
Workgroup: httpbis

Internet-Draft:

draft-schwartz-modern-http-proxies-00

Published: 14 October 2022

Intended Status: Standards Track

Expires: 17 April 2023

Authors: B. M. Schwartz

Google LLC

Modernizing HTTP Forward Proxy Functionality

Abstract

HTTP proxying features have long been part of the core HTTP

specification. However, the core proxying functionality has several

important deficiencies in modern HTTP environments. This

specification defines alternative proxy service configurations for

HTTP requests and TCP connections. These services are identified by

URI Templates and designed for parallelism with DoH, MASQUE, and

Oblivious HTTP.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 17 April 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. History

1.2. Problems

1.3. Overview

2. Conventions and Definitions

3. Modern HTTP Request Proxies

3.1. Example

4. Modern TCP transport proxies

4.1. In HTTP/1.1

4.1.1. Example

4.2. In HTTP/2 and HTTP/3

5. Additional Examples

5.1. Template expansion

5.2. Sample exchanges

6. Security Considerations

7. Operational considerations

8. IANA Considerations

9. References

9.1. Normative References

9.2. Informative References

Acknowledgments

Author's Address

1. Introduction

1.1. History

An HTTP forward proxy (or just "proxy" in the HTTP standards) is an

HTTP service that acts on behalf of the client as an intermediary

for some or all HTTP requests. HTTP/1.0 defines the initial HTTP

proxying mechanism: the client formats its request target in

"absolute form" (i.e. with a full URI in the Request-Line) and

delivers it to the proxy, which reissues it to the origin specified

in the URI ([RFC1945], Section 5.1.2). In this specification, we

call this behavior an "HTTP request proxy".

With the introduction of "https" URIs, a new proxying mechanism was

needed to enable TLS connections to traverse the proxy. To enable

this, HTTP/1.1 introduced the CONNECT method. In this method, the

request target specifies a host and port number, and the proxy

forwards TCP payloads between the client and this destination

([RFC9110], Section 9.3.6). In this specification, we call this

behavior a "TCP transport proxy".

¶

¶

¶

https://rfc-editor.org/rfc/rfc1945#section-5.1.2
https://rfc-editor.org/rfc/rfc9110#section-9.3.6

These two methods sufficed until the introduction of HTTP/3, which

uses a UDP transport. The MASQUE effort has filled the gap by

defining proxy mechanisms that are capable of proxying UDP datagrams

[RFC9298], and more generally IP datagrams

[I-D.ietf-masque-connect-ip]. The destination host and port number

(if applicable) are encoded into the HTTP resource path, and end-to-

end datagrams are wrapped into HTTP Datagrams [RFC9297] on the

client-proxy path.

1.2. Problems

Classic HTTP request proxies and TCP transport proxies are

identified by an origin, not a URI. The proxy service does not have

a path of its own. This prevents any origin from hosting multiple

distinct proxy services and makes it difficult to manage a proxy

service in a fashion similar to other HTTP services.

In some circumstances, it may be possible to work around this

limitation by hosting many origins on a single server (virtual-

hosting). In HTTP/1.1, the "Host" header was introduced to support

such virtual-hosting by distinguishing the hostname of the proxy (in

the Host header) from the hostname of the destination (in the

absolute-form request URI). However, in HTTP/2 and HTTP/3, this

distinction no longer exists. As a result, classic HTTP request

proxies are not compatible with virtual-hosting in HTTP/2 or HTTP/3.

Classic TCP transport proxies can be used with a host that is

specified as a domain name or an IP address. However, because only a

single IP address can be specified, Happy Eyeballs and cross-IP

fallback can only be used when the host is a domain name. For

requests to succeed, the client must know which address families are

supported by the proxy.

1.3. Overview

This specification describes alternative protocols for HTTP request

proxies and TCP transport proxies in HTTP. Like other modern HTTP

access services such as DoH, CONNECT-UDP, and CONNECT-IP, the proxy

is identified by a URI Template. Proxy interactions reuse standard

HTTP components and semantics, avoiding changes to the core HTTP

protocol.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

¶

¶

¶

¶

¶

¶

3. Modern HTTP Request Proxies

A modern HTTP request proxy is identified by a URI Template

containing a variable named "target_uri". To convert an HTTP request

into a proxied request, the client MUST substitute the request's URI

into this variable, expand the template, and use the result as the

new request URI.

HTTP headers work the same as in classic HTTP request proxies.

A modern HTTP request proxy is also suitable for use as an Oblivious

HTTP relay, if it provides the required privacy guarantees.

3.1. Example

Consider a proxy identified as "https://example.com/proxy{?

target_uri}". Requests would then be transformed as follows:

Notes on this example:

The HTTP method is not altered.

The request-related headers such as Content-Type are preserved,

but the Host header (or :authority in HTTP/2 and HTTP/3) is

altered.

