwell, N., Cheng, Y., Yeganeh, S., and V. Jacobson,
 "BBR Congestion Control", draft-cardwell-iccrg-bbr-

congestion-control-00 (work in progress), July 2017.

 [FALSESTART]
 Langley, A., Modadugu, N., and B. Moeller, "Transport
 Layer Security (TLS) False Start", RFC 7918,
 DOI 10.17487/RFC7918, August 2016, <https://www.rfc-

editor.org/info/rfc7918>.

 [I-D.martinsen-tram-stuntrace]
 Martinsen, P. and D. Wing, "STUN Traceroute", draft-

martinsen-tram-stuntrace-01 (work in progress), June 2015.

 [L2TP] Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn,
 G., and B. Palter, "Layer Two Tunneling Protocol "L2TP"",

RFC 2661, DOI 10.17487/RFC2661, August 1999,
 <https://www.rfc-editor.org/info/rfc2661>.

 [NAT] Srisuresh, P. and K. Egevang, "Traditional IP Network
 Address Translator (Traditional NAT)", RFC 3022,
 DOI 10.17487/RFC3022, January 2001, <https://www.rfc-

editor.org/info/rfc3022>.

 [OpenConnect]
 Mavrogiannopoulos, N., "The OpenConnect VPN Protocol
 Version 1.0", draft-mavrogiannopoulos-openconnect-00 (work
 in progress), September 2016.

 [PMTUD] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 DOI 10.17487/RFC1191, November 1990, <https://www.rfc-

editor.org/info/rfc1191>.

 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
 and E. Lear, "Address Allocation for Private Internets",

BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
 <https://www.rfc-editor.org/info/rfc1918>.

https://datatracker.ietf.org/doc/html/rfc7692
https://www.rfc-editor.org/info/rfc7692
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-00
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-00
https://datatracker.ietf.org/doc/html/rfc7918
https://www.rfc-editor.org/info/rfc7918
https://www.rfc-editor.org/info/rfc7918
https://datatracker.ietf.org/doc/html/draft-martinsen-tram-stuntrace-01
https://datatracker.ietf.org/doc/html/draft-martinsen-tram-stuntrace-01
https://datatracker.ietf.org/doc/html/rfc2661
https://www.rfc-editor.org/info/rfc2661
https://datatracker.ietf.org/doc/html/rfc3022
https://www.rfc-editor.org/info/rfc3022
https://www.rfc-editor.org/info/rfc3022
https://datatracker.ietf.org/doc/html/draft-mavrogiannopoulos-openconnect-00
https://datatracker.ietf.org/doc/html/rfc1191
https://www.rfc-editor.org/info/rfc1191
https://www.rfc-editor.org/info/rfc1191
https://datatracker.ietf.org/doc/html/bcp5
https://datatracker.ietf.org/doc/html/rfc1918
https://www.rfc-editor.org/info/rfc1918

Schwartz Expires December 27, 2018 [Page 14]

Internet-Draft HELIUM June 2018

 [RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
 Addresses", RFC 4193, DOI 10.17487/RFC4193, October 2005,
 <https://www.rfc-editor.org/info/rfc4193>.

 [RFC4787] Audet, F., Ed. and C. Jennings, "Network Address
 Translation (NAT) Behavioral Requirements for Unicast
 UDP", BCP 127, RFC 4787, DOI 10.17487/RFC4787, January
 2007, <https://www.rfc-editor.org/info/rfc4787>.

 [RMCAT-GCC]
 Holmer, S., Lundin, H., Carlucci, G., Cicco, L., and S.
 Mascolo, "A Google Congestion Control Algorithm for Real-
 Time Communication", draft-ietf-rmcat-gcc-02 (work in
 progress), July 2016.

 [TURN] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)", RFC 5766,
 DOI 10.17487/RFC5766, April 2010, <https://www.rfc-

editor.org/info/rfc5766>.

Author's Address

 Ben Schwartz
 Google

 Email: bemasc@google.com

https://datatracker.ietf.org/doc/html/rfc4193
https://www.rfc-editor.org/info/rfc4193
https://datatracker.ietf.org/doc/html/bcp127
https://datatracker.ietf.org/doc/html/rfc4787
https://www.rfc-editor.org/info/rfc4787
https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-gcc-02
https://datatracker.ietf.org/doc/html/rfc5766
https://www.rfc-editor.org/info/rfc5766
https://www.rfc-editor.org/info/rfc5766

Schwartz Expires December 27, 2018 [Page 15]