Certain characers in the target URI are percent-encoded during

URI Template expansion.

The scheme, which is implicit in the original request, is

explicit in the transformed request. The scheme in this example

is "https", indicating that the client is asking the proxy to

establish a secure connection to the target.

The client can add Proxy-* headers to communicate with the proxy.

¶

¶

¶

¶

Original request:

PATCH /resource HTTP/1.1

Host: api.example

Content-Type: application/example

...

Transformed request:

PATCH /proxy?target_uri=https%3A%2F%2Fapi.example%2Fresource HTTP/1.1

Host: example.com

Content-Type: application/example

Proxy-Authorization: ...

...

¶

¶

* ¶

*

¶

*

¶

*

¶

* ¶

4. Modern TCP transport proxies

A modern TCP transport proxy for HTTP is identified by a URI

Template [RFC6570] containing variables named "target_host" and

"tcp_port". The client substitutes the destination host and port

number into these variables to produce the request URI.

The "target_host" variable MUST be a domain name, an IP address

literal, or a list of IP addresses. The "tcp_port" variable MUST be

a single integer. If "target_host" is a list (as in Section 2.4.2 of

[RFC6570]), the server SHOULD perform the same connection procedure

as if these addresses had been returned in response to A and AAAA

queries for a domain name.

4.1. In HTTP/1.1

In HTTP/1.1, the client uses the proxy by issuing a request as

follows:

The method SHALL be "GET".

The request SHALL include a single Host header field containing

the origin of the proxy.

The request SHALL include a Connection header field with the

value "Upgrade".

The request SHALL include an "Upgrade" header field with the

value "connect-tcp".

The request's target SHALL be the URI derived from expansion of

the proxy's URI Template.

If the request is well-formed and permissible, the proxy MUST

attempt the TCP connection before returning its response header. If

the TCP connection is successful, the response SHALL be as follows:

The HTTP status code SHALL be 101 (Switching Protocols).

The response SHALL include a Connection header field with the

value "Upgrade".

The response SHALL include a single Upgrade header field with the

value "connect-tcp".

If the request is malformed or impermissible, the proxy MUST return

a 4XX error code. If the TCP connection failed, the proxy MUST NOT

return a 101 or 2XX status code.

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

*

¶

¶

* ¶

*

¶

*

¶

¶

https://rfc-editor.org/rfc/rfc6570#section-2.4.2

If the proxy observes an unclean shutdown from the client (e.g. a

TCP RST or TLS error), it SHOULD send a TCP RST to the target. If

the proxy receives a TCP RST from the target, it SHOULD send a TLS

"internal_error" alert to the client, or set the TCP RST bit if TLS

is not in use.

4.1.1. Example

Consider a proxy identified as "https://example.com/proxy{?

target_host,tcp_port}". To establish a TCP connection to

192.0.2.1:443, the following exchange would occur:

Client Proxy

GET /proxy?target_host=192.0.2.1&tcp_port=443 HTTP/1.1

Host: example.com

Connection: Upgrade

Upgrade: connect-tcp

 HTTP/1.1 101 Switching Protocols

 Connection: Upgrade

 Upgrade: connect-tcp

Figure 1: Modern TCP transport proxy in HTTP/1.1

4.2. In HTTP/2 and HTTP/3

In HTTP/2 and HTTP/3, the client uses the proxy by issuing an

"extended CONNECT" request as follows:

The :method pseudo-header field SHALL be "CONNECT".

The :protocol pseudo-header field SHALL be "connect-tcp".

The :authority pseudo-header field SHALL contain the authority of

the proxy.

The :path and :scheme pseudo-header fields SHALL contain the path

and scheme of the request URI derived from the proxy's URI

Template.

From this point on, the request and response streams SHALL conform

to all the usual requirements for non-extended CONNECT in this HTTP

version.

¶

¶

¶

* ¶

* ¶

*

¶

*

¶

¶

5. Additional Examples

5.1. Template expansion

The names of the variables in the URI Template uniquely identify the

capabilities of the proxy. Undefined variables are permitted in URI

Templates, so a single template can be used for multiple purposes:

Figure 2: Multipurpose templates

Multipurpose templates can be useful when a single client may

benefit from access to multiple complementary services (e.g. TCP and

UDP), or when the proxy is used by a variety of clients with

different needs.

5.2. Sample exchanges

A modern HTTP request proxy can be used as an Oblivious HTTP Relay.

For example, suppose the relay is identified as "https://

proxy.example.org/relay{?target_uri}", and the Oblivious HTTP

Gateway is "https://example.com/gateway". The client would send

requests to the proxy as follows:

POST /relay?target_uri=https%3A%2F%2Fexample.com%2Fgateway HTTP/1.1

Host: proxy.example.org

Proxy-Authorization: ...

Content-Type: message/ohttp-req

...

Figure 3: Use of an HTTP request proxy as an Oblivious relay

If a modern HTTP request proxy supports HTTP/2 and Extended CONNECT,

it is even possible to reach a modern TCP transport proxy through

it:

¶

Combined HTTP request and TCP transport proxy:

https://example.com/proxy{?target_uri,target_host,tcp_port}

Combined HTTP, TCP, UDP, and IP proxy with DoH server:

https://proxy.example/{?target_uri,target_host,tcp_port,port,target,ipproto,dns}

¶

¶

¶

CONNECT HTTP/2.0

:authority = request-proxy.example

:scheme = https

:path = /proxy?target_uri=https%3A%2F%2Ftransport-proxy.example%2Fproxy

 %3Ftarget_host%3Ddestination.example%26tcp_port%3D443

:protocol = connect-tcp

...

Figure 4: Use of a TCP transport proxy through an HTTP request proxy

Modern TCP transport proxies support requests that offer multiple IP

addresses:

CONNECT HTTP/2.0

:authority = request-proxy.example

:scheme = https

:path = /proxy?target_host=192.0.2.1,2001:db8::1&port=443

:protocol = connect-tcp

...

Figure 5: TCP transport proxy request with multiple IP addresses

6. Security Considerations

None

7. Operational considerations

Modern HTTP proxies can make use of standard HTTP gateways and path-

routing to ease implementation and allow use of shared

infrastructure. However, current gateways might need modifications

to support these services. A compatible gateway must:

support Extended CONNECT.

convert HTTP/1.1 Upgrade requests into Extended CONNECT.

allow the CONNECT method to pass through to the origin.

forward Proxy-* request headers to the origin.

8. IANA Considerations

IF APPROVED, IANA is requested to add the following entry to the

HTTP Upgrade Token Registry:

Value: "connect-tcp"

Description: Proxying of TCP payloads

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

[RFC2119]

[RFC6570]

[RFC8174]

[I-D.ietf-masque-connect-ip]

[RFC1945]

[RFC9110]

[RFC9297]

[RFC9298]

Reference: (This document)

9. References

9.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,

and D. Orchard, "URI Template", RFC 6570, DOI 10.17487/

RFC6570, March 2012, <https://www.rfc-editor.org/rfc/

rfc6570>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

9.2. Informative References

Pauly, T., Schinazi, D., Chernyakhovsky, A., Kühlewind,

M., and M. Westerlund, "IP Proxying Support for HTTP",

Work in Progress, Internet-Draft, draft-ietf-masque-

connect-ip-03, 27 September 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-masque-connect-

ip-03>.

Berners-Lee, T., Fielding, R., and H. Frystyk, "Hypertext

Transfer Protocol -- HTTP/1.0", RFC 1945, DOI 10.17487/

RFC1945, May 1996, <https://www.rfc-editor.org/rfc/

rfc1945>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP Semantics", STD 97, RFC 9110, DOI 10.17487/

RFC9110, June 2022, <https://www.rfc-editor.org/rfc/

rfc9110>.

Schinazi, D. and L. Pardue, "HTTP Datagrams and the

Capsule Protocol", RFC 9297, DOI 10.17487/RFC9297, August

2022, <https://www.rfc-editor.org/rfc/rfc9297>.

Schinazi, D., "Proxying UDP in HTTP", RFC 9298, DOI

10.17487/RFC9298, August 2022, <https://www.rfc-

editor.org/rfc/rfc9298>.

* ¶

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc6570
https://www.rfc-editor.org/rfc/rfc6570
https://www.rfc-editor.org/rfc/rfc8174
https://datatracker.ietf.org/doc/html/draft-ietf-masque-connect-ip-03
https://datatracker.ietf.org/doc/html/draft-ietf-masque-connect-ip-03
https://datatracker.ietf.org/doc/html/draft-ietf-masque-connect-ip-03
https://www.rfc-editor.org/rfc/rfc1945
https://www.rfc-editor.org/rfc/rfc1945
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9297
https://www.rfc-editor.org/rfc/rfc9298
https://www.rfc-editor.org/rfc/rfc9298

Acknowledgments

TODO acknowledge.

Author's Address

Benjamin M. Schwartz

Google LLC

Email: bemasc@google.com

¶

mailto:bemasc@google.com

	Modernizing HTTP Forward Proxy Functionality
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. History
	1.2. Problems
	1.3. Overview

	2. Conventions and Definitions
	3. Modern HTTP Request Proxies
	3.1. Example

	4. Modern TCP transport proxies
	4.1. In HTTP/1.1
	4.1.1. Example

	4.2. In HTTP/2 and HTTP/3

	5. Additional Examples
	5.1. Template expansion
	5.2. Sample exchanges

	6. Security Considerations
	7. Operational considerations
	8. IANA Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Acknowledgments
	Author's Address

